• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

A combinatorial formula for affine Hall–Littlewood functions via a weighted Brion theorem

Selecta Mathematica, New Series. 2016. Vol. 22. No. 3. P. 1703-1747.

We present a new combinatorial formula for Hall–Littlewood functions associated with the affine root system of type (Formula presented.), i.e., corresponding to the affine Lie algebra (Formula presented.). Our formula has the form of a sum over the elements of a basis constructed by Feigin, Jimbo, Loktev, Miwa and Mukhin in the corresponding irreducible representation. Our formula can be viewed as a weighted sum of exponentials of integer points in a certain infinite-dimensional convex polyhedron. We derive a weighted version of Brion’s theorem and then apply it to our polyhedron to prove the formula. © 2016 Springer International Publishing