### Article

## Degenerate group of type A: Representations and flag varieties

The degenerate Lie group is a semidirect product of the Borel subgroup with the normal

abelian unipotent subgroup.

We introduce a class of the highest weight representations of the degenerate group of type A, generalizing

the PBW-graded representations of the classical group. Following the classical construction

of the flag varieties, we consider the closures of the orbits of the abelian

unipotent subgroup in the projectivizations of the representations. We show that the degenerate flag

varieties $\Fl^a_n$ and their desingularizations $R_n$ can be obtained via this construction.

We prove that the coordinate ring of $R_n$ is isomorphic to the direct sum of duals of the highest

weight representations of the degenerate group. In the end, we state several conjectures on the structure

of the highest weight representations.

Report on generalized Weyl modules (joint with Evgeny Feigin)

This volume is the proceedings of the conference "Representation Theory, Special Functions and Painlevé Equations" at the Research Institute for Mathematical Sciences, Kyoto University from March 3 to March 6 in 2015

For every finite-dimensional vector space V and every V-flag variety X we list all connected reductive subgroups in GL(V) acting spherically on X.

The aim of these notes is to give an introduction into Schubert calculus on Grassmannians and flag varieties. We discuss various aspects of Schubert calculus, such as applications to enumerative geometry, structure of the cohomology rings of Grassmannians and flag varieties, Schur and Schubert polynomials. We conclude with a survey of results of V. Kiritchenko, V. Timorin and the author on a new approach to Schubert calculus on full flag varieties via combinatorics of Gelfand-Zetlin polytopes.

This volume contains the proceedings of the Maurice Auslander Distinguished Lectures and International Conference, held in April 2013 and April-May 2014, in Falmouth, MA.

We develop the basic constructions of homological algebra in the (appropriately defined) unbounded derived categories of modules over algebras over coalgebras over noncommutative rings (which we call semialgebras over corings). We define double-sided derived functors SemiTor and SemiExt of the functors of semitensor product and semihomomorphisms, and construct an equivalence between the exotic derived categories of semimodules and semicontramodules. Certain (co)flatness and/or (co)projectivity conditions have to be imposed on the coring and semialgebra to make the module categories abelian (and the cotensor product associative). Besides, for a number of technical reasons we mostly have to assume that the basic ring has a finite homological dimension (no such assumptions about the coring and semialgebra are made). In the final chapters we construct model category structures on the categories of complexes of semi(contra)modules, and develop relative nonhomogeneous Koszul duality theory for filtered semialgebras and quasi-differential corings. Our motivating examples come from the semi-infinite cohomology theory. Comparison with the semi-infinite (co)homology of Tate Lie algebras and graded associative algebras is established in appendices; an application to the correspondence between Tate Harish-Chandra modules with complementary central charges is worked out; and the semi-infinite homology of a locally compact topological group relative to an open profinite subgroup is defined.

We study the PBW-filtration on the highest weight representations V(λ) of the Lie algebras of type A n and C n . This filtration is induced by the standard degree filtration on . In previous papers, the authors studied the filtration and the associated graded algebras and modules over the complex numbers. The aim of this paper is to present a proof of the results which holds over the integers and hence makes the whole construction available over any field.

We give an alternative proof of the main result of [1]; the proof relies on Brion’s theorem about convex polyhedra. The result itself can be viewed as a formula for the character of the Feigin-Stoyanovsky subspace of an integrable irreducible representation of the affine Lie algebra widehatsln(C). Our approach is to assign integer points of a certain polytope to vectors comprising a monomial basis of the subspace and then compute the character by using (a variation of) Brion’s theorem.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.