• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 7 публикаций
Сортировка:
по названию
по году
Статья
Li W., Vasenko A.S., Tang J. et al. The Journal of Physical Chemistry Letters. 2019. Vol. 10. No. 20. P. 6219-6226.
Добавлено: 30 сентября 2019
Статья
Tikhomirova K. A., Tantardini C., Sukhanova E. V. et al. The Journal of Physical Chemistry Letters. 2020. No. 11. P. 3821-3827.
Добавлено: 8 мая 2020
Статья
He J., Vasenko A.S., Long R. et al. The Journal of Physical Chemistry Letters. 2018. Vol. 9. No. 8. P. 1872-1879.
Добавлено: 31 марта 2018
Статья
Zhang L., Vasenko A.S., Zhao J. et al. The Journal of Physical Chemistry Letters. 2019. Vol. 10. No. 5. P. 1083-1091.
Добавлено: 19 февраля 2019
Статья
Chistyakov A. A., Zvaigzne M. A., Nikitenko V. R. et al. The Journal of Physical Chemistry Letters. 2017. Vol. 8. No. 17. P. 4129-4139.

Quantum dot (QD) solids represent a new type of condensed matter drawing high fundamental and applied interest. Quantum confinement in individual QDs, combined with macroscopic scale whole materials, leads to novel exciton and charge transfer features that are particularly relevant to optoelectronic applications. This Perspective discusses the structure of semiconductor QD solids, optical and spectral properties, charge carrier transport, and photovoltaic applications. The distance between adjacent nanoparticles and surface ligands influences greatly electrostatic interactions between QDs and, hence, charge and energy transfer. It is almost inevitable that QD solids exhibit energetic disorder that bears many similarities to disordered organic semiconductors, with charge and exciton transport described by the multiple trapping model. QD solids are synthesized at low cost from colloidal solutions by casting, spraying, and printing. A judicious selection of a layer sequence involving QDs with different size, composition, and ligands can be used to harvest sunlight over a wide spectral range, leading to inexpensive and efficient photovoltaic devices.

 

Добавлено: 7 октября 2017
Статья
Evlashin S. A., Fedorov F., Dyakonov P. et al. The Journal of Physical Chemistry Letters. 2020. No. 11. P. 4859-4865.
Добавлено: 4 июня 2020
Статья
Smirnov G., Stegailov V. The Journal of Physical Chemistry Letters. 2013. Vol. 3. No. 21. P. 3560-3564.

Recently, a new phase of hydrogen hydrates has been observed at ∼5−7 kbar and ∼170−250 K. X-ray diffraction patterns do not allow determination of its structure unambiguously. In this work, we perform classical molecular dynamics simulation of hydrogen hydrates and select two possible structures. One of these structures is not a typical clathrate and has never been observed for hydrates. In this study, we pay special attention to the choice of the model parameters in order to reveal the corresponding sensitivity of the results.

Добавлено: 19 марта 2014