• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 10 публикаций
Сортировка:
по названию
по году
Статья
Kovaleva M., Kosevich Y., Smirnov V. et al. Communications in Nonlinear Science and Numerical Simulation. 2019. Vol. 74. P. 138-146.
Добавлено: 27 ноября 2019
Статья
Zamani A., Novikov N., Gutkin B. Communications in Nonlinear Science and Numerical Simulation. 2019.
Добавлено: 24 октября 2019
Статья
Gromov E.M., Malomed B. Communications in Nonlinear Science and Numerical Simulation. 2020. Vol. 85. P. 105220-1-105220-11.
Добавлено: 5 февраля 2020
Статья
Zakharov D., Krupa M., Gutkin B. Communications in Nonlinear Science and Numerical Simulation. 2020. Vol. 82. No. 105086. P. 1-10.
Добавлено: 23 октября 2019
Статья
Slunyaev A., Досаев А. Communications in Nonlinear Science and Numerical Simulation. 2019. Vol. 66. P. 167-182.
Добавлено: 14 февраля 2019
Статья
Savostianov A., Shapoval S., Shnirman M. Communications in Nonlinear Science and Numerical Simulation. 2020. Vol. 83. P. 105149.
Добавлено: 23 декабря 2019
Статья
Abrashkin A. A., Oshmarina O. E. Communications in Nonlinear Science and Numerical Simulation. 2016. Vol. 34. P. 66-76.

The process of rogue wave formation on deep water is considered. A wave of extreme amplitude is born against the background of uniform waves (Gerstner waves) under the action of external pressure on free surface. The pressure distribution has a form of a quasi-stationary “pit”. The fluid motion is supposed to be a vortex one and is described by an exact solution of equations of 2D hydrodynamics for an ideal fluid in Lagrangian coordinates. Liquid particles are moving around circumferences of different radii in the absence of drift flow. Values of amplitude and wave steepness optimal for rogue wave formation are found numerically. The influence of vorticity distribution and pressure drop on parameters of the fluid is investigated.

Добавлено: 3 ноября 2015
Статья
Kovaleva M., Manevitch L. I., Romeo F. Communications in Nonlinear Science and Numerical Simulation. 2019. Vol. 76. P. 1-11.
Добавлено: 27 ноября 2019
Статья
Korotkov A., Kazakov A., Леванова Т. А. et al. Communications in Nonlinear Science and Numerical Simulation. 2019. Vol. 71. P. 38-49.
Добавлено: 18 октября 2019
Статья
Gromov E., Malomed B., Tyutin V. V. Communications in Nonlinear Science and Numerical Simulation. 2018. Vol. 54. P. 13-20.

The dynamics of two-component solitons is studied, analytically and numerically, in the framework of a system of coupled extended nonlinear Schrödinger equations, which incorporate the cross-phase modulation, pseudo-stimulated-Raman-scattering (pseudo-SRS), cross-pseudo-SRS, and spatially inhomogeneous second-order dispersion (SOD). The system models co-propagation of electromagnetic waves with orthogonal polarizations in plasmas. It is shown that the soliton's wavenumber downshift, caused by pseudo-SRS, may be compensated by an upshift, induced by the inhomogeneous SOD, to produce stable stationary two-component solitons. The corresponding approximate analytical solutions for stable solitons are found. Analytical results are well confirmed by their numerical counterparts. Further, the evolution of inputs composed of spatially even and odd components is investigated by means of systematic simulations, which reveal three different outcomes: formation of a breather which keeps opposite parities of the components; splitting into a pair of separating vector solitons; and spreading of the weak odd component into a small-amplitude pedestal with an embedded dark soliton.

Добавлено: 18 мая 2017