### Article

## Rational Curves on Hyperkähler Manifolds

Let M be an irreducible holomorphically symplectic manifold. We show that all faces of the Kähler cone of M are hyperplanes Hi orthogonal to certain homology classes, called monodromy birationally minimal (MBM) classes. Moreover, the Kähler cone is a connected component of a complement of the positive cone to the union of all Hi. We provide several characterizations of the MBM classes. We show the invariance of MBM property by deformations, as long as the class in question stays of type (1,1). For hyperkähler manifolds with Picard group generated by a negative class z, we prove that ±z is Q-effective if and only if it is an MBM class. We also prove some results toward the Morrison–Kawamata cone conjecture for hyperkähler manifolds.

The Kobayashi pseudometric on a complex manifold is the maximal pseudometric such that any holomorphic map from the Poincaré disk to the manifold is distance-decreasing. Kobayashi has conjectured that this pseudometric vanishes on Calabi–Yau manifolds. Using ergodicity of complex structures, we prove this for all hyperkähler manifold with b_2\geqslant 7 that admits a deformation with a Lagrangian fibration and whose Picard rank is not maximal. The Strominger-Yau-Zaslow (SYZ) conjecture claims that parabolic nef line bundles on hyperkähler manifolds are semi-ample. We prove that the Kobayashi pseudometric vanishes for any hyperkähler manifold with b_2\geqslant 7 if the SYZ conjecture holds for all its deformations. This proves the Kobayashi conjecture for all K3 surfaces and their Hilbert schemes.

Let M be a closed symplectic manifold of volume V. We say that M admits an unobstructed symplectic packing by balls if any collection of symplectic balls (of possibly different radii) of total volume less than V admits a symplectic embedding to M. In 1994 McDuff and Polterovich proved that symplectic packings of Kahler manifolds can be characterized in terms of the Kahler cones of their blow-ups. When M is a Kahler manifold which is not a union of its proper subvarieties (such a manifold is called Campana simple) these Kahler cones can be described explicitly using the Demailly and Paun structure theorem. We prove that any Campana simple Kahler manifold, as well as any manifold which is a limit of Campana simple manifolds in a smooth deformation, admits an unobstructed symplectic packing by balls. This is used to show that all even-dimensional tori equipped with Kahler symplectic forms and all hyperkahler manifolds of maximal holonomy admit unobstructed symplectic packings by balls. This generalizes a previous result by Latschev-McDuff-Schlenk. We also consider symplectic packings by other shapes and show, using Ratner's orbit closure theorem, that any even-dimensional torus equipped with a Kahler form whose cohomology class is not proportional to a rational one admits a full symplectic packing by any number of equal polydisks (and, in particular, by any number of equal cubes).

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.

This article represents a study of ample subbundles of the tangent sheaf of a variety in a formal neighbourhood of a curve. With the added hypothesis of integrability it is best possible. A particular corollary is Mori’s cone theorem for foliations by curves.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.