### ?

## Del Pezzo Surfaces with Many Symmetries

Journal of Geometric Analysis. 2013. Vol. 23. No. 3. P. 1257-1289.

Cheltsov Ivan, Wilson A.

We classify smooth del Pezzo surfaces whose α-invariant of Tian is bigger than 1.

Cheltsov Ivan, Shramov Constantin, Experimental Mathematics 2013 Vol. 22 No. 3 P. 313-326

We study del Pezzo surfaces that are quasismooth and well-formed weighted hypersurfaces. In particular, we find all such surfaces whose α-invariant of Tian is greater than 2/3. ...

Added: January 27, 2014

Galkin S., Golyshev V., Iritani H., / Cornell University. Series math "arxiv.org". 2014. No. 1404.6407.

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: May 4, 2014

Coates T., Corti A., Galkin S. et al., / Cornell University. Series math "arxiv.org". 2012. No. 1212.1722.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas. ...

Added: September 14, 2013

Cheltsov I., Известия РАН. Серия математическая 2014 Т. 78 № 2 С. 167-224

We prove two new local inequalities for divisors on smooth surfaces and consider several applications of these inequalities. ...

Added: December 6, 2013

Cheltsov Ivan, Park J., Won J., Mathematische Zeitschrift 2014 No. 276 P. 51-79

We study log canonical thresholds on quartic threefolds, quintic fourfolds, and double spaces. As an important application, we show that they have Kähler–Einstein metrics if they are general. ...

Added: November 14, 2013

Galkin S., Golyshev V., Iritani H., Duke Mathematical Journal 2016 Vol. 165 No. 11 P. 2005-2077

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: November 18, 2014

Positselski L., / Cornell University. Series math "arxiv.org". 2014. No. 1209.2995.

Contraherent cosheaves are globalizations of cotorsion (or similar) modules over commutative rings obtained by gluing together over a scheme. The category of contraherent cosheaves over a scheme is a Quillen exact category with exact functors of infinite product. Over a quasi-compact semi-separated scheme or a Noetherian scheme of finite Krull dimension (in a different version ...

Added: February 6, 2013

Positselski L., Efimov A., / Cornell University. Series math "arxiv.org". 2013. No. arXiv:1102.0261.

We define the triangulated category of relative singularities of a closed subscheme in a scheme. When the closed subscheme is a Cartier divisor, we consider matrix factorizations of the related section of a line bundle, and their analogues with locally free sheaves replaced by coherent ones. The appropriate exotic derived category of coherent matrix factorizations ...

Added: December 22, 2013

Galkin S., Shinder E., / Cornell University. Series math "arxiv.org". 2012. No. 1210.3339.

We construct quasi-phantom admissible subcategories in the derived category of coherent sheaves on the Beauville surface S. These quasi-phantoms subcategories appear as right orthogonals to subcategories generated by exceptional collections of maximal possible length 4 on S. We prove that there are exactly 6 exceptional collections consisting of line bundles (up to a twist) and these collections ...

Added: September 14, 2013

Cheltsov I., Zhang K., European Journal of Mathematics 2019 Vol. 5 P. 729-762

We prove that 𝛿δ-invariants of smooth cubic surfaces are at least 6/5. ...

Added: May 10, 2020

Michael Finkelberg, Leonid Rybnikov, / Cornell University. Series math "arxiv.org". 2013.

Drinfeld zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of an affine Lie algebra g^. In case g is the symplectic Lie algebra spN, we introduce an affine, reduced, irreducible, normal quiver variety Z which maps to the zastava space isomorphically in characteristic ...

Added: December 27, 2013

Loginov K., Moscow Mathematical Journal 2018 Vol. 18 No. 4 P. 721-737

We construct a standard birational model (a model that has Gorenstein canonical singularities) for the three-dimensional del Pezzo fibrations π: X→C of degree 1 and relative Picard number 1. We also embed the standard model into the relative weighted projective space ℙ_C(1,1,2,3). Our construction works in the G-equivariant category where G is a finite group. ...

Added: October 11, 2019

Fedor Bogomolov, Yuri Prokhorov, / Cornell University. Series math "arxiv.org". 2013.

We discuss the problem of stable conjugacy of finite subgroups of Cremona
groups. We show that the group $H^1(G,Pic(X))$ is a stable birational invariant
and compute this group in some cases. ...

Added: November 21, 2014

Lee K., Shabalin T., / Cornell University. Series math "arxiv.org". 2014.

We construct exceptional collections of maximal length on four families of
surfaces of general type with $p_g=q=0$ which are isogenous to a product of
curves. From these constructions we obtain new examples of quasiphantom
categories as their orthogonal complements. ...

Added: October 17, 2014

Serge Lvovski, / Cornell University. Series arXiv "math". 2017.

We show that the monodromy group acting on $H^1(\cdot,\mathbb Z)$ of a smooth
hyperplane section of a del Pezzo surface over $\mathbb C$ is the entire
group $\mathrm{SL}_2(\mathbb Z)$. For smooth surfaces with $b_1=0$ and hyperplane section
of genus $g>2$, there exist examples in which a similar assertion is
false. Actually, if hyperplane sections of ...

Added: June 14, 2017

Cheltsov I., Kuznetsov A., Shramov K., Algebra & Number Theory 2020 Vol. 14 No. 1 P. 213-274

We construct two small resolutions of singularities of the Coble fourfold (the double cover of the four-dimensional projective space branched over the Igusa quartic). We use them to show that all 𝔖6-invariant three-dimensional quartics are birational to conic bundles over the quintic del Pezzo surface with the discriminant curves from the Wiman–Edge pencil. As an application, ...

Added: May 10, 2020

Trepalin A., / Cornell University. Series arXiv "math". 2017.

Let X be a minimal del Pezzo surface of degree 2 over a finite field 𝔽_q. The image Γ of the Galois group Gal(\bar{𝔽}_q/𝔽_q) in the group Aut(Pic(\bar{X})) is a cyclic subgroup of the Weyl group W(E_7). There are 60 conjugacy classes of cyclic subgroups in W(E_7) and 18 of them correspond to minimal del Pezzo surfaces. In this paper we study which possibilities of these subgroups for minimal del Pezzo ...

Added: December 2, 2018

Campana F., Demailly J., Misha Verbitsky, / Cornell University. Series math "arxiv.org". 2013.

We prove that any compact K\"ahler 3-dimensional manifold which has no non-trivial complex subvarieties is a torus. This is a very special case of a general conjecture on the structure of 'simple manifolds', central in the bimeromorphic classification of compact K\"ahler manifolds. The proof follows from the Brunella pseudo-effectivity theorem, combined with fundamental results of ...

Added: May 13, 2013

Ivan Cheltsov, Park J., Won J., / Cornell University. Series math "arxiv.org". 2013.

For each del Pezzo surface $S$ with du Val singularities, we determine
whether it admits a $(-K_S)$-polar cylinder or not. If it allows one, then we
present an effective divisor $D$ that is $\mathbb{Q}$-linearly equivalent to
$-K_S$ and such that the open set $S\setminus\mathrm{Supp}(D)$ is a cylinder.
As a corollary, we classify all the del Pezzo surfaces with du ...

Added: December 27, 2013

Fedor Bogomolov, De Oliveira B., / Cornell University. Series math "arxiv.org". 2014.

In the authors's previous work on symmetric differentials and their
connection to the topological properties of the ambient manifold, a class of
symmetric differentials was introduced: closed symmetric differentials
([BoDeO11] and [BoDeO13]). In this article we give a description of the local
structure of closed symmetric 2-differentials on complex surfaces, with an
emphasis towards the local decompositions as products of ...

Added: November 21, 2014

Aleksei Golota, / Cornell University. Series arXiv "math". 2019.

For a polarized variety (X,L) and a closed connected subgroup G⊂Aut(X,L) we define a G-invariant version of the δ-threshold. We prove that for a Fano variety (X,−KX) and a connected subgroup G⊂Aut(X) this invariant characterizes G-equivariant uniform K-stability. We also use this invariant to investigate G-equivariant K-stability of some Fano varieties with large groups of ...

Added: October 7, 2019

Victor Kulikov, Shustin E., / Cornell University. Series math "arxiv.org". 2014.

We study the geometry of equiclassical strata of the discriminant in the space of plane curves of a given degree, which are families of curves of given degree, genus and class (degree of the dual curve). Our main observation is that the use of duality transformation leads to a series of new sufficient conditions for ...

Added: February 2, 2015

Bezrukavnikov R., Finkelberg M. V., / Cornell University. Series math "arxiv.org". 2012. No. 1208.3696.

Mark Haiman has reduced Macdonald positivity conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjectures where the symmetric group is replaced by the wreath product $S_n\ltimes (Z/r Z)^n$. He has proven the original conjecture by establishing the geometric statement about the Hilbert ...

Added: February 6, 2013

Romaskevich O. L., L'Enseignement Mathématique 2014

We consider 3 -periodic orbits in an elliptic billiard. Numerical experiments conducted by Dan Reznik have shown that the locus of the centers of inscribed circles of the corresponding triangles is an ellipse. We prove this fact by the complexification of the problem coupled with the complex law of reflection. ...

Added: December 25, 2014