### Article

## On large deviations in the averaging principle for SDE’s with a ``full dependence’’, revisited

We use the characterization of distribution symmetry in terms of order statistics in order to obtain new tests of symmetry based on U-empirical distribution functions. We calculate their limiting distributions and large deviations and explore their local Bahadur efficiency against location alternatives which turns out to be rather high.

We propose new tests of exponentiality of integral and of Kolmogorov type based on a characterization of exponentiality proposed by Ahsanullah. Bahadur efficiency of new tests is computed, conditions of local asymptotic optimality are described.

We discuss some well-known facts about Clifford algebras: matrix representations, Cartan’s periodicity of 8, double coverings of orthogonal groups by spin groups, Dirac equation in different formalisms, spinors in <span data-mathml="nn dimensions, etc. We also present our point of view on some problems. Namely, we discuss the generalization of the Pauli theorem, the basic ideas of the method of averaging in Clifford algebras, the notion of quaternion type of Clifford algebra elements, the classification of Lie subalgebras of specific type in Clifford algebra, etc.

We construct and study new goodness-of-fit tests for the power distribution based on the Puri-Rubin characterization and using U-empirical distribution functions. We describe their limiting distributions and large deviations. Next we find their local Bahadur efficiency for common alternatives and study the conditions of local optimality.

Research in the transient response in linear systems with nonzero initial conditions was initiated by A.A. Feldbaum in his pioneering work [1] as early as in 1948. However later, studies in this direction have faded down, and since then, the notion of transient process basically means the response of the system with zero initial conditions to the unit step input. A breakthrough in this direction is associated with the paper [2] by R.N. Izmailov, where large deviations of the trajectories from the origin were shown to be unavoidable if the poles of the closed-loop system are shifted far to the left in the complex plane. In this paper we continue the analysis of this phenomenon for systems with nonzero initial conditions. Namely, we propose a more accurate estimate of the magnitude of the peak and show that the effect of large deviations may be observed for different root locations. We also present an upper bound on deviations by using the linear matrix inequality (LMI) technique. This same approach is then applied to the design of a stabilizing linear feedback aimed at diminishing deviations in the closed-loop system. Related problems are also discussed, e.g., such as analysis of the transient response of systems with zero initial conditions and exogenous disturbances in the form of either unit step function or harmonic signal.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.