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Abstract Optimization heuristics are often compared with each other to determine
which one performs best by means of worst-case performance ratio reflecting the
quality of returned solution in the worst case. The domination number is a com-
plement parameter indicating the quality of the heuristic in hand by determining
how many feasible solutions are dominated by the heuristic solution. We prove that
the Max-Regret heuristic introduced by Balas and Saltzman (Oper. Res. 39:150–
161, 1991) finds the unique worst possible solution for some instances of the s-
dimensional (s ≥ 3) assignment and asymmetric traveling salesman problems of each
possible size. We show that the Triple Interchange heuristic (for s = 3) also intro-
duced by Balas and Saltzman and two new heuristics (Part and Recursive Opt Match-

G. Gutin (�)
Department of Computer Science, Royal Holloway University of London, Egham,
Surrey TW20 0EX, UK
e-mail: gutin@cs.rhul.ac.uk

G. Gutin
Department of Computer Science, University of Haifa, Haifa, Israel

B. Goldengorin
Department of Econometrics and Operations Research, University of Groningen, P.O. Box 800,
9700 AV Groningen, The Netherlands
e-mail: B.Goldengorin@rug.nl

B. Goldengorin
Department of Applied Mathematics, Khmelnitsky National University, Khmelnitsky, Ukraine

J. Huang
Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045, Victoria,
Canada V8W 3P4
e-mail: jing@math.uvic.ca

J. Huang
School of Mathematics and Computer Science, Nanjing Normal University, Nanjing, China



170 G. Gutin et al.

ing) have factorial domination numbers for the s-dimensional (s ≥ 3) assignment
problem.

Keywords Traveling salesman problem · Multidimensional assignment problem ·
Greedy heuristics · Domination analysis

1 Introduction

The Multidimensional Assignment Problem (abbreviated s-AP in the case of s di-
mensions) have been introduced by Pierskalla (1968) as a natural extension of 2-AP.
General s-APs have recently been considered to model data association problems in
connection with multitarget tracking and multisensor surveillance, see Poore (1994)
as well as solving centralized multisensor multitarget tracking, see Robertson (2001).
Greedy randomized adaptive search (GRASP) heuristics for multidimensional as-
signment problems arising in multitarget tracking and data association have been
proposed by Murphey et al. (1998). Pusztaszeri et al. (1995) describe another inter-
esting s-AP which arises in the context of tracking elementary particles. By solving a
5-AP, they reconstruct tracks of charged elementary particles generated by the Large
Electron-Positron Collider at CERN in Geneva. In fact, several applications described
in Burkard and Cela (1999), and Robertson (2001) naturally require the use of s-AP
for values of s larger than 3.

The Asymmetric Traveling Salesman Problem (ATSP) has a large variety of ap-
plications; see, e.g. Punnen (2002). For recent applications of asymmetric and highly
nonmetric instances in industry see Gupta et al. (2005) and in bioinformatics see Xu
et al. (2005). Most of ATSP research was concentrated on its symmetric special case
(see, e.g., Gutin and Punnen 2002) and more research of the general case heuristics
is required (see, e.g., Johnson et al. 2002).

Both well-known GREEDY algorithm and so-far-less-investigated MAX-REGRET

algorithm (see Balas and Saltzman 1991, Ghosh et al. 2007, and Robertson 2001)
are fast construction heuristics that build a solution element by element without an
attempt to improve it. We perform worst case analysis of MAX-REGRET for s-AP
and ATSP by means of domination analysis.

While computational experiments in Balas and Saltzman (1991) show that MAX-
REGRET significantly outperforms GREEDY for s-AP (s ≥ 3), more extensive exper-
iments in Robertson (2001) indicate that neither of the two heuristics dominates the
other. This conclusion is confirmed in our paper. Moreover, we prove that GREEDY

and MAX-REGRET find the unique worst assignments for some instances of s-AP
(s ≥ 3) of every possible size. We introduce and discuss heuristics that perform much
better in the worst case than GREEDY and MAX-REGRET. Such heuristics can be
more reliable alternatives to both GREEDY and MAX-REGRET especially when we
deal with previously uninvestigated families of s-AP instances.

Experimental results in Ghosh et al. (2007) indicate that a version of MAX-
REGRET, MAX-REGRET-FC (called R-R-GREEDY in Ghosh et al. 2007), clearly
outperforms GREEDY for ATSP. Nevertheless, we prove that, like GREEDY, both
MAX-REGRET and MAX-REGRET-FC find the unique worst tour for some instances
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of ATSP of each possible size. This, in particular, settles the problem of finding
good bounds for the domination number of MAX-REGRET-FC stated in Ghosh et al.
(2007).

The paper is organized as follows. We provide basic notions on domination analy-
sis and GREEDY in Sect. 2. In Sect.3, we describe MAX-REGRET for s-AP and prove
that, for each n ≥ 1 and s ≥ 3, there is an s-AP instance of size ns for which MAX-
REGRET constructs the unique worst assignment. For 2-AP we only prove that there
are instances for which MAX-REGRET finds an assignment which is worse than at
least n! − 2n−1 assignments. We conjecture that, in fact, the domination number of
MAX-REGRET for 2-AP is exactly 2n−1. Section 4 is devoted to three s-AP heuris-
tics which always find assignments that are not worse that ((n− 1)!)s−1 assignments.
Two of the heuristics PART and RECURSIVE OPT MATCHING are new and might
well be of interest in practice. In Sect. 5 we describe MAX-REGRET and its version
MAX-REGRET-FC for ATSP and prove that, for each n ≥ 2, there is an ATSP in-
stance on n vertices for which both heuristics find the unique worst tour. Conclusions
and further research appear in Sect. 6.

2 Domination analysis and greedy

Research on combinatorial optimization (CO) heuristics has produced a large vari-
ety of heuristics especially for well-known CO problems and, thus, it is important to
develop ways of selecting the best ones among them. In most of the literature, heuris-
tics are compared by means of computational experiments and, while experimental
analysis is of definite importance, it cannot cover all possible families of instances
of the CO problem at hand and, in particular, it usually does not cover the hard-
est instances. Worst case analysis is normally performed by approximation analysis
(see, e.g., Ausiello et al. 1999), where upper or lower bounds for the worst case per-
formance ratio are of interest. Introduced in Glover and Punnen (1997), domination
analysis provides an alternative and a complement to approximation analysis. In dom-
ination analysis, we are interested in the domination number or domination ratio of
the heuristic solution. We define these parameters below.

Pros and cons of domination analysis are discussed in Gutin and Yeo (2005) and,
in our view, it is advantageous to have bounds for both performance ratio and domina-
tion ratio of a heuristic whenever it is possible. Roughly speaking this would enable
us to see a 2D picture rather than a 1D picture.

Let P be a minimization CO problem, let I be an instance of P , let S(I) denote
the set of feasible solutions of I , and let H be a heuristic for P . The size of I is
denoted by |I| and the solution obtained by H for I is denoted by H(I). When
considering the weight of a solution y we write w(y).

The domination number of a heuristic H is

domn(H,n) = min
I∈P :|I|=n

domn(H,I),

where domn(H,I) = |{y ∈ S(I) : w(H(I)) ≤ w(y)}|.
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In other words, the domination number domn(H,n) is the maximum integer such
that the solution H(I) obtained by H for any instance I of P of size n is not worse
than at least domn(H,n) feasible solutions of I (including H(I)). The domination
ratio of H is

domr(H,n) = min
I∈P :|I|=n

domn(H,I)

|S(I)| .

In many cases, domination analysis is very useful. For example, the greedy al-
gorithm has domination number 1 for many CO problems, (see, e.g., Punnen and
Kabadi 2002). In other words, the greedy algorithm, in the worst case, produces the
unique worst possible solution. This is reflected in computational experiments with
the greedy algorithm for the asymmetric traveling salesman problem (ATSP), (see,
e.g., Johnson et al. 2002), where it was concluded that the greedy algorithm ‘might
be said to self-destruct.’ The fact that the greedy algorithm is of domination number
1 for s-AP (s ≥ 3) as well (see Theorem 3.2) implies that the algorithm should be
used with great care for s-AP. Bounds for domination numbers/ratios were obtained
for many CO heuristics; see, e.g., Berend et al. (2007), Gutin and Yeo (2005), Koller
and Noble (2004), and Punnen et al. (2003).

Many CO problems can be formulated as follows. We are given a pair (E,F),

where E is a finite set and F is a family of subsets of E, and a weight function w

that assigns a real weight w(e) to every element of E. A maximal (with respect to
inclusion) set B ∈ F is called a base. The weight w(S) of S ∈ F is defined as the
sum of the weights of the elements of S. The objective is to find a base B ∈ F of
minimum weight.

The well-known GREEDY algorithm proceeds as follows. It starts from the empty
set X. In every iteration GREEDY adds a minimum weight element e to the current
set X provided e /∈ X and X ∪ {e} is a subset of a set in F . The algorithm stops when
a base has been constructed.

Unfortunately, both computational experiments and domination analysis point out
that GREEDY is often a poor choice for heuristic even if it is only used to generate
initial solutions that will be improved by more sophisticated heuristics (see the pre-
vious section). Thus, other heuristics are of definite interest. A promising and quite
universal heuristic appears to be MAX-REGRET algorithm studied in Balas and Saltz-
man (1991), and Robertson (2001) for the 3-dimensional assignment problem (3-AP).
Variations of MAX-REGRET were introduced and investigated in Ghosh et al. (2007)
for ATSP. Our analysis for both s-AP (s ≥ 3) and ATSP indicates that MAX-REGRET

is of similar quality in the worst case as GREEDY, namely, the domination number
MAX-REGRET for both problems equals 1. Recently, Bendall and Margot (2006)
studied an extension of GREEDY, which is of domination number 1 for many CO
problems as well.

3 Greedy, s-AP-Max-Regret and s-AP-Max-Regret-FC

For a fixed s ≥ 2, the s-AP is stated as follows. Let X1 = X2 = · · · = Xs =
{1,2, . . . , n}. We will consider only vectors that belong to the Cartesian product
X = X1 × X2 × · · · × Xs . Each vector e is assigned a weight w(e). For a vector
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e, ej denotes its j th coordinate, i.e., ej ∈ Xj . A partial assignment is a collection
e1, e2, . . . , et of t ≤ n vectors such that ei

j �= ek
j for each i �= k and j ∈ {1,2, . . . , s}.

An assignment is a partial assignment with n vectors. The weight of a partial as-
signment A = {e1, e2, . . . , et } is w(A) = ∑t

i=1 w(ei). The objective is to find an
assignment of minimum weight.

We will start from GREEDY for s-AP. Using Theorem 2.1 in Gutin and Yeo (2002)
one can prove that, for each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which
GREEDY will find the unique worst possible assignment. We will give a short direct
proof of this result, which is also of interest later in this section.

A vector h is backward if min{hi : 2 ≤ i ≤ s} < h1; a vector h is horizontal if
h1 = h2 = · · · = hs . A vector is forward if it is not horizontal or backward.

Lemma 3.1 Let F be an assignment of s-AP (s ≥ 2). Either all vectors of F are
horizontal or F contains a backward vector.

Proof Let F = {f 1, f 2, . . . , f n}, where f i
1 = i for each 1 ≤ i ≤ n. Assume that not

every vector of F is horizontal. We show that F has a backward vector. Suppose it
is not true. Then F has a forward vector f i . Thus, there is a subscript j such that
f i

j > i. By the pigeonhole principle, there exists a superscript k > i such that f k
j ≤ i,

i.e., f k is backward; a contradiction. �

Theorem 3.2 For each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which
GREEDY will find the unique worst possible assignment.

Proof Let M > n and let E = {e1, e2, . . . , en}, where ei = (i, i, . . . i) for every 1 ≤
i ≤ n. We define the required instance I as follows: w(ei) = iM for each 1 ≤ i ≤ n

and, for each f /∈ E, w(f ) = min{fi : 1 ≤ i ≤ s} · M + 1.
Observe that GREEDY will construct E. Let F = {f 1, f 2, . . . , f n} be any other

assignment, where f i
1 = i for each 1 ≤ i ≤ n. By Lemma 3.1, F has a backward

vector f k . Notice that

w(f k) ≤ (k − 1)M + 1 (1)

By the definition of the weights and Eq. 1,

w(F) =
n∑

i=1

w(f i) =
∑

i �=k

w(f i) + w(f k)

≤
∑

i �=k

(iM + 1) + (k − 1)M + 1

=
n∑

i=1

iM + n − M <

n∑

i=1

iM = w(E).
�

The first successful application of max-regret for improving the Transportation
Simplex Algorithm is appeared in the so called Vogel’s Approximation Method (see
Reinfeld and Vogel 1958) and has been used as a base of the MAX-REGRET heuristic
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for solving the 3-AP in Balas and Saltzman (1991). The authors of Goldengorin et al.
(2006) gave a general approach that extends MAX-REGRET heuristics.

s-AP-MAX-REGRET proceeds as follows. Set Wj = A = ∅ for each j =
1,2, . . . , s. While |X1| �= |W1| do the following: For each i ∈ {1,2, . . . , s} and
a ∈ Xi \ Wi , find two lightest vectors ei,a and f i,a (w(ei,a) ≤ w(f i,a)) in the set

H = {h ∈ X : hi = a,hj ∈ Xj \ Wj, j ∈ {1,2,3, . . . , s} \ {i}}
and compute the difference (called regret) �i,a = w(f i,a) − w(ei,a). Compute the
max-regret

�i0,a0 = max{�i,a : i ∈ {1,2, . . . , s}, a ∈ Xi \ Wi}.
Add ei0,a0 to A and each e

i0,a0
j to Wj , j = 1,2, . . . , s.

A modification of s-AP-MAX-REGRET that computes the regrets only for the first
coordinates, i.e., only �1,a’s will be denoted s-AP-MAX-REGRET-FC (FC abbrevi-
ates First Coordinate).

Remark 3.3 In s-AP-MAX-REGRET, when |H | = 1 we set �i,a = 0. Since we per-
form the worst case analysis, when breaking ties, we will follow the choice leading
to the worst solution among possible options.

Theorem 3.4 The domination number of both s-AP-MAX-REGRET and s-AP-
MAX-REGRET-FC equals 1 for each s ≥ 3.

Proof Consider the instance I described in the proof of Theorem 3.2. Observe that
�i,1 = (M + 1) − M = 1 for each i and �i,a = (M + 1) − (M + 1) = 0 for each
a > 1. Thus, both s-AP-MAX-REGRET and s-AP-MAX-REGRET-FC will choose
e1 first. Similarly, we can see that both heuristics will uniquely choose e2, . . . , en one
by one. In Theorem 3.2, we showed that E = {e1, e2, . . . , en} is unique worst possible
for I . �

Notice that the proof of Theorem 3.4 cannot be extended to 2-AP-MAX-REGRET

or 2-AP-MAX-REGRET-FC. Moreover, it was proved in Ghosh et al. (2007) that 2-
AP-MAX-REGRET-FC is of domination number 2n−1. We believe that 2n−1 is also
the domination number for 2-AP-MAX-REGRET, but we are unable to prove it. In
support of this conjecture we prove the following:

Theorem 3.5 The domination number of 2-AP-MAX-REGRET is at most 2n−1.

Proof Choose n positive numbers d1 > d2 > · · · > dn arbitrarily and consider the
following instance of 2-AP: w(i, i) = −di for each i = 1,2, . . . , n, w(i, j) = 0 for
each 1 ≤ i < j ≤ n and w(i, j) = −∑i

k=j dk for each 1 ≤ j < i ≤ n.
Initially 2-AP-MAX-REGRET computes the regrets as follows: �1,k = d1 and

�2,k = dn for each k = 1,2, . . . , n. We may assume that 2-AP-MAX-REGRET

chooses (1,1) (see Remark 3.3). Similarly, we can see that 2-AP-MAX-REGRET

chooses (2,2), (3,3), . . . , (n,n) one by one. Thus, the weight of the assignment
M = {(1,1), (2,2), . . . , (n,n)} built by 2-AP-MAX-REGRET equals −∑n

i=1 di .
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For an integer p ≥ 1, let Op(i,p) denote an operation that replaces in M

the vectors {(i, i), (i + 1, i + 1), . . . , (i + p, i + p)} by the vectors {(i, i + 1),

(i +1, i +2), . . . , (i +p −1, i +p), (i +p, i)}. The operation Op(i,0) does nothing.
Consider the following procedure. It starts from i := 1. It chooses an arbitrary integer
p with 0 ≤ p ≤ n − i, performs Op(i,p), sets i := i + p + 1 and continues this loop
while i < n.

Notice that Op(i,p) preserves the weight of the assignment and, thus, every
assignment obtained by the procedure is of weight w(M). Let f (n) be the num-
ber of all possible assignments that can be obtained by the procedure. Clearly,
f (1) = 1 and set f (0) = 1. To compute f (n) observe that after using Op(1,p)

we will have f (n − p − 1) possible assignments. Thus, for each n ≥ 2 we have
f (n) = f (n − 1) + f (n − 2) + · · · + f (0). This implies that f (n) = 2n−1 for n ≥ 1.

To show that any assignment that cannot be constructed by the procedure is of
weight smaller than w(M), build a complete digraph DKn with vertices {1,2, . . . , n}
and with a loop on every vertex. For arbitrary 1 ≤ i, j ≤ n, the arc (i, j) of DKn

corresponds to the vector (i, j) and we set the weight of arc (i, j) equal w(i, j). We
call an arc (i, j) with i < j forward and with i ≥ j backward. Notice that the weight
of every forward arc is 0.

An assignment corresponds to a cycle factor of DKn, which is a collection of
disjoint cycles (some of them may be loops) that cover all vertices of DKn. In par-
ticular, the weight of an assignment equals the weight of the corresponding cycle
factor in DKn. Notice that the weight of every forward arc is 0 and, thus, the weight
of a cycle factor equals the sum of the weights of its backward arcs. We call a pair
(i, j), (i′, j ′) of backward arcs intersecting if the intervals [j, i] and [j ′, i′] of real line
intersect (one of these intervals may be just a point). Observe that if a cycle factor
does not have intersecting backward arcs, then its weight equals −∑n

i=1 di = w(M)

and every such cycle factor corresponds to an assignment that can be obtained by the
procedure above. Thus, there are exactly f (n) = 2n−1 cycle factors without intersect-
ing backward arcs.

Now suppose that a cycle factor F has an intersecting pair (i, j), (i′, j ′) of
backward arcs. Thus, there is an integer k such that k ∈ [j, i] ∩ [j ′, i′]. By the
definition of a cycle factor, k < n. Observe that the above arguments imply that
w(F) ≤ −∑n

i=1 di − dk < w(M).
So, there are only 2n−1 assignments of weight not smaller than w(M). �

4 s-AP heuristics of large domination number

For ATSP, there are several heuristics with domination number at least (n − 2)!; see,
e.g., Punnen and Kabadi (2002). In this section, we will demonstrate that s-AP admits
a number of heuristics of domination number at least ((n−1)!)s−1. We introduce two
such new heuristics PART and RECURSIVE OPT MATCHING, which might well be of
interest in practice. The key lemma is the following result similar to the corresponding
result in Gutin and Yeo (2002).

The average weight of an assignment (denoted by w̄) is the total weight of all
assignments divided by the number of assignments. The average weight of a vector in
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X is w(X)/ns . Thus, by linearity of expectation, the average weight of an assignment
equals w̄ = w(X)/ns−1.

Lemma 4.1 Let H be a heuristic that for each instance of s-AP constructs an as-
signment of weight at most the average weight of an assignment. Then the domination
number of H is at least ((n − 1)!)s−1.

Proof Consider an instance I of s-AP. Let C denote the set of all vectors of I with the
first coordinate equal 1. Consider P = {Af : f 1 ∈ C}, where Af = {f 1, f 2, . . . , f n}
is an assignment with f i

j = f 1
j + i −1 (modulo n), j = 1,2, . . . , s. Observe that each

vector is in exactly one Af and, thus, P is a partition of X = X1 × X2 × · · · × Xs

into assignments. Since
∑

f ∈C w(Af ) = w(X), |C| = ns−1 and w̄ = w(X)/ns−1,
the heaviest assignment Ah in P is of weight at least w̄.

Let S(Xi) be the set of all permutations on Xi (2 ≤ i ≤ s) and let π2 ∈ S(X2),π3 ∈
S(X3), . . . , πs ∈ S(Xs). To obtain P(π2,π3, . . . , πs) from P , replace f i

j with πj (f
i
j )

for each j ≥ 2 and i = 1,2, . . . , n. Thus, we obtain a family

F = {P(π2,π3, . . . , πs) : π2 ∈ S(X2),π3 ∈ S(X3), . . . , πs ∈ S(Xs)}
of partitions of X into assignments. The family consists of (n!)s−1 partitions. We
may choose the heaviest assignment in each partition and, thus, obtain a family A of
assignments of weight at least w̄.

However, we can have several occurrences of the same assignment in A. We claim
that no assignment G = {g1, g2, . . . , gn} (with gi

1 = i for i = 1,2, . . . , n) can be in
more than ns−1 partitions of F . We may assume that G ∈ P . Let G be also in some
P(π2,π3, . . . , πs). By definition, there is an assignment {d1, d2, . . . , dn} in P with
di

1 = i for i = 1,2, . . . , n such that gi
j = πj (d

i
j ) for each j = 2,3, . . . , s and i =

1,2, . . . , n. These relations uniquely define the permutations π2,π3, . . . , πs . Thus,
{g1, g2, . . . , gn} can be repeated in F at most |P| = ns−1 times.

So, each assignment in A is of weight at least w̄, no assignment in A can be re-
peated more than ns−1 times, and A has (n!)s−1 assignments with repetitions. There-
fore, we can find (in A) ((n−1)!)s−1 distinct assignments of weight at least w̄. Since
w(H(I)) ≤ w̄ and I is arbitrary, we conclude that H is of domination number at
least ((n − 1)!)s−1. �

Consider a new heuristic PART that finds a partition P of X into assignments
and computes an assignment in P of minimum weight. The proof above shows that
PART is of domination number at least ((n − 1)!)s−1. This heuristic is fast (of time
complexity O(ns)) and might be of interest at least for producing initial assignments
for local improvement heuristics such as the TRIPLE INTERCHANGE introduced in
Balas and Saltzman (1991) for 3-AP. Before studying TRIPLE INTERCHANGE we
consider another new heuristic RECURSIVE OPT MATCHING for s-AP.

RECURSIVE OPT MATCHING proceeds as follows. Compute a new weight
w̄(i, j) = w(Xij )/ns−2, where Xij is the set of all vectors with last two coordi-
nates equal i and j , respectively. Solving the 2-AP with the new weights to opti-
mality, find an optimal assignment {(i,πs(i)) : i = 1,2, . . . , n}, where πs is a per-
mutation on Xs . While s �= 1, introduce (s − 1)-AP with weights given as follows:
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w′(f i) = w(f i,πs(i)) for each vector f i ∈ X′, where X′ = X1 × X2 × · · · × Xs−1,
with last coordinate equal i and apply RECURSIVE OPT MATCHING recursively. As a
result we have obtained permutations πs,πs−1, . . . , π2. The output is the assignment
{(i,π2(i),π3(π2(i)), . . . , πs(πs−1(. . . (π2(i))) . . .)) : i = 1,2, . . . , n}.

Theorem 4.2 For each s ≥ 2, RECURSIVE OPT MATCHING is of domination num-
ber at least ((n − 1)!)s−1.

Proof By Lemma 4.1, it suffices to show that the assignment obtained by RECUR-
SIVE OPT MATCHING is of weight at most w̄ = w(X)/ns−1, the average weight of
an assignment. Our proof is by induction on s ≥ 2. Clearly the assertion holds for
s = 2 and consider s ≥ 3. Observe that

w(X)

ns−1
= w̄ = 1

n

n∑

i=1

n∑

j=1

w̄(i, j) ≥
n∑

i=1

w̄
(
i, πs(i)

) = w′(X′)
ns−2

.

Let A = {(g1,πs(1)), . . . , (gn,πs(n))} be an assignment obtained by RECURSIVE

OPT MATCHING, where gi ∈ X′ such that gi
s−1 = i for every i = 1, . . . , n. Let A′ =

{g1, . . . , gn}. Then by induction hypothesis, w̄′ = w′(X′)/ns−2 ≥ w′(A′) = w(A)

and we are done. �

It is straightforward to see that for any fixed s ≥ 3, RECURSIVE OPT MATCHING

is of running time merely O(ns).
Consider 3-AP. TRIPLE INTERCHANGE is a local search heuristic that at every

step tries to improve an assignment D = {d1, d2, . . . , dn} by looking at a triple of
vectors di, dj , dk . It compares w(di)+w(dj )+w(dk) with the weight of each of 35
triples (hi, hj , hk) �= (di, dj , dk) such that hi

1 = di
1, h

j

1 = d
j

1 , hk
1 = dk

1 , {hi
2, h

j

2, h
k
2} =

{di
2, d

j

2 , dk
2 } and {hi

3, h
j

3, h
k
3} = {di

3, d
j

3 , dk
3 }. If TRIPLE INTERCHANGE finds a triple

hi, hj , hk lighter than di, dj , dk , it replaces di, dj , dk with hi, hj , hk in D. The
heuristic stops when no triple in the current assignment D can be replaced by a lighter
one.

The following theorem does not depend on the initial assignment in TRIPLE IN-
TERCHANGE.

Theorem 4.3 The domination number of TRIPLE INTERCHANGE is at least
((n − 1)!)2.

Proof Assume that E = {e1, e2, . . . , en}, where ei = (i, i, i), is an assignment that
cannot be improved using TRIPLE INTERCHANGE. The set of all vectors X =
Y ∪ Z ∪ E, where Y is the set of vectors with exactly two equal coordinates
and Z is the set of vectors with all coordinates being different. Clearly, w(X) =
w(Y) + w(Z) + w(E). We will prove that w(Y) ≥ 3(n − 1)w(E) and w(Z) ≥
(n − 1)(n − 2)w(E), which imply that w(E) ≤ w̄ = w(X)/n2 and the result of the
theorem follows from Lemma 4.1.



178 G. Gutin et al.

Observe that |Y | = 3n(n − 1) (there are 3 ways to choose which coordinate is
different from the other two, n ways to choose value from {1,2, . . . , n} for this co-
ordinate and n − 1 ways to choose value for the two coordinates). The set Y can be
partitioned into |Y |/2 pairs of the form f i, f j such that f i has one coordinate equal
i and two coordinates equal j and f j has one coordinate equal j and two coordi-
nates equal i. For each such pair f i, f j , we have w(f i) + w(f j ) ≥ w(ei) + w(ej )

as otherwise we could improve ei, ej , ek by f i, f j , ek (k �= i, j ). Summing up all the
inequalities we obtain w(Y) ≥ 3(n − 1)w(E).

Note that |Z| = n(n − 1)(n − 2). For a vector f = (i, j, k), let f + = (k, i, j)

and f − = (j, k, i). Let F = {(i, j, k) ∈ X : i < j < k} and G = {(i, j, k) ∈ X :
j < i < k}. Then Z = {{f,f +, f −} : f ∈ F ∪G} is a partition of Z into |Z|/3 triples.
Observe that for a triple h = (i, j, k), h+, h−, we have w(h) + w(h+) + w(h−) ≥
w(ei) + w(ej ) + w(ek). This implies w(Z) ≥ (n − 1)(n − 2)w(E). �

The PAIR INTERCHANGE heuristic also described in Balas and Saltzman (1991)
is similar to TRIPLE INTERCHANGE, but tries to improve pairs of vectors in the cur-
rent assignment. PAIR INTERCHANGE does not always produce an assignment whose
weight is at most the average weight of an assignment. To see that consider an in-
stance of 3-AP with the following weights: w(i, i, i) = 0 for each i = 1,2, . . . , n,
w(i, j, k) = 1 for each triple i, j, k in which exactly two members equal, and
w(i, j, k) = −n3 for each triple i, j, k in which all members of different. The as-
signment E = {(1,1,1), (2,2,2), . . . , (n,n,n)} cannot be improved by PAIR INTER-
CHANGE, but w(E) = 0 and the average weight of an assignment is negative for each
n ≥ 3.

5 ATSP-Max-Regret and ATSP-Max-Regret-FC

A variation of MAX-REGRET for ATSP, ATSP-MAX-REGRET-FC (FC abbreviates
First Coordinate), was first introduced in (Ghosh et al. 2007) under a different name,
R-R-GREEDY. The authors of (Ghosh et al. 2007) found an exponential upper bound
on the domination number of ATSP-MAX-REGRET-FC and stated a problem to ob-
tain a nontrivial lower bound for the domination number. Extensive computational
experiments in (Ghosh et al. 2007) demonstrated a clear superiority of ATSP-MAX-
REGRET-FC over GREEDY and several other construction heuristics in Glover et al.
(2001). Therefore, the result of Theorem 5.2 is somewhat unexpected.

Let K∗
n be a complete digraph with vertices V = {1,2, . . . , n}. The weight of an arc

(i, j) is denoted by wij . The ATSP is the problem of finding a tour (i.e., a Hamilton
cycle) of K∗

n of total minimum weight. Let Q be a collection of disjoint paths in
K∗

n . An arc a = (i, j) is a feasible addition to Q if Q + a is either a collection of
disjoint paths or a tour in K∗

n . Consider ATSP-MAX-REGRET-FC and ATSP-MAX-
REGRET.

ATSP-MAX-REGRET-FC proceeds as follows. Set W = T = ∅. While V �= W do
the following: For each i ∈ V \ W , compute two lightest arcs (i, j) and (i, k) that are
feasible additions to T , and compute the difference �i = |wij −wik|. For i ∈ V −W

with maximum �i choose the lightest arc (i, j), which is a feasible addition to T and
add (i, j) to M and i to W .
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ATSP-MAX-REGRET proceeds as follows. Set W+ = W− = T = ∅. While V �=
W+ do the following: For each i ∈ V \ W+, compute two lightest arcs (i, j) and
(i, k) that are feasible additions to T , and compute the difference �+

i = |wij − wik|;
for each i ∈ V \ W−, compute two lightest arcs (j, i) and (k, i) that are feasible
additions to T , and compute the difference �−

i = |wji − wki |. Compute i′ ∈ V \W+
with maximum �+

i′ and i′′ ∈ V \ W− with maximum �−
i′′ . If �+

i′ ≥ �−
i′′ choose the

lightest arc (i′, j ′), which is a feasible addition to T and add (i′, j ′) to M , i′ to W+
and j ′ to W−. Otherwise, choose the lightest arc (j ′′, i′′), which is a feasible addition
to T and add (j ′′, i′′) to M , i′′ to W− and j ′′ to W+.

Remark 5.1 In ATSP-MAX-REGRET-FC, if |V \ W | = 1 we set �i = 0. A similar
remark applies to ATSP-MAX-REGRET.

Theorem 5.2 The domination number of both ATSP-MAX-REGRET-FC and
ATSP-MAX-REGRET equals 1 for each n ≥ 2.

Proof Since the proofs for both heuristics use the same family of instances and are
similar, we restrict ourselves only to ATSP-MAX-REGRET-FC.

Consider an instance of ATSP on the complete digraph with vertex set
{1,2, . . . , n}, n ≥ 2. Let the weights be as follows: wik = min{0, i − k} for each
1 ≤ i �= k ≤ n, i �= n, and wnk = −k for each 1 ≤ k ≤ n − 1. We will slightly modify
the weights: w′

ij = wij unless j = i + 1 modulo n. We set w′
i,i+1 = −1 − 1

n+1 for

1 ≤ i ≤ n − 1 and w′
n,1 = −1 − 1

n+1 . ATSP-MAX-REGRET-FC will use the weight
function w′.

ATSP-MAX-REGRET-FC constructs the tour TMR = (1,2,3, . . . , n,1) by first
choosing the arc (n−1, n), then the arc (n−2, n−1), etc. The last two arcs are (1,2)

and (n,1) (they must be included in the tour). Indeed, initially �n−1 = n+2
n+1 > �i for

each i �= n−1. Once (n−1, n) is added to TMR, �n−2 = n+2
n+1 becomes maximal, etc.

Let T ′, T ′′ be a pair of tours. Since
∑

(i,j)∈K∗
n
|wij −w′

ij | < 1, w(T ′) < w(T ′′) im-
plies w′(T ′) < w′(T ′′). Thus, to prove that w′(T ) < w′(TMR) for each tour T �= TMR,
it suffices to show that w(T ) < w(TMR).

Observe that w(TMR) = −n. Let T = (i1, i2, . . . , in, i1) be an arbitrary tour, where
i1 = 1. Suppose that is = n. Observe that the weight of the path P = (i1, i2, . . . , is)

equals
∑s−1

k=1 min{0, ik − ik+1}. Thus, w(P ) ≤ 1 − n and w(P ) = 1 − n if and only
if i1 < i2 < · · · < is . Since is = n, the weight of the arc (is , is+1) equals −is+1.
Thus, w(T ) ≤ 1 − n − is+1 and w(T ) ≥ w(TMR) if and only if is+1 = 1 and
i1 < i2 < · · · < is . We conclude that w(T ) ≥ w(TMR) if and only if T = TMR. �

6 Conclusions and further research

We have carried out worst-case analysis of MAX-REGRET for the Multidimensional
Assignment Problem (s-AP, s ≥ 3) and Asymmetric Traveling Salesman Problem
(ATSP). We proved that MAX-REGRET for both problems may find unique worst
possible solution. Thus, like GREEDY, MAX-REGRET should be used with great care
and, possibly, avoided all together when instances of previously unstudied families
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are to be solved. In such a case heuristics of factorial domination number that have a
proven excellent computational record (such as Helsgaun’s version of Lin-Kernighan
heuristic for the Symmetric TSP (see Helsgaun 2000, and Punnen et al. 2003) appear
to be a much better choice.

For s-AP we considered three heuristics of factorial domination number. Two of
the heuristics are new and, we believe, that they might well be of practical interest.
Gerold Jäger has already performed preliminary computational experiments compar-
ing RECURSIVE OPT MATCHING and its modifications with other fast heuristics in-
cluding GREEDY and MAX-REGRET for s-AP, s ≥ 3. The experiments demonstrated
that on average RECURSIVE OPT MATCHING and its variants outperform the other
tested heuristics especially for s > 3. We plan to report on these and other experi-
mental results in a future paper.
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