### Article

## Wreath Macdonald polynomials and categorical McKay correspondence

Marc Haiman has reduced Macdonald Positivity Conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjecture where the symmetric group is replaced by the wreath product of S_n and Z/rZ. He has proven the original conjecture by establishing the geometric statement about the Hilbert scheme, as a byproduct he obtained a derived equivalence between coherent sheaves on the Hilbert scheme and coherent sheaves on the orbifold quotient of A^{2n} by the symmetric group S_n. A short proof of a similar derived equivalence for any symplectic quotient singularity has been obtained by the first author and Kaledin via quantization in positive characteristic. In the present note we prove various properties of these derived equivalences and then deduce generalized Macdonald positivity for wreath products.

Let G be an almost simple simply connected complex Lie group, and let G/U be its base affine space. In this paper we formulate a conjecture which provides a new geometric interpretation of the Macdonald polynomials associated to G via perverse coherent sheaves on the scheme of formal arcs in the affinizationof G/U. We prove our conjecture for G=SL(N) using the so called Laumon resolution of the space of quasimaps. In the course of the proof we also give a K-theoretic version of the main result of Negut.

algebra $\hat{sl}_n$. We introduce an affine, reduced, irreducible, normal quiver variety $Z$ which maps to the Zastava space bijectively at the level of complex points. The natural Poisson structure on the Zastava space can be described on $Z$ in terms of Hamiltonian reduction of a certain Poisson subvariety of the dual space of a (nonsemisimple) Lie algebra. The quantum Hamiltonian reduction of the corresponding quotient of its universal enveloping algebra produces a quantization $Y$ of the coordinate ring of $Z$. The same quantization was obtained in the finite (as opposed to the affine) case generically in arXiv:math/0409031. We prove that, for generic values of quantization parameters, $Y$ is a quotient of the affine Borel Yangian.

We study the representation theory of quantizations of Gieseker moduli spaces. We describe the categories of finite dimensional representations for all parameters and categories O for special values of parameters. We find the values of parameters, where the quantizations have finite homological dimension, and establish abelian localization theorem. We describe the two-sided ideals. Finally, we determine annihilators of the irreducible objects in categories O for some special choices of one-parameter subgroups.

Let G be an almost simple simply connected complex Lie group, and let G/U− be its base affine space. In this paper we formulate a conjecture, which provides a new geometric interpretation of the Macdonald polynomials associated to G via perverse coherent sheaves on the scheme of formal arcs in the affinization of G/U−. We prove our conjecture for G = SL(N) using the so called Laumon resolution of the space of quasi-maps (using this resolution one can reformulate the statement so that only “usual” (not perverse) coherent sheaves are used). In the course of the proof we also give a K-theoretic version of the main result of Negut (2009).

This book is based on a lecture course given by the author at the Educational Center of the Steklov Mathematical Institute in 2011. It is designed for a one-semester course for undergraduate students familiar with basic differential geometry and complex and functional analysis.

The universal Teichmüller space T is the quotient of the space of quasisymmetric homeomorphisms of the unit circle modulo Möbius transformations. The first part of the book is devoted to the study of geometric and analytic properties of T. It is an infinite-dimensional Kähler manifold which contains all classical Teichmüller spaces of compact Riemann surfaces as complex submanifolds, which explains the name "universal Teichmüller space". Apart from classical Teichmüller spaces, T contains the space S of diffeomorphisms of the circle modulo Möbius transformations. The latter space plays an important role in the quantization of the theory of smooth strings.

The quantization of T is presented in the second part of the book. In contrast with the case of diffeomorphism space S, which can be quantized in frames of the conventional Dirac scheme, the quantization of T requires an absolutely different approach based on the noncommutative geometry methods.

The book concludes with a list of 24 problems and exercises which can used to prepare for examinations.

In this paper, we consider several compression techniques for the language modeling problem based on recurrent neural networks (RNNs). It is known that conventional RNNs, e.g., LSTM-based networks in language modeling, are characterized with either high space complexity or substantial inference time. This problem is especially crucial for mobile applications, in which the constant interaction with the remote server is inappropriate. By using the Penn Treebank (PTB) dataset we compare pruning, quantization, low-rank factorization, tensor train decomposition for LSTM networks in terms of model size and suitability for fast inference.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.