Article
Гибридный детектор речи.
In this article, we focus on the isolated voice command recognition for autonomous man-machine and intelligent robotic systems. We propose to create a grammar model for a small testing command set with self-loops for each state to return blank symbols for noise and out-of-vocabulary words. In addition, we use single arc connected beginning and ending of the grammar in order to filter unknown commands. As a result, the grammar is resistant to distortions and unexpected words near or inside of command. We implemented the proposed approach using Finite State Transducers in the Kaldi framework and examined it using self-recorded noised data with various level of signal-to-noise ratio. We compared recognition accuracy and average decision-making time of our approach with the state-of-the-art continuous speech recognition engines based on language models. It was experimentally shown that our approach is characterized by up to 60% higher accuracy than conventional offline speech recognition methods based on language models. The speed of utterance recognition is 3 times higher than speed of traditional continuous speech recognition algorithms.
In this paper it is proposed to improve performance of the automatic speech recognition by using sequential three-way decisions. At first, the largest piecewise quasi-stationary segments are detected in the speech signal. Every segment is classified using the maximum a-posteriori (MAP) method implemented with the Kullback-Leibler minimum information discrimination principle. The three-way decisions are taken for each segment using the multiple comparisons and asymptotical properties of the Kullback-Leibler divergence. If the non-commitment option is chosen for any segment, it is divided into small subparts, and the decision-making is sequentially repeated by fusing the classification results for each subpart until accept or reject options are chosen or the size of each subpart becomes relatively low. Thus, each segment is associated with a hierarchy of variable-scale subparts (granules in rough set theory). In the experimental study the proposed procedure is used in speech recognition with Russian language. It was shown that our approach makes it possible to achieve high efficiency even in the presence of high level of noise in the observed utterance.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability
The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.
Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.