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Abstract: An optimal control problem is formulated for a class of nonlinear systems which can be pre-
sented by system with linear structure and state-dependent coefficients (SDC). The system being under 
the influence of uncontrollable disturbance is supposed. The linearity of the transformed system structure 
and the quadratic functional make it possible to pass over from the Hamilton-Jacoby-Bellman equation 
(HJB) to the state dependent Riccati equation (SDRE) upon the control synthesis. In thus paper the opti-
mal control problem by nonlinear system in a task of Keeping Tabs on Reference Trajectory we decide in 
a key of differential game. The presented example illustrates the application of the proposed control 
method. 
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1. INTRODUCTION 

Methods for the synthesis of optimal linear systems with quadratic 
cost functional are well known and have been successfully used in 
the design of relevant facilities. In various formulations of control 
problems objects can be both stationary and non-stationary. For 
problems of controlling objects in a given time interval can be speci-
fied condition at the right end. For the problem of keeping tabs of an 
objects on reference trajectory synthesis of optimal linear regulators 
available only for problems with the specified ending time of transi-
tional process ( [ ]Tt ,0∈ ). For linear time-invariant systems in the 
case when the desired output is constant vector, and time tends to 
infinity, all the results are approximate and valid for very large val-
ues of the transition process. To date, “there is no theory that con-
siders the limiting case ∞=T ” [2]. 
Infinite-time horizon nonlinear optimal control (ITHNOC) presents 
a “viable option” [1] for synthesizing controllers for nonlinear sys-
tems by making a state-input tradeoff, where the objective is to 
minimize the cost given by a performance index. In the least few 
years, algorithms using state-dependent Riccati equation (SDRE) 
have been proposed, in the main part, for solving stabilization 
nonlinear problem. This method, first proposed by Pearson [7] and 
later expended by Wernli & Cook [8], was independently studied by 
Mracek & Clouter [6]. The method entails factorization of the 
nonlinear dynamics into the state vector and the product of a matrix-
valued function that depends on the state itself (SDC). The theoreti-
cal contribution in Mrasek, Clouter has initiated an increasing use of 
SDRE techniques in a wide variety of nonlinear control applications 
[3]. The method seems to work well in applications but between any 
non-decided problems we have the nonlinear object’s optimal con-
trol in task of Keeping Tabs on Reference Trajectory (KTRT). 
In this paper an optimal control problem of KTRT is formulated for 
a class of nonlinear systems being under the influence of uncontrol-
lable disturbance for which there exists a representation transform-
ing the original system into a system with a linear structure and 
state-dependent coefficients. Perturbations in dynamic systems may 
arise from unknown disturbance signals, model uncertainty, compo-
nent ageing, etc. Bounds on the perturbations variables are typically 
known and may be used to obtain, under certain conditions, ultimate 
bounds on the perturbed system trajectories. 

Considering disturbance as actions of some player counteracting 
successful performance of a control problem, we will consider a task 
in a key of differential game with two players. Examining the prob-
lem of synthesis of the control law as the differential game of two 
players we introduce the quadratic functional. The linearity of the 
transformed system structure and the quadratic functional make it 
possible to pass over from the Hamilton-Jacoby-Bellman equation 
(HJB) to the state-dependent Riccati equation (SDRE) and special 
vector with the state-dependent coefficients and given trajectories 
upon the control synthesis. Existing of this special vector and the 
arbitrary unit vector witch provide of system’s stability difference 
main result this research from a known results using of SDRE-
method. 
Note, just like in the case of linear systems synthesized infinite-time 
horizon control for nonlinear objects in the problem of keeping tabs 
on the reference trajectory is only suboptimal and valid for very 
large values of the transition process. 
This paper is organized as follows. In Section 2 we derive the opti-
mal full-state-feedback solution of a deterministic affine nonlinear 
system. In Section 3 we discuss the stability characteristic of the 
derived optimal control. In Section 4 illustrates the result with an 
example.  

2. NONLINEAR OPTIMAL REGULATION 

2.1 Statement of the problem 
Consider the continuous-time, deterministic, full-state feedback, 
infinite-time horizon nonlinear optimal regulation problem, where 
the system is nonlinear in the state, and affine in the input, repre-
sented in the form 

.)()(

,0)0(,)()(2)()(1)()(

tCxty

xtxtuxgtwxgxftx

=

=++=&
 (1) 

Here nRtx ∈)(  – state of systems; xx Ω∈ , xX Ω∈0 − domain 

of possible initial conditions of system; nmmRy ≤∈ ,  − system 

exit; rRu ∈  – control; kRw∈  − disturbance variable; 
)(2),(1),( xgxgxf  − matrixes are real and continuous. It is sup-

posed that at all )(x  system (1) is controllable and observable [1], 
+∈ Rt . Besides, functions )(2),(1),( xgxgxf  we will assume 
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to be rather smooth 
( )C∞  that through any xtx Ω×∈)0,0(  

passed one and only one decision (1) )0,0,( xtx  and there would be 

the unique corresponding exit of system )0,()( xtCxty = . 

The disturbance variable )(tw  are assumed to be bounded as fol-

lows: 0,,...,1)),(()( ≥=≤ tkitxitiw σ , where 0))(( ≥txiσ  

for all xtx Ω∈)( . This condition we will write down in a look 

0)),(()( ≥∀ ttxtw σp . (2) 

Let us suppose that mRtz ∈)(  is desire (given) trajectory of the 

system exit )(ty  and  

0)0(),()()( zztztGtz ==& , (3) 

where matrix )(tG  is real and continuous. 
Then in general case we’ll have: 

)()()( tztyt −=ε . (4) 

Considering disturbance )(tw  as actions of some player counteract-
ing successful performance of a control problem, we will consider a 
task in a key of differential game with two players U and W. 
The organization of controls )(tu  and )(tw  with use of a principle 
of feedback is supposed. Examining the problem of synthesis of the 
control law as the differential game of two players U and W we 
introduce the functional 

( ) } .)())(()()()(
0

)()(2
1maxmin

),,(

dttwtxPtwtRututQt
wu

wuxJ

TTT σεε −∫
∞

⎩
⎨
⎧ +=

=
(5) 

Here, the matrix Q  can be positive semi-definite; the matrices 
PR,  are positive definite. Positively definite matrix ( )))(( txP σ  is 

created so that to consider the greatest possible disturbance of a look 
(2) operating on system. Additional requirements to values of pa-
rameters of these matrixes will be defined further. 
2.2 The Hamilton-Jacobi-Bellman equation 
From the outset of Section 2.1, the ITHNOC problem on the set 

xΩ  is to minimize (5) with respect u U∈  and maximize (5) with 
respect Ww∈  [1]. In particular, a solution to this problem is said 
to exist on the set xΩ  if there exist a finite continuous positive-

definite value function +→Ω RxV :  defined by 

),,(supinf)( wuxJ
WwUu

xV
∈∈

=  (6) 

for all xx Ω∈ , the infinum-suprenum being the given set of admis-
sible controls U  and W . Ideally, the desire value function V is a 
stationary solution to the Cauchy problem for the associated dy-
namic programming equation, represented by the first-order nonlin-
ear Hamilton-Jacobi partial differential equation (PDE) 

0
)(
)(,,,)(

=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

+
∂

∂
tx
xVwuxH

t
xV

, 

where H is Hamiltonian, and xxV ∂∂ /)(  denotes the row-vector of 

partial derivatives of )(xV  with respect to x . Applying Pontryagin 
principle to the nonlinear optimum controls problem (1)-(5) gives 
the Hamiltonian 

[ ]{

⎡ ⎤ ⎡ ⎤ ( ) .)())(()()()()()()()(
2
1

)()(2)()(1)(
)(
)(supinf

⎭
⎬
⎫

⎥⎦
⎤

⎢⎣
⎡ −+−−+

+++
⎩
⎨
⎧

∂
∂

=

tTwtxPtTwtRutTutztyQTtzty

tuxgtwxgxf
tx
xV

wu
H

σ

(7) 

For infinite-time formalization, )(xV  is assumed stationary 

( 0/)( =∂∂ txV ) such that the HJB equation becomes 

[ ]{

⎡ ⎤ ⎡ ⎤ ( ) 0)())(()()()()()()()(
2
1

)()(2)()(1)(
)(
)(supinf

=
⎭
⎬
⎫

⎥⎦
⎤

⎢⎣
⎡ −+−−+

+++
⎩
⎨
⎧

∂
∂

twtxPtTwtRutTutztyQTtzty

tuxgtwxgxf
tx
xV

wu

σ

(8) 

with boundary conditions 0)0( =V . 
The optimal controls w  and u  satisfies 

( )

( ) ,0))((2/2

,0)(1)(
)())(()(

<−=∂∂

=
∂
∂

+−=
∂
∂

txPwH

xg
tx
xVtxPtTw

w
H

σ

σ
 

02/2,0)(2)(
)()( >=∂∂=

∂
∂

+=
∂
∂ RuHxg

tx
xVRtTu

u
H

, 

( )
T

tx
xVxTgtxPtw ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂−=
)(
)()(1))((1)( σ , (9) 

T

tx
xVxTgRtu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂−−=
)(
)()(2

1)( , (10) 

where xxV ∂∂ /)(  is solution of the follows equation  

⎡ ⎤ ⎡ ⎤

( ) .0
)(
)()(2

1)(2)(1))((1)(1)(
)(

2
1

)()()()(
2
1)(

)(
)(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎥⎦
⎤

⎢⎣
⎡ −−−

∂
∂

+

+−−+
∂
∂

T

tx
xVxTgRxgxTgtxPxg

tx
xV

tztyQTtztyxf
tx
xV

σ

 

2.3 SDRE Solution 
The SDRE methodology uses extended linearization, also known as 
state dependent coefficient (SDC) parameterization, as the key de-
sign concept in formulation the nonlinear optimal control problem 
[3]. 
Condition 1. Vector-valued function )(xf  is continuously of x  on 

xΩ , such that 0)0( =f . 

Condition 2. Continuously vector-valued matrices )(2),(1 xgxg  

of x  on xΩ , such that 0)(1 ≠xg , 0)(2 ≠xg , x∀ . 
Under conditions 1 and 2, using extended linearization, the nonlin-
ear system (1) can be represented in SDC form 

,)()(

,0)0(,)()(2)()(1)()()(

tCxty

xtxtuxgtwxgtxxAtx

=

=++=&
 (12) 

which has a linear structure and with SDC matrix )(xA  such that 

)()()( txxAxf = . 
HJB equation (11) can be rewrite in form 

( )

.0)()()()(
2
1)()(

2
1

)(
)()(2

1)(2)(1))((1)(1)(
)(

2
1

)(
)()()(

2
1)()(

)(
)(

2
1

=−++

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎥⎦
⎤

⎢⎣
⎡ −−−

∂
∂

+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

tQzTCtTxtQztTztQCxTCtTx

T

tx
xVxTgRxgxTgtxPxg

tx
xV

T

tx
xVxTAtTxtxxA

tx
xV

σ
(13

) 

Let us define [ ]TxxV ∂∂ /)(  as 

)()()()( xqtxxS
T

x
xV +=

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡ . (14) 

Expression (13) becomes 
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[ ] [ ]

[ ] ( )
[ ]

.0)()()()(2
1)()(2

1
)()()(

)()()())(()()()()(2
1

)()()()()(2
1)()()()()(2

1

2
1

21
1

1

=−++

++×

×−++

++++

⎥⎦
⎤

⎢⎣
⎡ −−

tQzCtxtQztztQCxCtx

xqtxxS

xgRxgxgtxPxgxqtxxS

xqtxxSxAtxtxxAxqtxxS

TTTTT

TTT

TTT

σ
 

From this equation we will have 

( )

( )

( )

.0)()(2)()(

)()()(1))((1)(1)(2
1)(2)()(2

)()(1))((1)(1)(2
1)(2)(

)()()(1))((1)(1)(2
1)(2)(

)()()()()(

=−+

+
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−−−+

+⎥⎦
⎤

⎢⎣
⎡ −−−−

−
⎭
⎬
⎫

+⎥⎦
⎤

⎢⎣
⎡ −−−−

−+
⎩
⎨
⎧

tQCxtTztQztTz

txxSxTgtxPxgxTgRxgxAtTq

xqxTgtxPxgxTgRxgxTq

txQCTCxSxTgtxPxgxTgRxgxS

xSxTAxAxStTx

σ

σ

σ
 

Define of )(xS  and )(xq  such that 

( ) ,0)()(1))((1)(1)(2
1)(2)(

)()()()(

=⎥⎦
⎤

⎢⎣
⎡ −−−−

−++

xSxTgtxPxgxTgRxgxS

QCTCxSxTAxAxS

σ
 (15) 

( )

( )

.0)()(2)()(

)()()(1))((1)(1)(2
1)(2)()(2

)()(1))((1)(1)(2
1)(2)(

=−+

+
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−−−+

+⎥⎦
⎤

⎢⎣
⎡ −−−−

tQCxtTztQztTz

txxSxTgtxPxgxTgRxgxAtTq

xqxTgtxPxgxTgRxgxTq

σ

σ

(1

6) 
Equation (15) is SDRE. To find the solution of equation (16) we use 
a version of Lemma by [9]. 

Lemma. Let nRx ∈  be a real vector, nRx ∈)(γ  and nRx ∈)(μ  

be real vector functions, and ),( xzα  be a scalar real function. Then 
satisfies the condition 

0),()()(2)()()( =++Π xzxxТxxxТ αμγγγ  (17) 
if and only if  

),()()()( xzxxxТ αμμ ≥+Π  (18) 

where )(x+Π  is the pseudo-inverse on )(xΠ . In this case, the set 
of all solutions to (18) is represented by 

)()()()()()( xxkxKxxx βμγ +++Π−=  (19) 
where 

[ ] 2/1
),()()()()( xzxxxТх αμμβ −+Π= , (20) 

and )(xK  is a square matrix, such that )()()( xТxx ΚΚ=Π , and 

)(xk  is arbitrary unit vector.  
Proof. The sufficiency is shown by direct substitution. Suppressing 
the arguments and substituting Eq. (19) into Eq. (17) gives 

[ ] [ ]
[ ] .0),()()()()()()(2

)()()()()()()()()()()(

=++Κ++Π−

−+Κ++ΠΠ+Κ++Π

xzx
T

xxkxxx

xxkxxxx
T

xxkxxx

αμβμ

βμβμ

 
After some manipulations using the pseudo-inverse property, 

[ ] [ ] [ ] ,, Ι=Κ
+

Κ
+

Κ=
+

ΠΚ
+

Κ
+

Π=
+

ΠΠ
+

Π
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ TТTK

ТТT

[ ] { } [ ] [ ]ТTkTk
Т

k
TT +

Κ=
+

Κ
+

ΚΚ
+

ΚΚ=
+

ΠΠ
+

Κ  

we obtain 0)()(),()()()( =+++Π− xxTxzaxxxT ββμμ . 
By substituting (20) into the above equation we establish the suffi-
ciently. 

To show the conditions are necessary replacement by 

)(~)()( xxx γγ +Κ= , )(~)()( xxx T μμ Κ= . Then equation (17) 
can be rewritten in the following form 

0),()(~)(~2)(~)(~ =++ xzxxTxxT αμγγγ , or take into account 
(19) 

0)(~)(~)(~)(~2)(~)(~ ≤++ xxТxxTxxT μμμγγγ . 

Then [ ] [ ] ),,()(~)(~)(2)(~)(~)(~)(~ xzaxxTxxxTxx +==++ γγβμγμγ  
and [ ] )()()(~)(~ xxkxx βμγ =+ , 

)()()()()()( xxkxxxx βμγ +Κ++Π−= . Consequently, (19) 
follows. 
This completes the proof of Lemma. 
Let us use this Lemma to find the solution of the equation (16) and 
lead follow designations: 

),()( xxq γ−=  (21) 

( ) ,)(1))((1)(1)(2
1)(2)( ⎥⎦

⎤
⎢⎣
⎡ −−−=Π xTgtxPxgxTgRxgx σ  (22) 

( ) ),()()(1))((1)(1)(2
1)(2)(

)(

txxSxTgtxPxgxTgRxgxA

x

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−−−=

=

σ

μ
 (23) 

),()(2)()(),( tQCxtTztQztTzxz −=α  (24) 

[ ] 2/1
)()(2)()()()()()( tQCxtTztQztTzxxxТх +−+Π= μμβ . (25) 

Condition 3. Solution of equations (15) and (16) existence if for all 
xxzz Ω∈Ω∈ ,  

i) matrix 

( ) 0)(1))((1)(1)(2
1)(2)( ≥−−−=Π ⎥⎦

⎤
⎢⎣
⎡ xTgtxPxgxTgRxgx σ   

is positive semi-definite and symmetric real matrix for all xx Ω∈ ; 

ii) )()(2)()()()()( tQCxtTztQztTzxxxТ −≥+Π μμ ; 

iii) [ ] )()()( tTC
T

xsignxk ε+Κ= . 
So solution of equation (17) will have  

[ ] 2/1
)()(2)()()()()()()(

)()()(

tQCxtTztQztTzxxxТxkx

xxxq

+−+Π+Κ−

−+Π=

μμ

μ
 (26) 

and controls (9) and (10)  

( ) [ ])()()()(1))((1)( xqtxxSxTgtxPtw +−= σ , (27) 

[ ])()()()(2
1)( xqtxxSxTgRtu +−−= , (28) 

where )(xS  is solution SDRE (15) and )(xq  is solution of the 
equation (26). 
Optimal trajectory is defined as solution of equation 

[ ]

.)()(

,0)0(
,)()()()()()(

tCxty

xtx
xqtxxSxxftx

=

=
+Π−=&

 (29) 

Theorem 1. Let's consider system (1), being under the influence of 
the uncontrollable disturbance satisfying to bound (2). Let's assume 
existence of an extended linearization transforming system into the 
system with linear structure with SDC matrices. Then controls at 
performance of the condition 3 and delivering a minimum to a func-
tional (5) are defined by expressions (27) and (28) where the matrix 

)(xS  is the solution of the state dependent Riccati equation (15) 

and vector-function )(xq  is the solution of the equation (26). 
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Note. Let reference trajectory be 0)( =tz . In this case 0)( =xq . It 
is not difficult to obtain if we substitute (23) in (26). 

3. ANALYSIS OF STABILITY 

Let us use the second Lyapunov method for investigation of the 
system stability [1]. The function )(2)(~ xVxV = where )(xV  is 
the Bellman function for system (1) and cost function (5), is the 
Lyapunov function. Let 3,2,1},{ =ixiω , be the scalar nonde-

creasing functions, such that 0}{,0)0( >= xii ωω  for 0≠x . 

The function )(~ xV  satisfies the condition 

xxxVx ∀≤≤ },{2)(~}{1 ωω . It follows from the second 

Lyapunov theorem that if the following condition is proved: 

},{3
)()(~

xdt
tdx

x
xV ω−≤∂

∂  (30) 

then the system is stable.  
Considering (29), from the last expression in view of (30) we will 
have 

[ ]{ } }.{3)()()()()(2

)(~

xxqtxxSxxf
x
xV

ω−≤+Π−×

×∂
∂

 (31) 

Let us appoint }{3 xω  and 

)()()()()(}{3 tqxtTqtQtTx Π+= εεω , where matrices Q  and 

( ) )(1))((1)(1)(2
1)(2)( xTgtxPxgxTgRxgx σ−−−=Π  are the 

positively semi-definite. After all transformations (31) takes the 
following form: 

{ }

{ }
.)()()()()(

)()()()()(2

)()()()()(

)()()()()()()()()(

⎥⎦
⎤

⎢⎣
⎡ Π+−≤

≤Π−+

+Π−

−Π−+

tqxtTqtQztTz

txxSxxAtTq

txxSxxStTx

txxSxxSxSxTAxAxStTx

 (32) 

If the right hand side is moved to the left, in view of equations (15) 
and (16), inequality (32) is simplified, 

0)()()()()( <Π− txxSxxStTx  (33) 
at all 0≠∀x . Therefore the matrix 

( ) 0,)(1))((1)(1)(2
1)(2)( ≠∀⎥⎦

⎤
⎢⎣
⎡ −−−=Π xxTgtxPxgxTgRxgx σ

is positively semi-definite at all xx Ω∈ . 

Now let us define arbitrary unit vector )(xk  which provides stabil-
ity to system (29). 
Using (22) and (23) rewriting (26) 

[ ] ).()()()()()()()( xxkxtxxSxfxxq β++ Κ−Π−Π=  (34) 
Substituting (34) to (29) we obtain 

)()()()( xxkxtx β+Κ−=& . (35) 

Define the arbitrary unit vector )(xk . Let )(εkV  be the Lyapunov 
function such that 

[ ] [ ])()()()()()()( tztCxtztCxttkV TT −−== εεε . 

Than system (29) with respect to 0)( ≥xβ  is stable if 

.0,0)()()()()()()()( ≠<−Κ−= + xtztGxxxkxCtV TT εβεε&  
Under Condition 3 we can see that next inequality 

[ { } { }
] )()()()()()()(

)()()()()()()()(

)()()(

2/1 tztGxtQCxtztQzt

txxSxxAxSxxAtx

xkxCt

TTT

TT

T

εε

ε

≥++

+Π−+ΠΠ−×

×Κ +

 

is well defined. From the last condition we get 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ +Κ= )()()( tCxsignxk TT

ε  (36) 

under conditions that 

)()(2)()()()()( tQCxtztQztzxxx TTТ −≥+Π μμ   

and 0)()(2)()()()()(
2/1

≥⎥⎦
⎤

⎢⎣
⎡ +−Π+ tQCxtztQztzxxx TTТ μμ . 

To conclude the define condition of the system stability, it remain to 
note that the arbitrary unit vector )(xk  must be satisfy of condition 
(36). Thus, performance of a condition of positive definiteness of 
matrix )(xΠ  that was supposed at synthesis of optimum controls 

(27) and (28), and vector )(xk  (36) provides stability to nonlinear 
system.  
Theorem 2. Let us consider the system (1) being under the influence 
of uncontrollable disturbance satisfying to bound (2). Let us assume 
existence of an extended linearization transforming system into the 
system with linear structure with SDC matrices. Then controls at 
performance of Conditions 1 and 2 and delivering a minimum to a 
functional (5) are defined by expressions (27) and (28) where the 
matrix )(xS  is the solution of the state dependent Riccati equation 

(15) and vector-function )(xq  is the solution of the equation (16), 

provide to system stability if matrix )(xΠ  (22) would be, at least, 

positively semi-definite at all xx Ω∈  and arbitrary unit vector 

)(xk  defined by (36). 

4. EXAMPLE 

4.1 Mathematical model of a large nuclear Pressurized Heavy Wa-
ter Reactor (PHWR) and statement of the control problem  
The behavior of a large nuclear reactor can be described with suffi-
cient accuracy using a nodal model, like the spatial model of a 540 
MWe PHWR [8] : 
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 (37) 

where iP  indicates the power level, iC  denotes effective one group 

delayed neutron precursor concentration, iI  denotes iodine concen-

tration, iX  denotes xenon concentration and iH  is the water level 

of the zone control compartments in the thi  zone of the reactor. The 
description and the values of the several reactor parameters and the 
steady state values of zonal powers are as given in [9]. 
The coupling coefficients ija  are dependent upon the geometry, 

material composition and the characteristic distance between the 
zones and is mathematically can be expressed as 
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 Physical data for the 540 MWe PHWR 

for all zones [5] 
4109,7 −×=l , s; 3105,7 −×=β ; 2101,9 −×=λ , 1−s ; 

Iλ 510878,2 −×= , 1−s ; Xλ 5101,2 −×= , 1−s ; 
3102341,3 −×=Σα , 1−cm ; 310262,1 −×=Σ f , 1−cm ; 

Iγ 21018,6 −×= ; Xγ 3106 −×= ; 18102,1 −×=Xσ , 2cm ; 
17102,3 −×=Σ fef , MJ; 9328,0=D , cm; 

51019,3 ×=ν , cm/s; 5105,3 −×−=K ; 2=m ; cmH ,1000 = . 
Since the reactivity in the core is directly proportional to water level 
in the zone control compartments (ZCC), in the above nodal core 
model, instead water level in the ZCCs, in the above nodal core 
model, instead is directly considered as input to the respective 
zones. 
Let reference power of the reactor be a solution 

00
*

14 )(,)()( ztzPtaztz =+=& , where 2.0−=a  and constP =* . 

Let us rewrite (40) in the form 

00 )(,)()()( xtxtGuxftx =+=&  (38) 

where [ ]PHCXIcoltx =)( .  
Factorization of the nonlinear dynamics (38) into the state vector 
and the product of a matrix-valued function that depends on the state 
itself : 

00 )(,)()()()( xtxtGutxxAtx =+=& , 
where 
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, ( 1, 2...,14)0 0 0 0 iG col mi ⎡ ⎤ =⎣ ⎦= −
. 

The steady state values of zonal powers and zonal volumes are giv-
en in Table [5]. 
Zone Power (MW) Volume, 3m  
1,6,8,13 132,75 14,7 
2,7,9,14 135,99 14,7 
3,10 123,30 17,6 
4,11 98,55 8,8 
5,12 123,30 17,6 
Examining the problem of synthesis of the control law for object 
(37) we introduce the functional 

{ }dttuRtutQtuxJ TT∫ +=
∞

0
)()()()(

2
1),( εε , 

10000,250 == RQ . 
The guaranteed control )(tu  is possible to present as 

⎥⎦
⎤

⎢⎣
⎡ +−= − )()()( *1 xqtxSGRtu T . 

4.2 Result of modelling  
The simulation was performed in Simulink of MATLAB software 
with the following plant parameters (5 zones). 
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0 CXI . 

Plot of power on 5 zone of reactor ( MWP 280*
14 = ): 

 

Plot of power on 5 zone of reactor ( MWP 610*
14 = ): 

 
Results of modeling of system with guaranteeing control well will 
be coordinated with schedules of transients from [5]. 
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