### ?

## Q-Fano threefolds of large Fano index. I

Documenta Mathematica. 2010. Vol. 15. P. 843-872.

Kishimoto T., Yuri Prokhorov, Zaidenberg M., Osaka Journal of Mathematics 2014 Vol. 51 No. 4 P. 1093-1113

We address the following question: When an affine cone over a smooth Fano threefold admits an effective action of the additive group? In this paper we deal with Fano threefolds of index 1 and Picard number 1. Our approach is based on a geometric criterion from our previous paper, which relates the existence of an ...

Added: October 10, 2013

Prokhorov Y., Springer Proceedings in Mathematics & Statistics 2014 Vol. 79 P. 215-229

We give a sharp bound for orders of elementary abelian 2-groups of birational automorphisms of rationally connected threefolds. ...

Added: January 24, 2014

Prokhorov Y., Annales de l'Institut Fourier 2015 No. 65 P. 1-16

We prove that for a Q-Gorenstein degeneration $X$ of del Pezzo surfaces, the number of non-Du Val singularities is at most $\rho(X)+2$. Degenerations with $\rho(X)+2$ and $\rho(X)+1$ non-Du Val points are investigated. ...

Added: October 17, 2014

Glutsyuk A., / Cornell University. Series math "arxiv.org". 2014. No. 1309.1843.

The famous conjecture of V.Ya.Ivrii (1978) says that in every billiard with infinitely-smooth boundary in a Euclidean space the set of periodic orbits has measure zero. In the present paper we study the complex algebraic version of Ivrii's conjecture for quadrilateral orbits in two dimensions, with reflections from complex algebraic curves. We present the complete ...

Added: September 29, 2013

Przyjalkowski V., Shramov K., Communications in Number Theory and Physics 2020 Vol. 14 No. 3 P. 511-553

We prove that if a smooth variety with non-positive canonical class can be embedded into a weighted projective space of dimension n as a well formed complete intersection and it is not an intersection with a linear cone therein, then the weights of the weighted projective space do not exceed n+1. Based on this bound ...

Added: October 13, 2020

Kishimoto T., Yuri Prokhorov, Zaidenberg M., Algebraic Geometry 2014 Vol. 1 No. 1 P. 46-56

In a previous paper we established that for any del Pezzo surface Y of degree at least 4, the affine cone X over Y embedded via a pluri-anticanonical linear system admits an effective Ga-action. In particular, the group Aut(X) is infinite dimensional. In contrast, we show in this note that for a del Pezzo surface ...

Added: October 10, 2013

Galkin S., Nagaraj D. S., / Cornell University. Series math "arxiv.org". 2020. No. 2006.12112.

The aim of this note is to investigate the relation between two types of non-singular projective varieties of Picard rank 2, namely the Projective bundles over Projective spaces and certain Blow-up of Projective spaces. ...

Added: April 15, 2021

Kishimoto T., Yuri Prokhorov, Zaidenberg M., Transformation Groups 2013 Vol. 18 No. 4 P. 1137-1153

We give a criterion of existence of a unipotent group action on the affine cone over a projective variety or, more generally, on the affine quasicone over a variety which is projective over another affine variety. ...

Added: October 10, 2013

Prokhorov Y., , in : Classification of Algebraic Varieties. : Zürich : European Mathematical Society Publishing house, 2010. P. 327-338.

For the subgroups of the Cremona group $\mathrm{Cr}_3(\mathbb C)$ having the form $(\boldsymbol{\mu}_p)^s$, where $p$ is prime, we obtain an upper bound for $s$. Our bound is sharp if $p\ge 17$. ...

Added: October 11, 2013

Prokhorov Y., Sbornik Mathematics 2013 Vol. 204 No. 3 P. 347-382

We classify $\mathbb Q$-Fano threefolds of Fano index > 2 and sufficiently big degree. ...

Added: October 7, 2013

Kishimoto T., Prokhorov Y., Zaidenberg M., , in : CRM Proceedings & Lecture Notes. Vol. 54: Affine Algebraic Geometry: The Russell Festschrift.: Providence : American Mathematical Society, 2011. P. 123-163.

In this article, the authors study the action of the additive group C on affine cones over projective varieties. They show that such actions always exist for the cones over del Pezzo surfaces of degree d≥4 which are canonically embedded, and give relations between the actions and existence of polar cylinders. The case of del ...

Added: October 14, 2013

Prokhorov Y., Advances in Geometry 2013 Vol. 13 No. 3 P. 389-418

We classify Fano threefolds with only terminal singularities whose canonical class is
Cartier and divisible by 2 with the additional assumption that the G-invariant part of the Weil divisor
class group is of rank 1 with respect to an action of some group G. In particular, we find a lot of
examples of Fano 3-folds with “many” symmetries. ...

Added: October 7, 2013

Ю. Г. Прохоров, Известия РАН. Серия математическая 2013 Т. 77 № 3 С. 199-222

We study elements $\tau$ of order two in the birational automorphism groups of rationally connected three-dimensional algebraic varieties such that there exists a non-uniruled divisorial component of the $\tau$-fixed point locus. Using the equivariant minimal model program, we give a rough classification of such elements. ...

Added: July 1, 2013

Galkin S., Popov P., / Cornell University. Series math "arxiv.org". 2018. No. 1810.07001.

Let X(n) denote n-th symmetric power of a cubic surface X. We show that X(4)×X is stably birational to X(3)×X, despite examples when X(4) is not stably birational to X(3). ...

Added: October 19, 2018

Prokhorov Y., Advances in Geometry 2013 Vol. 13 No. 3 P. 419-434

We classify Fano threefolds with only Gorenstein terminal singularities and Picard
number greater than 1, satisfying the additional assumption that the G-invariant part of the Weil
divisor class group is of rank 1 with respect to an action of some group G. ...

Added: October 7, 2013

Yuri Prokhorov, / Cornell University. Series math "arxiv.org". 2011.

We prove that for a Q-Gorenstein degeneration $X$ of del Pezzo surfaces, the number of non-Du Val singularities is at most $\rho(X)+2$. Degenerations with $\rho(X)+2$ and $\rho(X)+1$ non-Du Val points are investigated. ...

Added: October 11, 2013

Galkin S., Shinder E., / Cornell University. Series math "arxiv.org". 2014. No. 1405.5154.

We find a relation between a cubic hypersurface Y and its Fano variety of lines F(Y) in the Grothendieck ring of varieties. We prove that if the class of an affine line is not a zero-divisor in the Grothendieck ring of varieties, then Fano variety of lines on a smooth rational cubic fourfold is birational ...

Added: May 21, 2014

Cheltsov Ivan, Shramov Constantin, Experimental Mathematics 2013 Vol. 22 No. 3 P. 313-326

We study del Pezzo surfaces that are quasismooth and well-formed weighted hypersurfaces. In particular, we find all such surfaces whose α-invariant of Tian is greater than 2/3. ...

Added: January 27, 2014

Prokhorov Y., Zaidenberg M., European Journal of Mathematics 2018 Vol. 4 No. 3 P. 1197-1263

It is known that the moduli space of smooth Fano–Mukai fourfolds V18 of genus 10 has dimension one. We show that any such fourfold is a completion of ℂ4 in two different ways. Up to isomorphism, there is a unique fourfold Vs18 acted upon by SL2(ℂ). The group Open image in new window is a ...

Added: September 6, 2018

Galkin S., Golyshev V., Iritani H., / Cornell University. Series math "arxiv.org". 2014. No. 1404.6407.

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: May 4, 2014

Prokhorov Y., Cheltsov I., Zaidenberg M. et al., / Cornell University. Series arXiv "math". 2020.

This paper is a survey about cylinders in Fano varieties and related problems. ...

Added: August 19, 2020

Cheltsov Ivan, Park J., Won J., Mathematische Zeitschrift 2014 No. 276 P. 51-79

We study log canonical thresholds on quartic threefolds, quintic fourfolds, and double spaces. As an important application, we show that they have Kähler–Einstein metrics if they are general. ...

Added: November 14, 2013

Loginov K., / Cornell University. Series arXiv "math". 2019.

Consider a family of Fano varieties π:X⟶B∋o over a curve germ with a smooth total space X. Assume that the generic fiber is smooth and the special fiber F=π^{−1}(o) has simple normal crossings. Then F is called a semistable degeneration of Fano varieties. We show that the dual complex of F is a simplex of dimension ≤dim F. Simplices of any admissible dimension can be realized ...

Added: October 11, 2019

Prokhorov Y., Zaidenberg M., European Journal of Mathematics 2016 Vol. 2 No. 1 P. 262-282

We construct four different families of smooth Fano fourfolds with Picard rank 1, which contain cylinders, i.e., Zariski open subsets of the form Z ×A1, where Z is a quasiprojective variety. The affine cones over such a fourfold admit effective Ga-actions. Similar constructions of cylindrical Fano threefolds were done previously in the papers by Kishimoto ...

Added: November 27, 2015