### ?

## Any component of moduli of polarized hyperkähler manifolds is dense in its deformation space

Journal de Mathématiques Pures et Appliquées. 2014. Vol. 101. No. 2. P. 188-197.

Ananʼin S., Verbitsky M.

Let M be a compact hyperkähler manifold, and W the coarse moduli of complex deformations of M. Every positive integer class v in H^2(M) defines a divisor Dv in W consisting of all algebraic manifolds polarized by v. We prove that every connected component of this divisor is dense in W.

Collections of parabolic orbits in homogeneous spaces, homogeneous dynamics and hyperkahler geometry

Amerik E., Verbitsky M., / Cornell University. Series arXiv "math". 2016.

Consider the space M = O(p, q)/O(p) × O(q) of positive p-dimensional subspaces in a pseudo-Euclidean space V of signature (p, q), where p > 0, q > 1 and (p, q) != (1, 2), with integral structure: V = VZ ⊗ R. Let Γ be an arithmetic subgroup in G = O(VZ), and R ...

Added: April 14, 2016

Verbitsky M., Duke Mathematical Journal 2013 Vol. 162 No. 15 (2013) P. 2929-2986

A mapping class group of an oriented manifold is a quotient of its diffeomorphism group by the isotopies. We compute a mapping class group of a hyperkähler manifold $M$, showing that it is commensurable to an arithmetic lattice in SO(3, b_2-3). A Teichmüller space of $M$ is a space of complex structures on $M$ up ...

Added: December 10, 2013

Galkin S., Shinder E., / Cornell University. Series math "arxiv.org". 2014. No. 1405.5154.

We find a relation between a cubic hypersurface Y and its Fano variety of lines F(Y) in the Grothendieck ring of varieties. We prove that if the class of an affine line is not a zero-divisor in the Grothendieck ring of varieties, then Fano variety of lines on a smooth rational cubic fourfold is birational ...

Added: May 21, 2014

Soldatenkov A. O., Verbitsky M., Journal of Geometry and Physics 2014

Let (M,I,J,K) be a hyperkahler manifold, and Z⊂(M,I) a complex subvariety in (M,I). We say that Z is trianalytic if it is complex analytic with respect to J and K, and absolutely trianalytic if it is trianalytic with respect to any hyperk\"ahler triple of complex structures (M,I,J′,K′) containing I. For a generic complex structure I ...

Added: December 26, 2014

Kochetkov Y., / Cornell University Library. 2013. No. 1301.6059.

We consider the space $\mathcal{M}_{2,1}$ --- the open moduli space of complex curves of genus 2 with one marked point. Using language of chord diagrams we describe the cell structure of $\mathcal{M}_{2,1}$ and cell adjacency. This allows one to construct matrices of boundary operators and compute Betty numbers of $\mathcal{M}_{2,1}$ over $\mathbb{Q}$. ...

Added: February 24, 2013

Kamenova L., Verbitsky M., Advances in Mathematics 2014 Vol. 260 P. 401-413

A holomorphic Lagrangian fibration on a holomorphically symplectic manifold is a holomorphic map with Lagrangian fibers. It is known that a given compact manifold admits only finitely many holomorphic symplectic structures, up to deformation. We prove that a given compact manifold with $b_2 \geq 7$ admits only finitely many deformation types of holomorphic Lagrangian fibrations. ...

Added: July 11, 2014

Jardim M., Verbitsky M., Compositio Mathematica 2014 Vol. 150 No. 11 P. 1836-1868

A trisymplectic structure on a complex 2n-manifold is a
three-dimensional space ${\rm\Omega}$ of closed holomorphic forms such
that any element of \Omega has constant rank 2n, n or zero, and
degenerate forms in \Omega belong to a non-degenerate quadric
hypersurface. We show that a trisymplectic manifold is equipped with a
holomorphic 3-web and the Chern connection of this 3-web is
holomorphic, ...

Added: November 28, 2014

Kamenova L., Lu S., Verbitsky M., Journal of London Mathematical Society 2014 Vol. 90 No. 2 P. 436-450

The Kobayashi pseudometric on a complex manifold is the maximal pseudometric such that any holomorphic map from the Poincaré disk to the manifold is distance-decreasing. Kobayashi has conjectured that this pseudometric vanishes on Calabi–Yau manifolds. Using ergodicity of complex structures, we prove this for all hyperkähler manifold with b_2\geqslant 7 that admits a deformation with ...

Added: September 19, 2014

Verbitsky M., Acta Mathematica 2015 Vol. 215 No. 276 P. 161-182

Let M be a compact complex manifold. The corresponding Teichm¨uller space Teich is a space of all complex structures on M up to the action of the group Diff0(M) if isotopies. The mapping class group Γ := Diff(M)/ Diff0(M) acts on Teich in a natural way. An ergodic complex structure is the one with a ...

Added: October 27, 2015

Sergey Natanzon, Pratoussevitch A., Journal of Singularities 2013 Vol. 7 P. 61-87

We describe all connected components of the space of hyperbolic Gorenstein quasi-homogeneous surface singularities. We prove that any connected component is homeomorphic to a quotient of R^d by a discrete group. ...

Added: August 19, 2013

Веселов С. И., Gribanov D., Zolotykh N. et al., Journal of Applied and Industrial Mathematics 2018 Vol. 12 No. 3 P. 587-594

We consider the minimization problem for a symmetric quasiconvex function defined by an oracle on the set of integer points of a square. We formulate an optimality criterion for the solution, obtain a logarithmic lower bound for the complexity of the problem, and propose an algorithm for which the number of inquiries to the oracle ...

Added: February 17, 2019

Jardim M., Maican M., Tikhomirov A. S., Pacific Journal of Mathematics 2017 Vol. 291 No. 2 P. 399-424

We study the irreducible components of the moduli space of instanton sheaves on P^3, that is, µ-semistable rank 2 torsion-free sheaves E with c_1(E)= c_3(E)=0 satisfying h^1(E(−2))= h^2(E(−2))=0. In particular, we classify all instanton sheaves with c_2(E) ≤4, describing all the irreducible components of their moduli space. A key ingredient for our argument is the ...

Added: September 20, 2017

Gorinov A., / Cornell University. Series math "arxiv.org". 2014. No. 1402.5946.

We present a modification of the method of conical resolutions \cite{quintics,tom}. We apply our construction to compute the rational cohomology of the spaces of equations of nodal cubics in CP2, nodal quartics in CP2 and nodal cubics in CP3. In the last two cases we also compute the cohomology of the corresponding moduli spaces. ...

Added: February 26, 2014

Amerik E., Verbitsky M., / Cornell University. Series arXiv "math". 2021.

A parabolic automorphism of a hyperkahler manifold is a holomorphic automorphism acting on H2(M) by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian fibration acts on its fibers ergodically. The invariance of a Lagrangian fibration is automatic for manifolds satisfying the hyperkahler SYZ conjecture; this includes all known examples of ...

Added: April 6, 2022

Grantcharov G., Verbitsky Misha, Communications in Contemporary Mathematics 2013 Vol. 15 No. 2 P. 1-27

We describe a family of calibrations arising naturally on a hyper-Kähler manifold M. These calibrations calibrate the holomorphic Lagrangian, holomorphic isotropic and holomorphic coisotropic subvarieties. When M is an HKT (hyper-Kähler with torsion) manifold with holonomy SL(n, H), we construct another family of calibrations Φi, which calibrates holomorphic Lagrangian and holomorphic coisotropic subvarieties. The calibrations ...

Added: March 27, 2013

Kurnosov N., / Cornell University. Series math "arxiv.org". 2015.

We prove that a generic complex deformation of a generalized Kummer variety contains no complex analytic tori. ...

Added: October 16, 2015

Verbitsky M., Amerik E., / Cornell University. Series arXiv "math". 2019.

We study the exceptional loci of birational (bimeromorphic) contractions of a hyperkähler manifold M. Such a contraction locus is the union of all minimal rational curves in a collection of cohomology classes which are orthogonal to a wall of the Kähler cone. Homology classes which can possibly be orthogonal to a wall of the Kähler cone ...

Added: June 9, 2019

Natanzon S. M., Pratoussevitch A., Russian Mathematical Surveys 2016 Vol. 71 No. 2 P. 382-384

In this paper, we present all higher spinor structures on Klein surfaces. We present also topological invariants that describe the connected components of moduli of Klein surfaces with higher spinor structure. Each connected component is represented as a cell factorable by a discrete group . ...

Added: March 25, 2016

Модули математических инстантонных векторных расслоений с нечетным $c_2$ на проективном пространстве

Tikhomirov A. S., Известия РАН. Серия математическая 2012 Т. 76 № 5 С. 143-224

Изучается пространство $I_n$ модулей математических инстантонных векторных расслоений ранга 2 со вторым классом Черна $n\ge1$ на проективном пространстве $\mathbb{P}^3$. Доказывается неприводимость $I_n$ для произвольного нечетного $n\ge1$. Ключевые слова: векторные расслоения, математические инстантоны, пространство модулей. Адрес сайта: http://www.mathnet.ru/php/archive.phtmlwshow=paper&jrnid=im&paperid=4134&option_lang=rusм ...

Added: October 21, 2014

Gorsky E., Advances in Mathematics 2014 Vol. 250 P. 588-595

We derive a formula for the Sn-equivariant Euler characteristic of the moduli space Mg,n of genus g curves with n marked points. ...

Added: December 9, 2014

Amerik E., Verbitsky M., / Cornell University. Series arXiv "math". 2021.

An MBM locus on a hyperkahler manifold is the union of all deformations of a minimal rational curve with negative self-intersection. MBM loci can be equivalently defined as centers of bimeromorphic contractions. It was shown that the MBM loci on deformation equivalent hyperkahler manifolds are diffeomorphic. We determine the MBM loci on a hyperkahler manifold ...

Added: April 7, 2022

Springer, 2020

This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. ...

Added: August 13, 2020

Amerik E., Verbitsky M., International Mathematics Research Notices 2015 Vol. 2015 No. 23 P. 13009-13045

Let M be an irreducible holomorphically symplectic manifold. We show that all faces of the Kähler cone of M are hyperplanes Hi orthogonal to certain homology classes, called monodromy birationally minimal (MBM) classes. Moreover, the Kähler cone is a connected component of a complement of the positive cone to the union of all Hi. We ...

Added: October 28, 2015

Tyurin N. A., / Cornell University. Series arXiv "math". 2018.

In the previous papers we present a construction of the set U_SBS in the direct product B_S×PΓ(M, L) of the moduli space of Bohr - Sommerfeld lagrangian submanifolds of fixed topological type and the projectivized space of smooth sections of the prequantization bundle L→M over a given compact simply connected symplectic manifold M. Canonical projections ...

Added: October 15, 2018