### Article

## Extremal part of the PBW-filtration and nonsymmetric Macdonald polynomials

Given a reduced irreducible root system, the corresponding nil-DAHA is used to calculate the extremal coefficients of nonsymmetric Macdonald polynomials in the limit t→∞ and for antidominant weights, which is an important ingredient of the new theory of nonsymmetric q-Whittaker function. These coefficients are pure q-powers and their degrees are expected to coincide in the untwisted setting with the extremal degrees of the so-called PBW-filtration in the corresponding finite-dimensional irreducible representations of the simple Lie algebras for any root systems. This is a particular case of a general conjecture in terms of the level-one Demazure modules. We prove this coincidence for all Lie algebras of classical type and for G2, and also establish the relations of our extremal degrees to minimal q-degrees of the extremal terms of the Kostant q-partition function; they coincide with the latter only for some root systems. © 2015 Elsevier Inc.

This is a survey of the author's and his collaboratots' recent works on the quasiflags' moduli spaces introduced by Gerard Laumon some 25 years ago. These spaces are used in the study of geometric Eisenstein series, quantum cohomology and K-theory of the flag varieties, Weyl modules, Nekrasov partition function of N=2 supersymmetric gauge quantum field theory.

Let G be an almost simple simply connected complex Lie group, and let G/U be its base affine space. In this paper we formulate a conjecture which provides a new geometric interpretation of the Macdonald polynomials associated to G via perverse coherent sheaves on the scheme of formal arcs in the affinizationof G/U. We prove our conjecture for G=SL(N) using the so called Laumon resolution of the space of quasimaps. In the course of the proof we also give a K-theoretic version of the main result of Negut.

Let K be a ﬁeld and A be a commutative associative K-algebra which is an integral domain. The Lie algebra DerA of all K-derivations of A is an A-module in a natural way and if R is the quotient ﬁeld of A then RDerA is a vector space over R. It is proved that if L is a nilpotent subalgebra of RDerA of rank k over R (i.e. such that dimR RL = k), then the derived length of L is at most k and L is ﬁnite dimensional over its ﬁeld of constants. In case of solvable Lie algebras over a ﬁeld of characteristic zero their derived length does not exceed 2k. Nilpotent and solvable Lie algebras of rank 1 and 2 (over R) from the Lie algebra RDerA are characterized. As a consequence we obtain the same estimations for nilpotent and solvable Lie algebras of vector ﬁelds with polynomial, rational, or formal coeﬃcients.

We introduce a unital associative algebra associated with degenerate CP1. We show that is a commutative algebra and whose Poincare' series is given by the number of partitions. Thereby, we can regard as a smooth degeneration limit of the elliptic algebra introduced by Feigin and Odesskii [Int. Math. Res. Notices 11, 531 (1997)]. Then we study the commutative family of the Macdonald difference operators acting on the space of symmetric functions. A canonical basis is proposed for this family by using and the Heisenberg representation of the commutative family studied by Shiraishi [ Commun. Math. Phys. 263, 439 (2006)]. It is found that the Ding-Iohara algebra [Lett. Math. Phys. 41, 183 (1997)] provides us with an algebraic framework for the free field construction. An elliptic deformation of our construction is discussed, showing connections with the Drinfeld quasi-Hopf twisting [Leningrad Math. J. 1, 1419 (1990)] in the sence of Babelon-Bernard-Billey [Phys. Lett. B. 375, 89 (1996)], the Ruijsenaars difference operator [Commun. Math. Phys. 110, 191 (1987)], and the operator M(q,t1,t2) of Okounkov-Pandharipande [e-print arXiv:math-ph/0411210].

Let G be an almost simple simply connected complex Lie group, and let G/U− be its base affine space. In this paper we formulate a conjecture, which provides a new geometric interpretation of the Macdonald polynomials associated to G via perverse coherent sheaves on the scheme of formal arcs in the affinization of G/U−. We prove our conjecture for G = SL(N) using the so called Laumon resolution of the space of quasi-maps (using this resolution one can reformulate the statement so that only “usual” (not perverse) coherent sheaves are used). In the course of the proof we also give a K-theoretic version of the main result of Negut (2009).

We discuss some well-known facts about Clifford algebras: matrix representations, Cartan’s periodicity of 8, double coverings of orthogonal groups by spin groups, Dirac equation in different formalisms, spinors in <span data-mathml="nn dimensions, etc. We also present our point of view on some problems. Namely, we discuss the generalization of the Pauli theorem, the basic ideas of the method of averaging in Clifford algebras, the notion of quaternion type of Clifford algebra elements, the classification of Lie subalgebras of specific type in Clifford algebra, etc.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.