### ?

## On infinite dimensional algebraic transformation groups

Transformation Groups. 2014. Vol. 19. No. 2. P. 549-568.

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given.

Tokyo : American Mathematical Society, World Scientific, 2017

Preface
The workshop “Algebraic Varieties and Automorphism Groups” was held at the Research Institute of Mathematical Sciences (RIMS), Kyoto University during July 7-11, 2014. There were over eighty participants including twenty people from overseas Canada, France, Germany, India, Korea, Poland, Russia, Singapore, Switzerland, and USA.
Recently, there have been remarkable developments in algebraic geometry and related fields, ...

Added: July 12, 2017

Popov V., / Bielefeld University. Series LAGRS "Linear Algebraic Groups and Related Structures". 2012. No. 485.

We construct counterexamples to the rationality conjecture regar-ding the new version of the Makar-Limanov invariant introduced in A. Liendo, Ga-actions of fiber type on affine T-varieties, J. Algebra 324 (2010), 3653–3665. ...

Added: January 9, 2013

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2021. No. 2106.02072.

For each integer n>0, we construct a series of irreducible algebraic varieties X, for which the automorphism group Aut(X) contains as a subgroup the automorphism group Aut(F_n) of a free group F_n of rank n. For n > 1, such groups Aut(X) are nonamenable, and for n > 2, they are nonlinear and contain the ...

Added: June 7, 2021

Zhukova N., Moscow Mathematical Journal 2018

We introduce a category of rigid geometries on singular spaces which
are leaf spaces of foliations and are considered as leaf manifolds. We
single out a special category F_0 of leaf manifolds containing the orbifold
category as a full subcategory. Objects of F_0 may have non-Hausdorff
topology unlike the orbifolds. The topology of some objects of F_0 does
not satisfy ...

Added: April 2, 2018

Popov V. L., Zarhin Y., / Cornell University. Series math "arxiv.org". 2018. No. 1808.01136.

We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\mathcal L(K)$ generated by ${\rm Aut} (K)$ and multipli\-ca\-tions by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are ...

Added: August 8, 2018

Sheina K., / Cornell University. Series arXiv "math". 2020. No. 04348v1.

The basic automorphism group of a Cartan foliation (M, F) is the quotient group of the automorphism group of (M, F) by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates ...

Added: December 9, 2020

Ivan V. Arzhantsev, Yulia I. Zaitseva, Kirill V. Shakhmatov, Proceedings of the Steklov Institute of Mathematics 2022 Vol. 318 No. 1 P. 13-25

Let X be an algebraic variety such that the group Aut(X) acts on X transitively. We define the transitivity degree of X as the maximum number m such that the action of Aut(X) on X is m-transitive. If the action of Aut(X) is m-transitive for all m, the transitivity degree is infinite. We compute the transitivity degree for all quasi-affine toric varieties and for many homogeneous spaces of algebraic groups. We also discuss a conjecture and ...

Added: November 5, 2022

Shramov K., Przyjalkowski V., Proceedings of the Steklov Institute of Mathematics 2019 Vol. 307 P. 198-209

We show that smooth well-formed weighted complete intersections have finite automorphism groups, with several obvious exceptions. ...

Added: August 12, 2020

Avilov A., Математические заметки 2020 Т. 107 № 1 С. 3-10

The forms of the Segre cubic over non-algebraically closed fields, their automorphisms groups, and equivariant birational rigidity are studied. In particular, it is shown that all forms of the Segre cubic over any field have a point and are cubic hypersurfaces. ...

Added: May 11, 2020

Kang M., Yuri Prokhorov, Journal of Algebra 2010 Vol. 324 No. 9 P. 2166-2197

Added: December 5, 2013

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2013. No. 1307.5522.

This is an expanded version of my talk at the workshop ``Groups of Automorphisms in Birational and Affine Geometry'', October 29–November 3, 2012, Levico Terme, Italy. The first section is focused on Jordan groups in abstract setting, the second on that in the settings of automorphisms groups and groups of birational self-maps of algebraic varieties. ...

Added: July 21, 2013

Shramov K., Prokhorov Y., / Cornell University. Series arXiv "math". 2019.

We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kaehler manifold of ...

Added: November 19, 2019

Попов В. Л., Известия РАН. Серия математическая 2019 Т. 84 № 4 С. 194-225

The rst group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: July 31, 2019

Arzhantsev I., Liendo A., Stasyuk T., Journal of Pure and Applied Algebra 2021 Vol. 225 No. 2 P. 106499

Let X be a normal variety endowed with an algebraic torus action. An additive group action alpha on X is called vertical if a general orbit of alpha is contained in the closure of an orbit of the torus action and the image of the torus normalizes the image of alpha in Aut(X). Our first result in this paper ...

Added: July 29, 2020

Prokhorov Y., Cheltsov I., / Cornell University. Series arXiv "math". 2020.

We classify del Pezzo surfaces with Du Val singularities that have infinite automorphism groups, and describe the connected components of their automorphisms groups. ...

Added: August 19, 2020

Vladimir L. Popov, Springer Proceedings in Mathematics & Statistics 2014 Vol. 79 P. 185-213

This is an expanded version of my talk at the workshop
``Groups of Automorphisms in Birational and Affine Geometry'',
October 29–November 3, 2012, Levico Terme, Italy.
The first section is focused on Jordan groups in abstract setting,
the second on that in the settings of automorphisms groups and
groups of birational self-maps of algebraic varieties.
The appendix is an expanded version ...

Added: April 28, 2014

V. L. Popov, Izvestiya: Mathematics, England 2019 Vol. 83 No. 4 P. 830-859

The first group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: September 29, 2019

Amerik E., Campana F., / Cornell University library. Series arxiv.org "algebraic geometry". 2013.

This is a note on Beauville's problem (solved by Greb, Lehn and Rollenske in the non-algebraic case and by Hwang and Weiss in general) whether a lagrangian torus on an irreducible holomorphic symplectic manifold is a fiber of a lagrangian fibration. We provide a different, very short solution in the non-algebraic case and make some ...

Added: April 9, 2013

Arzhantsev I., Celik D., Hausen J., Journal of Algebra 2013 Vol. 387 P. 87-98

Given an action of an affine algebraic group with only trivial characters on a factorial variety, we ask for categorical quotients. We characterize existence in the category of algebraic varieties. Moreover, allowing constructible sets as quotients, we obtain a more general existence result, which, for example, settles the case of afinitely generated algebra of invariants. ...

Added: November 13, 2013

Avilov A., Sbornik Mathematics 2016 Vol. 307 No. 3 P. 315-330

We prove that any G-del Pezzo threefold of degree 4, except for a one-parameter family and four distinguished cases, can be equivariantly reconstructed to the projective space ℙ3, a quadric Q ⊂ ℙ4 , a G-conic bundle or a del Pezzo fibration. We also show that one of these four distinguished varieties is birationally rigid ...

Added: July 6, 2016

Nina I. Zhukova, Anna Yu. Dolgonosova .., Central European Journal of Mathematics 2013 Vol. 11 No. 12 P. 2076-2088

The category of foliations is considered. In this category
morphisms are differentiable mappings transforming leaves of one
foliation into leaves of the other foliation.
We proved that the automorphism group of the foliations
admitting a transverse linear connection is an infinite-dimensional
Lie group modeled on $LF$-spaces. This result extends the corresponding
result of Macias-Virgos and Sanmartin for Riemannian foliations.
In particular, our ...

Added: September 28, 2014

Prokhorov Y., Shramov K., / Cornell University. Series arXiv "math". 2018.

We prove that automorphism groups of Inoue and primary Kodaira surfaces are Jordan. ...

Added: June 8, 2019

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2014. No. 1401.0278.

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given. ...

Added: January 3, 2014

Kuyumzhiyan K., Proceedings of the American Mathematical Society 2020 No. 148 P. 3723-3731

We prove the conjecture of Berest-Eshmatov-Eshmatov by showing that the group of automorphisms of a product of Calogero-Moser spaces C_n_i, where the n_i are pairwise distinct, acts m-transitively for each m. ...

Added: August 18, 2020