### Article

## Многоклассовая модель формы со скрытыми переменными

In this paper we consider the Shape Boltzmann Machine(SBM) and its multi-label version MSBM. We present an algorithm for training MSBM using only binary masks of objects and the seeds which approximately correspond to the locations of objects parts.

The article is devoted to the history and problems of creating interfaces. Shows the complexity and importance of effective interfaces, noted that this problem is a system of multilevel interdisciplinary. The new systems should be given serious attention to issues of human efficiency level. Man is still the leading element in determining the efficiency of any ergatic system. The main means of control in ergatic systems including computers, is the graphic manipulator (GM), with which to control the on-screen controls. Are the main styles of user interface. The most popular are GUI-interface (GUI - GraphicalUserInterface) and based on them WUI-interface (WUI-WebUserInterface). The development of equipment and technology of computer modeling led to the active introduction of virtual reality technology to ensure the inclusion of people in artificial worlds. Their main feature - full control of all the parameters of the development and the emergence of a sense of presence in people who live in these environments, which are called immersive. Technology induced environments allow a number of new, not generally applicable to the present, of interfaces using specially engineered virtual environments. Much attention is paid to creating the most advanced systems - systems contact management, which are the camera and sophisticated software. The drawbacks of modern non-contact control. Is being developed to create a contactless intelligent interface, which will allow: to control with data from a video camera, which is installed on your computer have a high noise immunity, clearly identify the user to recognize the situational environment, have an acceptable cost.

We consider the problem of estimating 3-d structure from a single still image of an outdoor urban scene. Our goal is to efficiently create 3-d models which are visually pleasant. We chose an appropriate 3-d model structure and formulate the task of 3-d reconstruction as model fitting problem. Our 3-d models are composed of a number of vertical walls and a ground plane, where ground-vertical boundary is a continuous polyline. We achieve computational efficiency by special preprocessing together with stepwise search of 3-d model parameters dividing the problem into two smaller sub-problems on chain graphs. The use of Conditional Random Field models for both problems allows to various cues. We infer orientation of vertical walls of 3-d model vanishing points.

The paper deals with a linear regression model. The EM algorithm is popular tool for maximum likelihood estimation of the parameters of regression model. It provides a method of robust regression under the assumption that the disturbances are independent and have identical multivariate t distribution. Previous work focused on the method of maximum likelihood estimation via the EM algorithm under the assumption that the degrees of freedom parameter of the t distribution is a scalar. In this paper, a broader assumption is employed, namely, that the disturbances have a multivariate t distribution with a vector of degrees of freedom. Missing values from the EM algorithm are random matrices. The theoretical results are illustrated in a simulation experiment using several distributions for the error process. Robust procedures are shown to be superior to the method of least squares.

Most of today’s machine learning techniques requires large manually labeled data. This problem can be solved by using synthetic images. Our main contribution is to evaluate methods of traffic sign recognition trained on synthetically generated data and show that results are comparable with results of classifiers trained on real dataset. To get a representative synthetic dataset we model different sign image variations such as intra-class variability, imprecise localization, blur, lighting, and viewpoint changes. We also present a new method for traffic sign segmentation, based on a nearest neighbor search in the large set of synthetically generated samples, which improves current traffic sign recognition algorithms.

We present a new click model for processing click logs and predicting relevance and appeal for query–document pairs in search results. Our model is a simplified version of the task-centric click model but outperforms it in an experimental comparison.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

The problem of linear classification of the parity of permutation matrices is studied. This problem is related to the analysis of complexity of a class of algorithms designed for computing the permanent of a matrix that generalizes the Kasteleyn algorithm. Exponential lower bounds on the magnitude of the coefficients of the functional that classifies the even and odd permutation matrices in the case of the field of real numbers and similar linear lower bounds on the rank of the classifying map for the case of the field of characteristic 2 are obtained.