### Article

## Information Theoretic Analysis of Efficiency of the Phonetic Encoding–Decoding Method in Automatic Speech Recognition

A words phonetic decoding method in automatic speech recognition is considered. The properties of Kullback–Leibler divergence are used to synthesize the estimation of the distribution of divergence between minimum speech units (e.g., single phonemes) inside a single class. It is demonstrated that the min imum variance of the intraphonemic divergence is reached when the phonetic database is tuned to the voice of a single speaker. The estimations are proven by experimental results on the recognition of vowel sounds and isolated words of Russian language.

The definition of a phoneme as a fuzzy set of minimal speech units from the model database is proposed. On the basis of this definition and the Kullback-Leibler minimum information discrimination principle the novel phoneme recognition algorithm has been developed as an enhancement of the phonetic decoding method. The experimental results in the problems of isolated vowels recognition and word recognition in Russian are presented. It is shown that the proposed method is characterized by the increase of recognition accuracy and reliability in comparison with the phonetic decoding method

This book constitutes the refereed proceedings of the 5th International Castle Meeting on Coding Theory and Applications, ICMCTA 2017, held in Vihula, Estonia, in August 2017.

The 24 full papers presented were carefully reviewed and selected for inclusion in this volume. The papers cover relevant research areas in modern coding theory, including codes and combinatorial structures, algebraic geometric codes, group codes, convolutional codes, network coding, other applications to communications, and applications of coding theory in cryptography.

The paper considers the phoneme recognition by facial expressions of a speaker in voice-activated control systems. We have developed a neural network recognition algorithm by using the phonetic words decoding method and the requirement for isolated syllable pronunciation of voice commands. The paper presents the experimental results of viseme (facial and lip position corresponding to a particular phoneme) classification of Russian vowels. We show the dependence of the classification accuracy on the used classifier (multilayer feed-forward network, support vector machine, k-nearest neighbor method), image features (histogram of oriented gradients, eigenvectors, SURF local descriptors) and the type of camera (built-in or Kinect one). The best accuracy of speaker-dependent recognition is shown to be 85% for a built-in camera and 96% for Kinect depth maps when the classification is performed with the histogram of oriented gradients and the support vector machine.

In this paper we consider the automatic emotions recognition problem, especially the case of digital audio signal processing. We consider and verify an approach in which the classification of a sound fragment is reduced to the problem of image recognition. The waveform and spectrogram are used as a visual representation of the image. The computational experiment was done based on Radvess open dataset including 8 different emotions: "neutral", "calm", "happy," "sad," "angry," "scared", "disgust", "surprised". The best accuracy result was 64%, which was produced by a combination of “|spectrogram + convolution neural network VGG-11”

Consider a Bayesian problem of estimating of probability of success in a series of trials with binary outcomes. We study the asymp- totic behaviour of weighted differential entropy for posterior probability density function (PDF) conditional on x successes after n trials, when n → ∞. Suppose that one is interested to know whether the coin is fair or not and for large n is interested in true frequency. In other words, one wants to emphasize the parameter value p = 1/2. To do so the concept of weighted differential entropy introduced in [1968] is used when the frequency γ is necessary to emphasize. It was found that the weight in suggested form does not change the asymptotic form of Shannon, Renyi, Tsallis and Fisher entropies, but change the constants. The leading term in weighted Fisher Information is changed by some constant which depend on distance between the true frequency and the value we want to emphasize.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.

It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in EXPNP, or even in EXP that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are *selfreducible*? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that EXPNP does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that NEXP does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of EXP is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for NEXP.