### Article

## Point set topology as diagram chasing calculation

We observe that some natural mathematical definitions are lifting properties relative to simplest counterexamples, namely the definitions of surjectivity and injectivity of maps, as well as of being connected, separation axioms T0 and T1 in topology, having dense image, induced (pullback) topology, and every real-valued function being bounded (on a connected domain). We also offer a couple of brief speculations on cognitive and AI aspects of this observation, particularly that in point-set topology some arguments read as diagram chasing computations with finite preorders.

A new type of massless Dirac fermions in *crystalline *three_dimensional topological insulators (three_dimen_sional two_dimensional situation) has been predicted. The spectrum has fourfold degeneracy at the top of the two_dimensional Brillouin zone (M point) and twofold degeneracy near the M point. Crystal symmetry along with the time reversal invariance in three_dimensional topological insulators allows fourfold degenerate Dirac cones, which are absent in the classification of topological features in R._J. Slager et al., Nat. Phys. **9**, 98 (2013). The Hamiltonian in the cited work does not contain Dirac singularities with more than twofold degeneracy. For this reason, the corresponding topological classification is incomplete. The longitudinal magnetic field in the spinless case holds the massless dispersion law of fermions and does not lift fourfold degeneracy. In the spinor case, the magnetic field lifts fourfold degeneracy, holding only twofold degeneracy, and results in the appearance of a band gap in the spectrum of fermions.

Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known *a priori*.

The description of algebraic structure of n-fold loop spaces can be done either using the formalism of topological operads, or using variations of Segal’s Γ-spaces. The formalism of topological operads generalises well to different categories yielding such notions as (Formula presented.)-algebras in chain complexes, while the Γ-space approach faces difficulties. In this paper we discuss how, by attempting to extend the Segal approach to arbitrary categoires, one arrives to the problem of understanding “weak” sections of a homotopical Grothendieck fibration. We propose a model for such sections, called derived sections, and study the behaviour of homotopical categories of derived sections under the base change functors. The technology developed for the base-change situation is then applied to a specific class of “resolution” base functors, which are inspired by cellular decompositions of classifying spaces. For resolutions, we prove that the inverse image functor on derived sections is homotopically full and faithful.

The paper presents the implementation of a dynamic routing algorithm intended for use in networks-on-chip with a circulant topology with three generatrices of type C(N; s1, s2, s3) for finding the shortest routes between any two network nodes. The algorithm can be implemented as a RTL state machine in routers for NoCs. The proposed algorithm was tested on sets of optimal circulants. Compared with the classical algorithms A* or Dijkstra, the proposed algorithm does not require to calculate the entire path of the packet, but calculates the port number to which the packet should be sent so that it can reach the destination node. This makes it possible to significantly simplify the structure of the NoC router.

Data Correcting Algorithms in Combinatorial Optimization focuses on algorithmic applications of the well known polynomially solvable special cases of computationally intractable problems. The purpose of this text is to design practically efficient algorithms for solving wide classes of combinatorial optimization problems. Researches, students and engineers will benefit from new bounds and branching rules in development efficient branch-and-bound type computational algorithms. This book examines applications for solving the Traveling Salesman Problem and its variations, Maximum Weight Independent Set Problem, Different Classes of Allocation and Cluster Analysis as well as some classes of Scheduling Problems. Data Correcting Algorithms in Combinatorial Optimization introduces the data correcting approach to algorithms which provide an answer to the following questions: how to construct a bound to the original intractable problem and find which element of the corrected instance one should branch such that the total size of search tree will be minimized. The PC time needed for solving intractable problems will be adjusted with the requirements for solving real world problems.

We develop the basic constructions of homological algebra in the (appropriately defined) unbounded derived categories of modules over algebras over coalgebras over noncommutative rings (which we call semialgebras over corings). We define double-sided derived functors SemiTor and SemiExt of the functors of semitensor product and semihomomorphisms, and construct an equivalence between the exotic derived categories of semimodules and semicontramodules. Certain (co)flatness and/or (co)projectivity conditions have to be imposed on the coring and semialgebra to make the module categories abelian (and the cotensor product associative). Besides, for a number of technical reasons we mostly have to assume that the basic ring has a finite homological dimension (no such assumptions about the coring and semialgebra are made). In the final chapters we construct model category structures on the categories of complexes of semi(contra)modules, and develop relative nonhomogeneous Koszul duality theory for filtered semialgebras and quasi-differential corings. Our motivating examples come from the semi-infinite cohomology theory. Comparison with the semi-infinite (co)homology of Tate Lie algebras and graded associative algebras is established in appendices; an application to the correspondence between Tate Harish-Chandra modules with complementary central charges is worked out; and the semi-infinite homology of a locally compact topological group relative to an open profinite subgroup is defined.

We propose a model that evaluates how much a network has changed over time in terms of its structure and a set of central elements. The difference of structure is evaluated in terms of node-to-node influence using known nodes correspondence models. To analyze the changes in nodes centralities we adapt an idea of interval orders to the network theory. Our approach can be used to investigate dynamic changes in temporal networks and to identify suspicious or abnormal effects in terms of the topology and its critical members. We can also transform the stability measure to the similarity measure in order to cluster the network in some homogeneous periods. To test our model, we consider the international migration network from 1970 to 2015 and attempt to analyze main changes in migration patterns.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.