• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Uhlenbeck–Donaldson compactification for framed sheaves on projective surfaces

Mathematische Zeitschrift. 2013. Vol. 275. No. 3-4. P. 1073-1093.
Tikhomirov A. S., Bruzzo U., Markushevich D.

We construct a compactification $M^{μss}$ of the Uhlenbeck–Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $\gamma: M^{ss}\to M^{μss}$, where $M^{μss}$ is the moduli space of $S$-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{μss}$ has a natural set-theoretic stratification which allows one, via a Hitchin–Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.