### Article

## The BTW mechanism on a self-similar image of a square: A path to unexpected exponents

We define the BTW mechanism on a two-dimensional heterogeneous self-similar lattice. Our model exhibits the power distribution of avalanches with the exponent $\tau =2-2/\nu ,\; where$$\nu \; is\; the\; similarity\; exponent\; of\; the\; lattice.\; The\; inequality$$\tau <1,\; for\; the\; first\; time\; detected\; in\; this\; paper\; inside\; a\; broad\; class\; of\; sand-piles,\; is\; ensured\; by\; random\; loading\; uniformly\; distributed\; over\; the\; lattice.$

A kinetic model is proposed to describe the self-organized criticality on Twitter. The model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown that the adiabatic regime of self- organization to the critical state is determined by the coordinated action of a relatively small number of network users. The model is described the subcritical, self-organized critical and supercritical state of Twitter.

A society is a medium with a complex structure of one-to-one relations between people. Those could be relations between friends, wife-husband relationships, relations between business partners, and so on. At a certain level of analysis, a society can be regarded as a gigantic maze constituted of one-to-one relationships between people. From a physical standpoint it can be considered as a highly porous medium. Such media are widely known for their outstanding properties and effects like self-organized criticality, percolation, power-law distribution of network cluster sizes, etc. In these media supercritical events, referred to as dragon-kings, may occur in two cases: when increasing stress is applied to a system (self-organized criticality scenario) or when increasing conductivity of a system is observed (percolation scenario). In social applications the first scenario is typical for negative effects: crises, wars, revolutions, financial breakdowns, state collapses, etc. The second scenario is more typical for positive effects like emergence of cities, growth of firms, population blow-ups, economic miracles, technology diffusion, social network formation, etc. If both conditions (increasing stress and increasing conductivity) are observed together, then absolutely miraculous dragon-king effects can occur that involve most human society. Historical examples of this effect are the emergence of the Mongol Empire, world religions, World War II, and the explosive proliferation of global internet services. This article describes these two scenarios in detail beginning with an overview of historical dragon-king events and phenomena starting from the early human history till the last decades and concluding with an analysis of their possible near future consequences on our global society. Thus we demonstrate that in social systems dragon-king is not a random outlier unexplainable by power-law statistics, but a natural effect. It is a very large cluster in a porous percolation medium. It occurs as a result of changes in external conditions, such as supercritical load, increase in system elements' sensitivity, or system connectivity growth.

Recently, there has been an increasing number of empirical evidence supporting the hypothesis that spread of avalanches of microposts on social networks, such as Twitter, is associated with some sociopolitical events. Typical examples of such events are political elections and protest movements. Inspired by this phenomenon, we built a phenomenological model that describes Twitter’s self-organization in a critical state. An external manifestation of this condition is the spread of avalanches of microposts on the network. e model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown that the adiabatic mode of self-organization in a critical state is determined by the intensive coordinated action of a relatively small number of network users. To identify the critical states of the network and to verify the model, we have proposed a spectrum of three scaling indicators of the observed time series of microposts.

We study perturbations of the maximal stable state in a sandpile model on the set of faces of the heptagonal tiling on the hyperbolic plane. An explicit description for relaxations of such states is given.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.