Article
Putting MRFs on a Tensor Train
In the paper we present a new framework for dealing with probabilistic graphical models. Our approach relies on the recently proposed Tensor Train format (TT-format) of a tensor that while being compact allows for efficient application of linear algebra operations. We present a way to convert the energy of a Markov random field to the TT-format and show how one can exploit the properties of the TT-format to attack the tasks of the partition function estimation and the MAP-inference. We provide theoretical guarantees on the accuracy of the proposed algorithm for estimating the partition function and compare our methods against several state-of-the-art algorithms.
In the modern Web, it is common for an active person to have several profiles in different online social networks. As new general-purpose and niche social network services arise every year, the problem of social data integration will likely remain actual in the nearest future. Discovering multiple profiles of a single person across different social networks allows to merge all user's contacts from different social services or compose more complete social graph that is helpful in many social-powered applications. In this paper we propose a new approach for user profile matching based on Conditional Random Fields that extensively combines usage of profile attributes and social linkage. It is extremely suitable for cases when profile data is poor, incomplete or hidden due to privacy settings. Evaluation on Twitter and Facebook sample datasets showed that our solution significatnly outperforms common attribute-based approach and is able to find matches that are not discoverable by using only profile information. We also demonstrate the importance of social links for identity resolution task and show that certain profiles can be matched based only on social relationships between OSN users.
The Shape Boltzmann Machine (SBM) and its multilabel version MSBM have been recently introduced as deep generative models that capture the variations of an object shape. While being more flexible MSBM requires datasets with labeled parts of the objects for training. In the paper we present an algorithm for training MSBM using binary masks of objects and the seeds which approximately correspond to the locations of objects parts. The latter can be obtained from part-based detectors in an unsupervised manner. We derive a latent variable model and an EM-like training procedure for adjusting the weights of MSBM using a deep learning framework. We show that the model trained by our method outperforms SBM in the tasks related to binary shapes and is very close to the original MSBM in terms of quality of multilabel shapes.
In this paper we consider the Shape Boltzmann Machine(SBM) and its multi-label version MSBM. We present an algorithm for training MSBM using only binary masks of objects and the seeds which approximately correspond to the locations of objects parts.
We present a new click model for processing click logs and predicting relevance and appeal for query–document pairs in search results. Our model is a simplified version of the task-centric click model but outperforms it in an experimental comparison.
Structured-output learning is a challenging problem; particularly so because of the difficulty in obtaining large datasets of fully labelled instances for training. In this paper we try to overcome this difficulty by presenting a multi-utility learning framework for structured prediction that can learn from training instances with different forms of supervision. We propose a unified technique for inferring the loss functions most suitable for quantifying the consistency of solutions with the given weak annotation. We demonstrate the effectiveness of our framework on the challenging semantic image segmentation problem for which a wide variety of annotations can be used. For instance, the popular training datasets for semantic segmentation are composed of images with hard-to-generate full pixel labellings, as well as images with easy-to-obtain weak annotations, such as bounding boxes around objects, or image-level labels that specify which object categories are present in an image. Experimental evaluation shows that the use of annotation-specific loss functions dramatically improves segmentation accuracy compared to the baseline system where only one type of weak annotation is used.
In this paper we address the problem of finding the most probable state of a discrete Markov random field (MRF), also known as the MRF energy minimization problem. The task is known to be NP-hard in general and its practical importance motivates numerous approximate algorithms. We propose a submodular relaxation approach (SMR) based on a Lagrangian relaxation of the initial problem. Unlike the dual decomposition approach of Komodakis et al., 2011 SMR does not decompose the graph structure of the initial problem but constructs a submodular energy that is minimized within the Lagrangian relaxation. Our approach is applicable to both pairwise and high-order MRFs and allows to take into account global potentials of certain types. We study theoretical properties of the proposed approach and evaluate it experimentally.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability
The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.
Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.