Article
Polynomial-time approximation algorithms for the coloring problem in some cases
We consider the coloring problem for hereditary graph classes, i.e. classes of simple unlabeled graphs closed under deletion of vertices. For the family of the hereditary classes of graphs defined by forbidden induced subgraphs with at most four vertices, there are three classes with an open complexity of the problem. For the problem and the open three cases, we present approximation polynomial-time algorithms with performance guarantees.
In this paper, we consider the minimizing total weighted completion time in preemptive equal-length job with release dates scheduling problem on a single machine. This problem is known to be open. Here, we give some properties of optimal schedules for the problem and its special cases.
Consideration was given to a graphic realization of the method of dynamic programming. Its concept was demonstrated by the examples of the partition and knapsack problems. The proposed method was compared with the existing algorithms to solve these problems.
We study the scheduling problem for single machine with preemptions of jobs. On a machine it is necessary to process a set of n jobs. Simultaneous processing is prohibited, but interrupts in processing jobs is possible. Each job j of the set is characterize by it's weight w_j, release date r_j = j - 1 and processing time p_j = 2. The only restriction is that weights w_j are non-decreasing. The objective function can be expressed as the sum of weighted completion times. We suggest the polynomial algorithm with complexity O(n^4) operations which gives us the Pareto-optimal schedules for each set of jobs. In the algorithm we use generalized Smith's rule, to obtain particular schedules after moment r_n and to prove some important lemmas for reduction of search of suitable schedules.
We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.
We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.
We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.
The problem of minimizing the root mean square deviation of a uniform string with clamped ends from an equilibrium position is investigated. It is assumed that the initial conditions are specified and the ends of the string are clamped. The Fourier method is used, which enables the control problem with a partial differential equation to be reduced to a control problem with a denumerable system of ordinary differential equations. For the optimal control problem in the l2 space obtained, it is proved that the optimal synthesis contains singular trajectories and chattering trajectories. For the initial problem of the optimal control of the vibrations of a string it is also proved that there is a unique solution for which the optimal control has a denumerable number of switchings in a finite time interval.
For a class of optimal control problems and Hamiltonian systems generated by these problems in the space l 2, we prove the existence of extremals with a countable number of switchings on a finite time interval. The optimal synthesis that we construct in the space l 2 forms a fiber bundle with piecewise smooth two-dimensional fibers consisting of extremals with a countable number of switchings over an infinite-dimensional basis of singular extremals.
This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.
In this paper, we construct a new distribution corresponding to a real noble gas as well as the equation of state for it.