• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 11 публикаций
Сортировка:
по названию
по году
Статья
Angeluts A., Bezotosnyi V., Cheshev E. et al. Laser Physics Letters. 2014. Vol. 11. No. 1. P. 015004.
Добавлено: 24 февраля 2016
Статья
Kulik S., S N Molotkov. Laser Physics Letters. 2017. Vol. 14. P. 1-6.

Рассмотрена атака с расщеплением фотонов (PNS атака) в системах квантовой криптографии с фазовым кодированием. Показано, что физически данная атака, а также структурные уравнения при PNS  атаке для фазового кодирования отличаются от аналогичной атаке  при полярризациооном кодировании. Поскольлу  обработка экспериментальных данных, насколько нам известно, делается практически во всех известных нам работах с фазовым кодированием, по формулам для поляризационного кодирования, то это может приводить к неадекватным результатам для длины секртеного ключа. Данные вычисления важны для правильной интерпретации результатов, особенно, если это касается критерием секретности в квантовой криптографии. 

Добавлено: 2 марта 2018
Статья
Балыкин В. И., Мелентьев П. Н., Кузин А. А. et al. Laser Physics Letters. 2017. Vol. 14. No. 12. P. 1-7.
Добавлено: 4 февраля 2019
Статья
Potapova T. A., Molotkov S. Laser Physics Letters. 2016. Vol. 13. P. 1-4.

In this letter we present estimates for the distance of secret key transmission through free space for three different protocols of quantum key distribution: for BB84 and phase timecoding protocols in the case of a strictly single-photon source, and for the relativistic quantum key distribution protocol in the case of faint laser pulses.

Добавлено: 29 июня 2016
Статья
Potapova T. A., Molotkov S. Laser Physics Letters. 2013. Vol. 10. P. 075205-075211.

A new protocol for quantum key distribution through empty space is proposed. Apart from the quantum mechanical restrictions on distinguishability of non-orthogonal states, the protocol employs additional restrictions imposed by special relativity. The protocol ensures generation of a secure key even for the source generating non-strictly single-photon quantum states and for arbitrary losses in quantum communication channel.

Добавлено: 11 октября 2013
Статья
Yu.E. Lozovik, Nechepurenko I., Dorofeenko A. et al. Laser Physics Letters. 2014. Vol. 11. P. 125701.
Добавлено: 17 октября 2016
Статья
Федоров М. В., Сысоева А. А., Винцкевич С. В. et al. Laser Physics Letters. 2018. Vol. 15. No. 3. P. 035206-1-035206-5.
Добавлено: 24 февраля 2018
Статья
Potapova T. A., Klimov A., Kulik S. et al. Laser Physics Letters. 2017. Vol. 14. P. 1-6.

In the paper by Gleim et al (2016 Opt. Express 24 2619), it was declared that the system of quantum cryptography, exploiting quantum key distribution (QKD) protocol BB84 with the additional reference state and encoding in a sub-carrier, is able to distribute secret keys at a distance of 210 km. The following shows that a simple attack realized with a beam splitter results in a loss of privacy of the keys over substantially smaller distances. It turns out that the actual length of the secret key transmission for the QKD system encoding in the sub-carrier frequency is ten times less than that declared in Gleim et al (2016 Opt. Express 24 2619). Therefore it is impossible to safely use the keys when distributed at a larger length of the communication channel than shown below. The maximum communication distance does not exceed 22 km, even in the most optimistic scenario.

Добавлено: 19 февраля 2017
Статья
Катамадзе К. Г., Цветков С. В., Борщевская Н. А. et al. Laser Physics Letters. 2016. Vol. 13. No. 2. P. 025104-1-025104-5.
Добавлено: 24 февраля 2018
Статья
Remizov S. V., Zhukov A. A., Pogosov W. V. et al. Laser Physics Letters. 2019. Vol. 16. P. 065205-1-065205-8.
Добавлено: 22 октября 2019
Статья
T.A.Potapova, Molotkov S. Laser Physics Letters. 2015. Vol. 12. No. 6. P. 065201-065207.

The problem of quantum key distribution security in channels with large losses is still open. Quasi-single-photon sources of quantum states with losses in the quantum communication channel open up the possibility of attacking with unambiguous state discrimination (USD) measurements, resulting in a loss of privacy. In this letter, the problem is solved by counting the classic reference pulses. Conservation of the number of counts of intense coherent pulses makes it impossible to conduct USD measurements. Moreover, the losses in the communication channel are considered to be unknown in advance and are subject to change throughout the series parcels. Unlike other protocols, differential phase shift (Inoue et al 2002 Phys. Rev. Lett. 89 037902, Inoue et al 2003 Phys. Rev. A 68 022317, Takesue et al 2007 Nat. Photon. 1 343, Wen et al 2009 Phys. Rev. Lett. 103 170503) and coherent one way (Stucki et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2008 New J. Phys. 10 013031, Stucki et al 2008 Opt. Express 17 13326), the simplicity of the protocol makes it possible to carry out a complete analysis of its security.

Добавлено: 6 июля 2015