### Article

## Analytical rapid prediction of tsunami runup heights: application to 2010 Chilean Tsunami

Data from a field survey of the 2011 Tohoku-oki tsunami in the Sanriku area of Japan is used to plot the distribution function of runup heights along the coast. It is shown that the distribution function can be approximated by a theoretical log-normal curve. The characteristics of the distribution functions of the 2011 event are compared with data from two previous catastrophic tsunamis (1896 and 1933) that occurred in almost the same region. The number of observations during the last tsunami is very large, which provides an opportunity to revise the conception of the distribution of tsunami wave heights and the relationship between statistical characteristics and the number of observed runup heights suggested by Kajiura (1983) based on a small amount of data on previous tsunamis. The distribution function of the 2011 event demonstrates the sensitivity to the number of measurements (many of them cannot be considered independent measurements) and can be used to determine the characteristic scale of the coast, which corresponds to the statistical independence of observed wave heights.

In the present work the results of different scenario of the cliff of Cape Canaille hypothetic collapse (South of France) are presented. Three scenarios were considered: falling of one block, falling of several blocks in one time and debris flow avalanche. The analysis of the entire scenario was done.

Approaches to modeling a tsunami of meteoric origin are discussed. A brief overview of the asteroid and meteorite danger to the Earth is given. Formulas assessing the parameters of the tsunami caused by an asteroid entering the water are derived. The results of the numerical simulation of the effect of the angle of entry of the body into water on the characteristics of the resulting waves in the near field are given. The model based on the Navier–Stokes equations for multiphase flows with a free surface is used in calculations. The dimensions of perturbation are studied and the regularities of changes in the parameters of the source are discovered.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.