### Article

## Secularly growing loop corrections in strong electric fields

We calculate one--loop corrections to the vertexes and propagators of photons and charged particles in the strong electric field backgrounds. We use the Schwinger--Keldysh diagrammatic technique. We observe that photon's Keldysh propagator receives growing with time infrared contribution. As the result, loop corrections are not suppressed in comparison with tree--level contribution. This effect substantially changes the standard picture of the pair production. To sum up leading IR corrections from all loops we consider the infrared limit of the Dyson--Schwinger equations and reduce them to a single kinetic equation.

We prove existence and uniqueness of a solution to the problem of minimizing the logarithmic energy of vector potentials associated to a d-tuple of positive measures supported on closed subsets of the complex plane. The assumptions we make on the interaction matrix are weaker than the usual ones, and we also let the masses of the measures vary in a compact subset of ℝ+ d. The solution is characterized in terms of variational inequalities. Finally, we review a few examples taken from the recent literature that are related to our results.

The workshop *Tropical Aspects in Geometry, Topology and Physics* was devoted to a wide discussion and exchange of ideas between the leading experts representing various points of view on the subject. The development of tropical geometry is based on deep links between problems in real and complex enumerative geometry, symplectic geometry, quantum fields theory, mirror symmetry, dynamical systems and other research areas. On the other hand, new interesting phenomena discovered in the framework of tropical geometry (like refined tropical enumerative invariants) pose the problem of a conceptual understanding of these phenomena in the “classical” geometry and mathematical physics.

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research.

This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed.

Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments.

This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.

We explicitly show that the one loop IR correction to the two--point function in de Sitter space scalar QFT does not reduce just to the mass renormalization. The proper interpretation of the loop corrections is via particle creation revealing itself through the generation of the quantum averages $<a^+_p a_p>$, $<a_p a_{-p}>$ and $<a^+_p a^+_{-p}>$, which slowly change in time. We show that this observation in particular means that loop corrections to correlation functions in de Sitter space can not be obtained via analytical continuation of those calculated on the sphere.

We find harmonics for which the particle number $<a^+_p a_p>$ dominates over the anomalous expectation values $<a_p a_{-p}>$ and $<a^+_p a^+_{-p}>$. For these harmonics the Dyson--Schwinger equation reduces in the IR limit to the kinetic equation. We solve the latter equation, which allows us to sum up all loop leading IR contributions to the Whiteman function. We perform the calculation for the principle series real scalar fields both in expanding and contracting Poincare patches.

The generic feature of non-conformal fields in Poincaré patch of de Sitter space is the presence of large IR loop corrections even for massive fields. Moreover, in global de Sitter there are loop IR divergences for the massive fields. Naive analytic continuation from de Sitter to Anti-de-Sitter might lead one to conclude that something similar should happen in the latter space as well. However, we show that there are no large IR effects in the one-loop two-point functions in the Poincaré patch of Anti-de-Sitter space even for the zero mass minimally coupled scalar fields. As well there are neither large IR effects nor IR divergences in global Anti-de-Sitter space even for the zero mass.

In this paper we introduce a notion of Feynman geometry on which quantum field theories could be properly defined. A strong Feynman geometry is a geometry when the vector space of A-infinity structures is nite dimensional. A weak Feynman geometry is a geometry when the vector space of A-infinity structures is innite dimensional while the relevant operators are of trace-class. We construct families of Feynman geometries with "continuum" as their limit.

A method based on the spectral analysis of thermowave oscillations formed under the effect of radiation of lasers operated in a periodic pulsed mode is developed for investigating the state of the interface of multilayered systems. The method is based on high sensitivity of the shape of the oscillating component of the pyrometric signal to adhesion characteristics of the phase interface. The shape of the signal is quantitatively estimated using the correlation coefficient (for a film–interface system) and the transfer function (for multilayered specimens).

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.