• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 17 публикаций
Сортировка:
по названию
по году
Статья
Bigeni A. Journal of Combinatorial Theory, Series A. 2018. Vol. 161. P. 309-326.
Добавлено: 2 сентября 2018
Статья
Shitov Y. Journal of Combinatorial Theory, Series A. 2016. Vol. 141. P. 127-135.
Добавлено: 9 марта 2016
Статья
Yaroslav Shitov. Journal of Combinatorial Theory, Series A. 2014. Vol. 122. P. 126-132.

We provide a nontrivial upper bound for the nonnegative rank of rank-three matrices which allows us to prove that [6(n+1)/7] linear inequalities suffice to describe a convex n-gon up to a linear projection.

Добавлено: 8 ноября 2013
Статья
Gorsky Evgeny, Mazin M. Journal of Combinatorial Theory, Series A. 2013. Vol. 120. No. 1. P. 49-63.
Добавлено: 9 декабря 2014
Статья
Kiritchenko Valentina, Timorin Vladlen, Gusev P. Journal of Combinatorial Theory, Series A. 2013. Vol. 120. P. 960-969.

We discuss the problem of counting vertices in Gelfand--Zetlin polytopes. Namely, we deduce a partial differential equation with constant coefficients on the exponential generating function for these numbers. For some particular classes of Gelfand-Zetlin polytopes, the number of vertices can be given by explicit formulas.

Добавлено: 18 февраля 2013
Статья
Shitov Y. Journal of Combinatorial Theory, Series A. 2014. Vol. 126. P. 166-176.
Добавлено: 24 мая 2014
Статья
Olshanski G. Journal of Combinatorial Theory, Series A. 2019. Vol. 162. P. 65-117.
Добавлено: 25 мая 2019
Статья
Tyurin D. Journal of Combinatorial Theory, Series A. 2017. Vol. 154. P. 32-48.

The goal of the present paper is to extend the mitosis algorithm, originally developed by Ezra Miller and Allen Knutson for the case of Schubert polynomials, to the case of Grothendieck polynomials. In addition we will also use this algorithm to construct a short combinatorial proof of Fomin–Kirillov's formula for the coefficients of Grothendieck polynomials.

Добавлено: 23 сентября 2017
Статья
Feigin E., Makedonskyi I. Journal of Combinatorial Theory, Series A. 2015. P. 60-84.

The Cherednik–Orr conjecture expresses the t →∞limit of the nonsymmetric Macdonald polynomials in terms of the PBW twisted characters of the affine level one Demazure modules. We prove this conjecture in several special cases.

Добавлено: 20 мая 2015
Статья
Lando S. Journal of Combinatorial Theory, Series A. 2000. Vol. 80.
Добавлено: 19 мая 2010
Статья
Chelnokov G. R., Dol'nikov V. Journal of Combinatorial Theory, Series A. 2014. Vol. 125. P. 194-213.
Добавлено: 9 марта 2018
Статья
Pyatov P. N., de Gier J., Zinn-Justin P. Journal of Combinatorial Theory, Series A. 2009. Vol. 116. P. 772-794.

We consider partial sum rules for the homogeneous limit of the solution of the q-deformed Knizhnik–Zamolodchikov equation with reflecting boundaries in the Dyck path representation of the Temperley–Lieb algebra. We show that these partial sums arise in a solution of the discrete Hirota equation, and prove that they are the generating functions of τ 2-weighted punctured cyclically symmetric transpose complement plane partitions where τ =−(q+q−1). In the cases of no or minimal punctures, we prove that these generating functions coincide with τ 2-enumerations of vertically symmetric alternating sign matrices and modifications thereof.

Добавлено: 16 октября 2012
Статья
Gorsky E., Mazin M. Journal of Combinatorial Theory, Series A. 2016. Vol. 140. P. 123-140.
Добавлено: 13 марта 2016
Статья
Boros E., Gurvich V., Bao Ho N. et al. Journal of Combinatorial Theory, Series A. 2019. Vol. 165. No. 7. P. 176-186.
Добавлено: 19 марта 2019
Статья
Kalinin N. Journal of Combinatorial Theory, Series A. 2016. No. 137. P. 226-256.
Добавлено: 2 марта 2017
Статья
Zhuk D. Journal of Combinatorial Theory, Series A. 2019. Vol. 167. P. 91-103.
Добавлено: 15 июня 2020
Статья
Shitov Y. Journal of Combinatorial Theory, Series A. 2013. Vol. 120. No. 6. P. 1166-1201.
Добавлено: 20 марта 2013