### Article

## Exercises de style: A homotopy theory for set theory

We construct a model category (in the sense of Quillen) for set

theory, starting from two arbitrary, but natural, conventions. It is the simplest

category satisfying our conventions and modelling the notions of niteness,

countability and innite equi-cardinality. We argue that from the homotopy

theoretic point of view our construction is essentially automatic following basic

existing methods, and so is (almost all) the verication that the construction

works.

We use the posetal model category to introduce homotopy-theoretic intu-

itions to set theory. Our main observation is that the homotopy invariant

version of cardinality is the covering number of Shelah's PCF theory, and

that other combinatorial objects, such as Shelah's revised power function -

the cardinal function featuring in Shelah's revised GCH theorem | can be

obtained using similar tools. We include a small \dictionary" for set theory in

QtNaamen, hoping it will help in nding more meaningful homotopy-theoretic

intuitions in set theory.

One of the key advances in genome assembly that has led to a significant improvement in contig lengths has been improved algorithms for utilization of paired reads (mate-pairs). While in most assemblers, mate-pair information is used in a post-processing step, the recently proposed Paired de Bruijn Graph (PDBG) approach incorporates the mate-pair information directly in the assembly graph structure. However, the PDBG approach faces difficulties when the variation in the insert sizes is high. To address this problem, we first transform mate-pairs into edge-pair histograms that allow one to better estimate the distance between edges in the assembly graph that represent regions linked by multiple mate-pairs. Further, we combine the ideas of mate-pair transformation and PDBGs to construct new data structures for genome assembly: pathsets and pathset graphs.

The description of algebraic structure of n-fold loop spaces can be done either using the formalism of topological operads, or using variations of Segal’s Γ-spaces. The formalism of topological operads generalises well to different categories yielding such notions as (Formula presented.)-algebras in chain complexes, while the Γ-space approach faces difficulties. In this paper we discuss how, by attempting to extend the Segal approach to arbitrary categoires, one arrives to the problem of understanding “weak” sections of a homotopical Grothendieck fibration. We propose a model for such sections, called derived sections, and study the behaviour of homotopical categories of derived sections under the base change functors. The technology developed for the base-change situation is then applied to a specific class of “resolution” base functors, which are inspired by cellular decompositions of classifying spaces. For resolutions, we prove that the inverse image functor on derived sections is homotopically full and faithful.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

This volume contains the papers presented at the 6th International Conference on Similarity Search and Applications (SISAP 2013), held at A Coruna, Spain, during October 2–4, 2013. The International Conference on Similarity Search and Applications (SISAP) is an annual forum for researchers and application developers in the area of similarity data management. It aims at the technological problems shared by many application domains, such as data mining, information retrieval, computer vision, pattern recognition, computational biology, geography, biometrics, machine learning, and many others that need similarity searching as a necessary supporting service. Traditionally, SISAP conferences have put emphasis on the distance-based searching, but in general the conference concerns both the effectiveness and efficiency aspects of any similarity search approach.

In this paper, we present a modification of dynamic programming algorithms (DPA), which we denote as graphical algorithms (GrA). For some single machine scheduling problems, it is shown that the time complexity of the GrA is less than the time complexity of the standard DPA. Moreover, the average running time of the GrA is often essentially smaller. A GrA can also solve large-scale instances and instances, where the parameters are not integer. For some problems, GrA has a polynomial time complexity in contrast to a pseudo-polynomial complexity of a DPA.

We study a new variant of the pattern matching problem called *cross-document pattern matching*, which is the problem of indexing a collection of documents to support an efficient search for a pattern in a selected document, where the pattern itself is a substring of another document. Several variants of this problem are considered, and efficient linear space solutions are proposed with query time bounds that either do not depend at all on the pattern size or depend on it in a very limited way (doubly logarithmic). As a side result, we propose an improved solution to the *weighted ancestor* problem.

Information systems have been developed in parallel with computer science, although information systems have roots in different disciplines including mathematics, engineering, and cybernetics. Research in information systems is by nature very interdisciplinary. As it is evidenced by the chapters in this book, dynamics of information systems has several diverse applications. The book presents the state-of-the-art work on theory and practice relevant to the dynamics of information systems. First, the book covers algorithmic approaches to numerical computations with infinite and infinitesimal numbers. Also the book presents important problems arising in service-oriented systems, such as dynamic composition, analysis of modern service-oriented information systems, and estimation of customer service times on a rail network from GPS data. After that, the book addresses the complexity of the problems arising in stochastic and distributed systems. In addition, the book discusses modulating communication for improving multi-agent learning convergence. Network issues, in particular minimum risk maximum clique problems, vulnerability of sensor networks, influence diffusion, community detection, and link prediction in social network analysis, as well as a comparative analysis of algorithms for transmission network expansion planning are described in subsequent chapters. We thank all the authors and anonymous referees for their advice and expertise in providing valuable contributions, which improved the quality of this book. Furthermore, we want to thank Springer for helping us to produce this book.

We revisit the problems of computing the maximal and the minimal non-empty suffixes of a substring of a longer text of length *n*, introduced by Babenko, Kolesnichenko and Starikovskaya [CPM’13]. For the minimal suffix problem we show that for any 1 ≤ *τ* ≤ log*n* there exists a linear-space data structure with(τ)query time and(nlogn/τ)preprocessing time. As a sample application, we show that this data structure can be used to compute the Lyndon decomposition of any substring of the text in(kτ)time, where *k* is the number of distinct factors in the decomposition. For the maximal suffix problem we give a linear-space structure with(1)query time and(n)preprocessing time, i.e., we manage to achieve both the optimal query and the optimal construction time simultaneously.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.