• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 88 публикаций
Сортировка:
по названию
по году
Статья
Manita L., Zelikin M. I. Journal of Mathematical Sciences. 2008. Vol. 151. No. 6. P. 3506-3542.
Добавлено: 10 сентября 2013
Статья
Sergeev A. Journal of Mathematical Sciences. 2014. Vol. 202. No. 6. P. 887-896.
Добавлено: 9 апреля 2015
Статья
Minabutdinov A. R. Journal of Mathematical Sciences. 2016. Vol. 215. No. 6. P. 738-747.

The paper extends a classical result on the convergence of the Krawtchouk polynomials to the Hermite polynomials. We provide a uniform asymptotic expansion in terms of Hermite polynomials and obtain explicit expressions for a few first terms of this expansion. The research is motivated by the study of ergodic sums of the Pascal adic transformation. Bibliography: 10 titles.

Добавлено: 8 июля 2016
Статья
Chernyshev S., Cherepanov E., Pankratiev E. et al. Journal of Mathematical Sciences. 2005. Vol. 128. No. 6. P. 3487-3495.
Добавлено: 27 января 2014
Статья
Polyakov I.V., Chepovskiy A.A., Chepovskiy A.M. Journal of Mathematical Sciences. 2015. Vol. 211. No. 3. P. 413-417.
Добавлено: 23 октября 2015
Статья
Kolomeychenko M. I., Chepovskiy A.A., Chepovskiy A.M. Journal of Mathematical Sciences. 2015. Vol. 211. No. 3. P. 310-318.
Добавлено: 24 октября 2015
Статья
Kossova E.V., Korolev V., Chertok A. et al. Journal of Mathematical Sciences. 2016. Vol. 218. No. 2. P. 182-194.
Добавлено: 14 сентября 2016
Статья
Sobolevski A., Frisch U. Journal of Mathematical Sciences. 2006. Vol. 133. P. 1539-1542.
Добавлено: 2 января 2012
Статья
A. V. Pereskokov. Journal of Mathematical Sciences. 2017. Vol. 226. No. 4. P. 517-530.
Добавлено: 21 декабря 2017
Статья
Pirkovskii A. Y. Journal of Mathematical Sciences. 2002. Vol. 111. No. 2. P. 3476-3495.
Добавлено: 7 октября 2010
Статья
Adrianov N. M., N. Ya. Amburg, Dremov, V. A. et al. Journal of Mathematical Sciences. 2009. Vol. 158. No. 1. P. 22-80.
Добавлено: 19 октября 2014
Статья
Hu Z., Ulyanov V. V., Feng Q. Journal of Mathematical Sciences. 2016. Vol. 218. No. 2. P. 231-237.

We obtain central limit type theorems for the total number of edges in the generalized random graphs with random vertex weights under different moment conditions on the distributions of the weights. © 2016 Springer Science+Business Media New York.

Добавлено: 19 октября 2016
Статья
Kochetkov Y. Journal of Mathematical Sciences. 2015. Vol. 209. No. 2. P. 275-281.

A polynomial with exactly two critical values is called a generalized Chebyshev polynomial (or Shabat polynomial). A polynomial with exactly three critical values is called a Zolotarev polynomial. Two Chebyshev polynomials f and g are called Z-homotopic if there exists a family pα, α(Formula presented.) [0, 1], where p0 = f, p1 = g, and pα is a Zolotarev polynomial if α(Formula presented.) (0, 1). As each Chebyshev polynomial defines a plane tree (and vice versa), Z-homotopy can be defined for plane trees. In this work, we prove some necessary geometric conditions for the existence of Z-homotopy of plane trees, describe Z-homotopy for trees with five and six edges, and study one interesting example in the class of trees with seven edges. © 2015 Springer Science+Business Media New York

Добавлено: 7 октября 2015
Статья
Amburg N., Kreines E. Journal of Mathematical Sciences. 2015.

We compute the class Wn−4(Formula presented.), which is Poincaré dual to the first Stiefel–Whitney class for the variety (Formula presented.) in terms of the natural cell decomposition of (Formula presented.) © 2015 Springer Science+Business Media New York.

Добавлено: 7 октября 2015
Статья
A. Yu. Nesterenko. Journal of Mathematical Sciences. 2012. Vol. 182. No. 4. P. 518-526.

В работе рассматриваются алгоритмы поиска длин циклов в последовательностях. Приводится обоснование изложенных алгоритмов, сравнение оценок их трудоемкости, а также результаты их практического применения для решения задачи дискретного логарифмирования в группе точек эллиптической кривой.

Добавлено: 27 февраля 2014
Статья
Бунина Е. И., Trushin D., Tsvetkov M. Journal of Mathematical Sciences. 2015. Vol. 206. No. 6. P. 629-633.

In this paper, we construct noncommutative algebras over a square-closed field such that the unitary linear groups over these algebras decompose to nontrivial free products. In particular, we give an example in which the elementary unitary subgroup belongs to one of these factors.

Добавлено: 20 февраля 2018
Статья
A.I. Zobnin. Journal of Mathematical Sciences. 2008. Vol. 152. No. 4. P. 522-539.

Abstract. We generalize Hoon Hong’s theorem on Gr¨obner bases under composition to the case of differential standard bases in the ordinary ring of differential polynomials F{y}. In particular, we prove that some ideals have finite differential standard bases. We construct special orderings on differential monomials such that ideals generated by some power of a quasi-linear polynomial acquire finite differential standard bases.

Добавлено: 1 октября 2014
Статья
Matveenko V. D. Journal of Mathematical Sciences. 2006. No. 133(4). P. 1491-1503.
Добавлено: 4 января 2012
Статья
Kochetkov Y. Journal of Mathematical Sciences. 2015.

We present an enumeration formula for weighted trees, i.e., trees where vertices and edges have weights (a weight is a positive integer) and the weight of each vertex is equal to the sum of the weights of the edges incident to it. Each tree has a binary structure: we can color its vertices in two colors, black and white, so that adjacent vertices have different colors. In this work, the following problem is considered: enumerate weighted plane trees with given sets of weights of black and white vertices. © 2015 Springer Science+Business Media New York

Добавлено: 7 октября 2015
Статья
Olshanski G., Lytvynov E. Journal of Mathematical Sciences. 2013. Vol. 190. No. 3. P. 451-458.

Let μ be a point on a countable discrete space [InlineMediaObject not available: see fulltext.]. Under the assumption that μ is quasi-invariant with respect to any finitary permutation of [InlineMediaObject not available: see fulltext.], we describe a general scheme for constructing an equilibrium Kawasaki dynamics for which μ is a symmetrizing (and hence invariant) measure. We also exhibit a two-parameter family of point process μ possessing the needed quasi-invariance property. Each process of this family is determinantal, and its correlation kernel is the kernel of a projection in ℓ2 ([InlineMediaObject not available: see fulltext.]). Bibliography: 17 titles.

Добавлено: 28 марта 2013
Статья
Nikitin Ya. Yu., Volkova K. Y. Journal of Mathematical Sciences. 2015. Vol. 204. No. 1. P. 42-54.
Добавлено: 30 января 2015