• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 7 публикаций
Сортировка:
по названию
по году
Статья
Brav C. I., Ben-Bassat O., Bussi V. et al. Geometry and Topology. 2015. Vol. 19. No. 3. P. 1287-1359.
Добавлено: 16 октября 2018
Статья
Verbitsky M. Geometry and Topology. 2011. Vol. 15. P. 2111-2133.
Добавлено: 9 ноября 2011
Статья
Kondo S., Siegel C., Wolfson J. Geometry and Topology. 2017. No. 21. P. 903-922.

For each k≥5k≥5, we construct a modular operad ¯¯¯¯Ekℰ¯k of “kk–log-canonically embedded” curves. We also construct, for k≥2k≥2, a stable cyclic operad ¯¯¯¯Ekcℰ¯ck of such curves, and, for k≥1k≥1, a cyclic operad ¯¯¯¯Ek0,cℰ¯0,ck of “kk–log-canonically embedded” rational curves.

Добавлено: 10 мая 2017
Статья
Cheltsov I., Shramov K. Geometry and Topology. 2011. No. 15. P. 1843-1882.
Добавлено: 2 декабря 2011
Статья
Coates T., Corti A., Galkin S. et al. Geometry and Topology. 2016. Vol. 20. No. 1. P. 103-256.

The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by a collection of Laurent polynomials called Minkowski polynomials. This was conjectured in joint work with Golyshev. It suggests a new approach to the classification of Fano manifolds: by proving an appropriate mirror theorem and then classifying Fano mirrors. Our methods are likely to be of independent interest. We rework the Mori-Mukai classification of 3-dimensional Fano manifolds, showing that each of them can be expressed as the zero locus of a section of a homogeneous vector bundle over a GIT quotient V/G, where G is a product of groups of the form GL_n(C) and V is a representation of G. When G=GL_1(C)^r, this expresses the Fano 3-fold as a toric complete intersection; in the remaining cases, it expresses the Fano 3-fold as a tautological subvariety of a Grassmannian, partial flag manifold, or projective bundle thereon. We then compute the quantum periods using the Quantum Lefschetz Hyperplane Theorem of Coates-Givental and the Abelian/non-Abelian correspondence of Bertram-Ciocan-Fontanine-Kim-Sabbah.

Добавлено: 18 ноября 2014
Статья
Verbitsky M. Geometry and Topology. 2014. Vol. 18. No. 2. P. 897-909.

A Hermitian metric ω on a complex manifold is called SKT or pluriclosed if ddcω=0. Let M be a twistor space of a compact, anti-selfdual Riemannian manifold, admitting a pluriclosed Hermitian metric. We prove that in this case M is Kähler, hence isomorphic to CP3 or a flag space. This result is obtained from rational connectedness of the twistor space, due to F Campana. As an aside, we prove that the moduli space of rational curves on the twistor space of a K3 surface is Stein.

Добавлено: 29 апреля 2014