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1 INTRODUCTION

Regular di� and multiblock AB copolymers easily
form ordered structures via microsegregation if inter�
chain contacts of A and B units are unfavorable [1, 2].
In addition, irregular (statistical) copolymers are
capable of self�organization, although any disorder in
the distribution over block length hampers ordering
[3]. The phase behavior of statistical copolymers is
intensively studied both from the viewpoint of theory
(e.g., in terms of mean�field approaches [4–7]) and
with the use of Monte Carlo simulations [8, 9] and dis�
sipative particle dynamics [10, 11]. Theoretical analy�
sis predicts macrophase or microphase separation,
depending on the value of the parameter of correla�
tions along chain, λ = PA→A + PB→B –1 (where PA→A
and PB→B are conditional probabilities to find unit A
on the right of A and unit B on the right of B, respec�
tively) and the parameter of interaction between A and
B units. However, the results of theoretical calcula�
tions are in conflict with simulation results [9]. The
larger the number of blocks in a chain or the longer the

1 This work was supported by the Ministry of Education and Sci�
ence of the Russian Federation (State Contract no. P476).

chain, the higher this discrepancy. These discrepan�
cies indicate that there is a need to analyze ordering in
statistical copolymers in more detail.

The ordering of stretched chains in Bernoulli
copolymers was investigated both via Monte Carlo
simulation and with the use of analytical approaches,
methods of the probability theory [12]. The results of
these studies are in good agreement, so that a simple
Monte Carlo technique, which will be described in the
next section, may be recommended for the study of
self�organization of copolymers of other classes, for
which the analytical approach is extremely compli�
cated (if not impossible).

Recently [13], Monte Carlo simulation was used to
examine the self�organization of statistical multiblock
copolymers. This class of copolymers, which are of
considerable interest for both fundamental science
and practical application, has been poorly studied. An
efficient method for the synthesis of statistical multi�
block copolymers involves the interchain exchange
between condensation polymers [14, 15]. However,
the interchain�exchange reaction is complex for simu�
lation of self�organization because the reaction event
is accompanied by a change in the chain length, so
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that the initial ensemble generated via the exchange
reaction is polydisperse. Therefore, the polymer�anal�
ogous reaction was selected for simulation.

MODEL AND ORDERING ALGORITHM

The initial ensemble of chains of equal lengths was
generated via simulation of the polymer�analogous
reaction A B that proceeds with the accelerating
effect of neighboring units B. In [16], in the two�
dimensional (2D) model, the reaction was performed
in a rectangle containing M stretched chains with a
length of N units. The values of M and N were varied
within 1000–50000 and 20–1000. In this case, the
total number of units was kept constant: M × N =
1000000.

The distribution over the lengths of A and B blocks
in a chain averaged over the whole ensemble was
determined from rate�constant ratio k0 : k1 : k2 for the
transformation of A units having 0, 1, and 2 B neigh�
bors, respectively. (In fact, ratios c0 : c1 : c2 = k0 : k1 : k2,
where c0 + c1 + c2 = 1, were changed.) Interchain inter�
action was set in terms of the energy of pairwise attrac�
tion between units: εAA, εBB, and εAB (εij < 0).

Self�organization was simulated via transformation
of the rectangle into a cylinder through superposition
of its parallel sides containing chain ends. In this case,
chains were transformed into rings of N units and,
then, each upper ring was rotated above each lower
ring into the arrangement with the maximum (in mod�
ulus) energy of attraction between them.

For the 2D model, the master relation was found
for self�organization by energy [13]:

Δε = χΔϕAВ, (1)

where Δε is the change in the mean energy of inter�
chain attraction per contact, ΔϕAВ is the change in the
mean fraction of contacts AB, and χ = εAВ –  (εАА +
εВB)/2 is the Flory–Huggins parameter. Relationship
(1) was fulfilled in all numerical calculations (experi�
ments). Equations relating fractions ϕAA, ϕBB, and ϕAB
of interchain contacts AA, BB, and AB were derived as
well.

The Monte Carlo technique was used to determine
the following values averaged over the whole ensem�
ble:

(i) Parameters of chain structure: the mean lengths
of A and B blocks, lA and lB; the probability of the
boundary between blocks, R; and the numbers of A
blocks and B blocks of different lengths (i.e., the dis�
tribution over block length).

(ii) Parameters of interchain interaction: the frac�
tions of interchain contacts, ϕAA, ϕBB, and ϕAB; the
mean energy of interchain interaction per contact, ε.

Parameters of interchain interaction were calcu�

lated before and after ordering, for example,  and

. These data made it possible to analyze the depen�
dence of self�organization coefficient Δε/εin (Δε =

in
AAϕ

opt
AAϕ

εopt – εin, where εin and εopt are the mean attraction
energies per contact in the initial and ordered ensem�
bles, respectively) on various parameters and to com�
pare simulation results with theoretical relationships.
Self�organization coefficient Δε/εin, which character�
izes the efficiency of ordering over energy, is deter�
mined by the structure and length of chains and by
interchain interactions. Deviations of ΔϕAВ and Δε/εin

from purely random values become, as a rule, much
more pronounced with an increase in the length of
blocks and a decrease in the length of chains.

However, for ensembles of short chains in statistical
multiblock copolymers (N = 20) generated at a strong
accelerating effect of neighboring units (c0 : c1 : c2 = 1 :
50 : 100), the value of Δε/εin sharply decreases owing
to two causes. First, this ensemble is strongly hetero�
geneous with respect to chain composition p (the frac�
tion of units A): It contains many chains of homopoly�
mers, which during self�organization make no contri�
bution to the value of Δε/εin. Second, on short chains
there is not enough room for the formation of long
blocks that appear during marked acceleration of the
reaction. Thus, simulation and theoretical analysis
make it possible to reveal the main relationships for
self�organization of statistical multiblock copolymers
over energy and the features for generation of ensem�
bles of short chains and their ordering [13].

In this study, the simulation program was substan�
tially modified. The new version makes it possible to
form images of initial and ordered ensembles.

Figure 1 compares images obtained for ensembles
of multiblock copolymer chains (c0 : c1 : c2 = 1 : 50 :
100) before and after ordering. Accumulations of one�
type units, clusters, are seen. After ordering, their
number decreases, while mean size increases. Note
that the growth of clusters along the vertical is espe�
cially pronounced. Perpendicular to stretched chains,
N bands of height M contain columns of A or B units
(A stems or B stems), and, after self�organization via
rotation of rings, the height of stems increases on aver�
age. Hence, in addition to ordering over energy along
chains, lateral ordering occurs and results in the for�
mation of nanoclusters composed of one�type units in
the polymer bulk. In fact, such clusters play the role of
interchain physical crosslinks and, as expected, will
strongly affect the mechanical properties of the poly�
mer material.

Therefore, the modified program provides for cal�
culations of parameters characterizing lateral order�
ing: ensemble average heights HA and HB of stems A
and B; the total numbers of A and B stems; and, more
importantly, the number of stems of different heights,
that is, distributions over the heights of A and B stems.
These values were calculated before and after order�

ing, for example,  and  and  and .in
AH opt

AH in
BH opt

BH
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SIMULATION RESULTS

Lateral Ordering in the 2D System

The efficiency of lateral ordering may be quantita�

tively characterized by ratios  and 
(hereinafter, lateral ordering coefficients). In Table 1,
these parameters are compared for fully random (Ber�
noulli) copolymers and statistical multiblock copoly�
mers of various compositions.

Table 1 shows that the coefficients of lateral order�
ing are independent of copolymer composition p,
unlike coefficient Δε/εin of self�organization by energy
along the direction of chains whose value is maximum

at p = 0.50 [13]. In all cases,  =  and
the coefficients of ordering for the multiblock copoly�
mer are higher than those for a fully random copoly�

opt in
A A/H H opt in

B B/H H

opt in
A A/H H opt in

B B/H H

mer. Thus, the presence of long blocks in chains is
favorable for lateral ordering.

As is seen from Fig. 2, for a fully random copoly�

mer,  monotonically increases as chain
length decreases. For the statistical multiblock copol�
ymer, the coefficient of lateral ordering initially
increases and then declines abruptly, so that, at N =
20, this ratio is smaller than that for the Bernoulli
copolymer of the same length. A sharp reduction in

 in the interval 50 ≥ N ≥ 20 has the same
causes as a drop in coefficient Δε/εin of self�organiza�
tion by energy [13]: the presence of a considerable
amount of homopolymers in the ensemble and an
insufficient amount of room on short chains for for�
mation of long blocks favorable for ordering.

With the use of the modified program, the total
number of stems A and B and the number of stems of
different heights before and after ordering were calcu�
lated. The value of this information becomes evident
when the theoretical distribution over the stem height
is compared with simulation data.

For this purpose, let us estimate probability
P(BAiB) to find A stems with heights of i units. On the
one hand, the number of such stems may be divided by
the total number of columns containing A and B units
with heights i + 2:

P(BAiB) = ai /[(M – i – 1)N], (2)

where N is the chain length, M is the number of
chains, and ai is the number of A stems with heights of
i units. In fact, the ensemble contains N vertical bands

opt in
A A/H H

opt in
A A/H H

(а)

(b)

Fig. 1. Images of (a) initial and (b) ordered ensembles of
the statistical multiblock copolymer for the 2D model: N =
100, M = 10000, p = 0.50, c0 : c1 : c2 = 1: 50 : 100; εAA =
⎯1.0, εBB = –1.0, and εAB = – 0.1.

200 400 N

1.75

1.50

1.25
1

2

HA
opt

/HA
in

Fig. 2. Coefficient  of lateral ordering vs. chain
length N for (1) the Bernoulli copolymer and (2) the multi�
block copolymer: c0 : c1 : c2 = (1) 1 : 1 : 1 and (2) 1 : 50 :
100; N × M = 1000000; p = 0.50; εAA = –1.0, εBB = –1.0,
εAB = –0.1.

opt in
AA /H H
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with heights of M units. In this band, M – i – 1 col�
umns with heights of i + 2 units may be chosen and the
total number of such columns is (M – i – 1)N, among
which ai columns are BAiB stems.

On the other hand, P(BAiB) may be calculated
with the use of conditional probabilities:

(3)

In fact, the probability of such a stem is equal to the
product of (i) the probability of finding a B unit (1 –
p), (ii) the conditional probability of finding an A unit
over a B unit ( ), (iii) the conditional probability
of finding an A unit over an A unit ( ) raised to the
power of i – 1, and (iv) the conditional probability of
finding a B unit over an A unit ( ).

Conditional probabilities are calculated from the
fractions of interchain contacts:

−

→ → →
= − B A A A A BBA B 1( ) (1 ) ( )i

iP p P P P

→B AP

→A AP

→A BP

(4)

and ϕAB = ϕBA in this case. 
From Eqs. (2) and (3), we have

ai = (M – i – 1)N(1 – p)PB→A (PA→A)i – 1PA→ B (5)

The numerical fraction of A stems with heights of i
units from the total number of A stems is

, (6)

where ai is set by expression (5).
In addition, the height distribution of stems may be

computed through the direct calculation of ai from the
Monte Carlo simulation:

(7)

Similar dependences f calc(bi) and f MC(bi) describe
distributions over the heights of B stems. For the sta�
tistical ensemble, both calculation procedures should
be equivalent.

Let us compare distributions over the heights of
stems obtained through these methods for Bernoulli
and multiblock copolymers. As is seen from Fig. 3, for
the Bernoulli copolymer of the composition р = 0.5,
coincident results were obtained both before and after
ordering. (Note that, for an equimolar system, the
corresponding distributions of A and B stems are the
same.)

For the Bernoulli copolymer of the composition
р = 0.8 (Fig. 4), the height distributions of A and B
stems are different, but the results of calculations via
both methods coincide for both initial and ordered
ensembles.

Figure 5 compares distributions over stem height
for the multiblock copolymer (c0 : c1 : c2 = 1 : 50 : 100)
of the composition р = 0.50 that were likewise derived

→ →

→ →

= ϕ ϕ + ϕ = ϕ ϕ + ϕ

= ϕ ϕ + ϕ = ϕ ϕ + ϕ

B A BA BA BB A B AB AB AA

A A AA AA AB B B BB BA BB

/ /

/ /

( ), ( )

( ), ( ),

P P

P P

−

=

= ∑
calc

 

2

1

( )
M

i i i

i

f a a a

−

=

= ∑
MC

 

2

1

( )
M

i i i

i

f a a a

         

Table 1.  Coefficients of lateral ordering  and  for the Bernoulli copolymer (c0 : c1 : c2 = 1 : 1 : 1) and multi�
block copolymer (c0 : c1 : c2 = 1 : 50 : 100) at various compositions p (N = 100, M = 10000, εAA = –1.0, εBB = –1.0, εAB = –0.1,
and χ = 0.9)

Experiment c0 : c1 : c2 p HA
(in/opt)

HB
(in/opt)

1 1 : 1 : 1 0.50 1.998/2.659 1.33 1.998/2.659 1.33

2 1 : 1 : 1 0.80 4.995/6.766 1.35 1.249/1.692 1.35

3 1 : 1 : 1 0.20 1.251/1.693 1.35 5.002/6.769 1.35

4 1 : 50 : 100 0.50 2.005/3.187 1.59 2.005/3.187 1.59

5 1 : 50 : 100 0.80 4.981/7.880 1.58 1.246/1.971 1.58

6 1 : 50 : 100 0.20 1.250/2.019 1.62 4.997/8.074 1.62

HA
opt

/HA
in

HB
opt

/HB
in

HA
opt

/HA
in

HB
opt

/HB
in

5 9
i

f(ai)

0.50

0.25

1
2

1 13

Fig. 3. Distribution f(ai) over height i of A stems for the
Bernoulli copolymer of the composition р = 0.50 from
(symbols) simulation data and (curves) fractions of con�
tacts ϕij in (1) initial and (2) ordered ensembles.
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through two methods. In the case of the initial ensem�
ble, similar results were obtained, whereas for the
ordered ensemble, the fractions of stems with heights
of one unit (single stems) were different.

A similar picture is observed for the statistical
multiblock copolymer of the composition р = 0.8: The
fractions of single A and B stems calculated through
different methods coincide for the initial ensemble
and are different for the ordered ensemble (Fig. 6).

During discussion of the causes of such a discrep�
ancy, above all, a question arises about whether the size
of the ensemble is sufficient for its characteristics (in
this case, the distribution over stem height) to be cal�
culated in probability terms. Table 2 lists the data on
fractions f MC(a1) and f calc(a1) of single A stems in rela�
tion to the number of chains М that are derived
through both methods.

Here, Δf(a1) = f MC(a1) – f calc(a1) and the discrep�
ancy is expressed as a percentage of the value esti�
mated from the amount of single stems a1. It is clear
that, for initial ensembles, this value is below 1%. For
the ordered ensemble of a fully random copolymer, the
discrepancy is of the same order of magnitude,
whereas for the ordered ensemble of the multiblock
copolymer, this parameter is ~8.5% and does not
decrease as the number of chains is increased by two
orders of magnitude from 1000 to 100000. Hence, the
cause of the discrepancy between the two methods
used to estimate the fraction of single stems is not
related to a small size of the ensemble.

The observed disturbance of the probabilistic, sto�
chastic character of the ensemble of the statistical
multiblock copolymer seems to be a substantial conse�
quence of ordering. Note that, in the case of Bernoulli
copolymers, ordering does not entail such conse�

quences. It may be suggested that the disturbance of
the stochastic behavior will manifest itself also in the
study of other properties of multiblock copolymers. In
this situation, adequate information about the ensem�
ble structure is provided only by the direct calculation
of structure parameters from the results of the Monte
Carlo simulation that should be used for comparison
with the experiment.

5 9 i

f(ai), f(bi)

0.8

0.4

1
2

1 13

1 '

2 '

Fig. 4. Distribution over height i of A stems f(ai) and B
stems f(bi) for the Bernoulli copolymer of the composition
p = 0.80 from (symbols) simulation data and (curves) frac�
tions of contacts ϕij in (1, 1') initial and (2, 2 ') ordered
ensembles: (1, 2) A stems and (1', 2 ') B stems.

5 9
i

f(ai)

0.50

0.25

1

2

1 13

Fig. 5. Distribution f(ai) over height i of A stems for the
multiblock copolymer (c0 : c1 : c2 = 1 : 50 : 100) of the com�
position р = 0.50 from (symbols) simulation data and
(curves) fractions of contacts ϕij in (1) initial and (2)
ordered ensembles.
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f(ai), f(bi)
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1
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1 '

2 '

Fig. 6. Distributions over heights i of A stems, f(ai), and of
B stems, f(bi), for the multiblock copolymer (c0 : c1 : c2 =
1 : 50 : 100) of the composition р = 0.80 from (symbols)
simulation data and (curves) fractions of contacts ϕij in
(1, 1 ') initial and (2, 2 ') ordered ensembles: (1, 2) A stems
and (1', 2 ') B stems.
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Self�Organization of Statistical Copolymers
in the 3D System

In the three�dimensional model, the initial statisti�
cal ensemble of the multiblock copolymer was formed
as a rectangular parallelepiped. Initially, M chains of
homopolymer A composed of N units of each chain
were put in the horizontal layer, and, in total, K such
layers were constructed. In most experiments, it was
assumed that N × M × K = 1000000. Then, as in the
2D case, reaction A→B was performed until the
desired value of p, the molar fraction of A units in
copolymer chain, averaged over the ensemble was
attained.

For ordering by energy, the ends of each chain were
connected and the parallelepiped was transformed
into the torus of the rectangular cross section. Each
ring chain of length N was rotated until attainment of
the position in which the absolute value of the energy
of its attraction to previously “stacked” chains was
maximum. The position of the first chain in the first
layer of the parallelepiped was initially fixed. The sec�
ond and subsequent chains of this layer were succes�

sively ordered, and, each time, the bond energy of only
two adjacent chains was taken into account. The first
chain of the second layer and the first chain of each
subsequent layer were ordered relative to the first chain
of the preceding layer. All other chains, which repre�
sented the absolute majority, were ordered relative to
two chains: the preceding chain of its layer and the
corresponding (having the same number) chain of the
preceding layer.

As was mentioned in [12], the rotation of rings dur�
ing ordering is equivalent to the sliding of periodic
chains. Hence, the initial ensemble in the form of the
torus is equivalent to the rectangular parallelepiped
with periodic boundary conditions along the direction
of stretched chains. This analogy makes it possible to
visually illustrate the self�organization process.
Figure 7 shows embedding of the second chain of the
second layer into the ordered structure being formed.
Because of periodicity, this structure is composed of
two identical chains of lengths N = 4, and the position
with the maximum (in modulus) energy of attraction
to two neighboring chains that have been already
stacked was found with the use of sliding: the first
chain of the second layer and the second chain of the
first layer. This process simulates the formation of
ordered structures through the successive adjustment
of copolymer chains, for example, via formation of
crystallites from melt under equilibrium conditions.

Let us consider the effects of various factors on the
efficiency of copolymer ordering in the three�dimen�
sional model system relative to those in the two�
dimensional model.

Figure 8 shows that, in the 3D system, the effi�
ciency of ordering monotonically increases with a
decrease in N for the fully random copolymer but
sharply decreases in the region of short chains (N =
20) for the multiblock copolymer, as in the 2D system
[13].

Note that, at all N values, the corresponding values
of Δε/εin obtained for the 3D system are smaller than
those for the 2D system. This phenomenon is due to
the fact that the position with the maximum (with

Table 2.  Effect of number of chains M on lateral ordering (N = 100, p = 0.50, εAA  = –1.0, εBB = –1.0, and εAB = –0.1)

Fraction of single A 
stems c0 : c1 : c2

Values of f for different М*

103 104 105

f MC(a1) 1 : 1 : 1 0.502/0.379 0.500/0.376 0.500/0.376

1 : 50 : 100 0.502/0.338 0.501/0.345 0.500/0.344

f calc(a1) 1 : 1 : 1 0.500/0.375 0.500/0.375 0.500/0.376

1 : 50 : 100 0.502/0.311 0.500/0.314 0.500/0.314

 × 100%
1 : 1 : 1 0.4/1.0 0.0/0.3 0/0

1 : 50 : 100 0.1/8.0 0.2/9.0 0.0/8.7

* Here, the first number refers to the initial ensemble and the second number refers to the ordered ensemble.

Δf a1( )

f
MC

a1( )
���������������

K N

M

Fig. 7. Algorithm of ordering of periodic chains in the 3D
model; N is the chain length, M is the number of chains in
a layer, and K is the number of layers. Arrows show the pos�
sible directions of motion of the incorporated chain.
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respect to the modulus) energy of attraction of the
tested chain to two neighboring chains (a “two�con�
tact” chain) in general does not coincide with posi�
tions corresponding to the maxima of attraction
between chain pairs separately. In addition, these fea�
tures become apparent when 2D and 3D systems are
compared.

Figure 9 illustrates the effect of the number of lay�
ers, K, on the efficiency of ordering in the 3D system
for Bernoulli and multiblock copolymers. It is seen
that, with a change in K from 1 to 2 (the transition
from 2D to 3D), ordering efficiency Δε/εin signifi�
cantly decreases (by 19 and 15.6% for random and
multiblock copolymers). With a further increase in K,
this effect decrease abruptly and, in the range 10 < К <
1000, the value of Δε/εin remains almost unchanged.
This phenomenon may be explained by the fact that,
as K increases (at the fixed value of K × М = 10000),
the fraction of “two�contact” chains first increases,
while in the range 10 < K < 1000, it remains practically
invariable. For the multiblock copolymer, the values of
Δε/εin are higher (by 24%) and their reduction is

smaller (by 27.5%) than those for the Bernoulli copol�
ymer.

Calculations showed that the dependence of Δε/εin

on copolymer composition passes through a maxi�
mum at p = 0.50. It is noteworthy that the efficiency of
ordering for the multiblock copolymer is always higher
than that for the Bernoulli copolymer. Note that simi�
lar dependences were described for the 2D system
[13], and the corresponding efficiencies of ordering
Δε/εin turn out to be higher than those for the 3D sys�
tem.

Table 3 lists the values of Δε/εin for different com�
binations of energy parameters εij at N = 100, M =
100, K = 100, and p = 0.50. In experiments 1 and 2,
the Flory–Huggins parameter was taken to be the
same (χ = 0.05); however, one combination of εij led to
the energy per contact εin = –0.825 (experiment 1),
while another combination led to εin = –0.125 (exper�
iment 2). Since, in experiments 1 and 2, the values of
ΔϕAВ and, in accordance with master relation of
ordering (1), the values of Δε = χΔϕAВ are the same,
the value of Δε/εin is much higher in experiment 2.
The same relations were observed for experiments 3

10 100
N

0.3

0.2

0.1
1
2

1000

4

3

Δε/εin

Fig. 8. Effect of chain length N on ordering efficiency
Δε/εin for (1, 2) the Bernoulli copolymer and (3, 4) the
multiblock copolymers for (1, 3) 2D and (2, 4) 3D systems:
εAA = –1.0, εBB = –1.0, εAB = –0.1; p = 0.50; χ = 0.9, and
(2D) M × N = 1000000 and (3D) M × N = 10000, K = 100.

1 100
K

0.3

0.2

1

2

1000

Δε/εin

10

Fig. 9. Effect of number of layers К on ordering efficiency
Δε/εin for (1) Bernoulli and (2) multiblock copolymers in
the 3D system: N = 100, εAA = –1.0, εBB = –1.0, εAB =
⎯0.1; p = 0.50, and M × K = 10 000. 

Table 3.  Effect of combination of energy parameters εij on the efficiency of ordering Δε/εin in the 3D system (N = 100, M = 100,
K = 100, and p = 0.50)

Experiment c0 : c1 : c2 εAA, εBB, εAB χ ΔϕAB εin Δε Δε/εin

1 1 : 50 : 100 –1.0; –0.7; –0.8 0.05 0.141 –0.825 0.0070 0.009

2 1 : 50 : 100 –0.2; –0.1; –0.1 0.05 0.141 –0.125 0.0070 0.056

3 1 : 50 : 100 –0.6; –0.5; –0.1 0.45 0.140 –0.325 0.0630 0.194

4 1 : 50 : 100 –1.0; –1.0; –0.55 0.45 0.141 –0.775 0.0633 0.082

5 1 : 1 : 1 –0.1; –0.5; –0.3 0 0.002 –0.300 0 0

6 1 : 50 : 100 –0.1; –0.5; –0.3 0 –0.001 –0.300 0 0
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and 4. However, as parameter χ is increased to 0.45,
the corresponding values of Δε and Δε/εin tend to
increase. Note that ordering in experiments 1–4
yielded practically the same values of ΔϕAВ, regardless
of the value of χ (at χ > 0). Experiments 5 and 6 were
performed with χ set exactly equal to zero. For the
fully random copolymer and multiblock copolymer,
ΔϕAВ ≠ 0, whereas, in accordance with master relation
(1), Δε = 0. This result implies that there are at least
two configurations of the examined ensemble that
have the same energy per contact, for which εopt = εin.
Similar relationships were fulfilled for the 2D system
[13].

It should be emphasized that master relation of
ordering (1) holds true for all simulation experiments
in the 3D system. Moreover, relations derived for the
2D system [13] for fractions of contacts ϕAA, ϕAB, and
ϕBB are valid.

Lateral Ordering in the 3D System

Lateral ordering in the 3D system can be described
in terms of mean heights of horizontal and vertical
stems that are calculated before and after self�organi�
zation of the ensemble by energy. Then, the results of
3D simulation are compared for Bernoulli and multi�
block copolymers and are correlated with the data
obtained for the 2D system.

Table 4 presents the results of simulation at M =
К = 100, when the number of chains in a layer is equal

to the number of layers. In this “symmetric” case, the
coefficients of horizontal and vertical lateral ordering
are the same. As in the case of the 2D system, the coef�
ficients of lateral ordering are independent of the
copolymer composition; for the statistical multiblock
copolymer, these parameters are higher than those for
the random copolymer. Moreover, for the 3D system,
they are smaller than those for the 2D system.

The effect of number of layers K on the ratio
between heights of horizontal and vertical stems is
exemplified by the ordered ensemble of the statistical
multiblock copolymer (Table 5). Naturally, at fixed
chain length N and number of chains M in a layer, the
difference between the mean heights of horizontal and
vertical stems decreases with an increase in number of
layers К; it is important that, beginning from К =
0.5М, this difference does not exceed 2% for the
ordered ensemble.

Table 6 summarizes the data on the effect of the
number of chains in the model system on the number
of single horizontal A stems. The discrepancy between

the values of  and  calculated directly from the
simulation data and with the use of the fractions of
interchain contacts, respectively, decreases with an
increase in number of chains М × K. However, even at
М × K = 106, for the ordered ensemble of the multi�
block copolymer, the discrepancy is 5%. This result
implies that the disturbance of the stochastic character
of the ensemble as a result of ordering, a phenomenon

a1h
MC a1h

calc

Table 4.  Coefficients of horizontal lateral ordering  and  for Bernoulli and multiblock copolymers of var�
ious compositions p (N = 100, M = 100, K = 100, εAA = –1.0, εBB = –1.0, εAB = –0.1, and χ = 0.9)

Experiment c0 :  c1 :  c2 p HAh
(in/opt)

HBh
(in/opt)

1 1 : 1 : 1 0.20 1.246/1.528 1.23 4.807/5.848 1.22

2 1 : 1 : 1 0.50 1.980/2.397 1.21 1.981/2.398 1.21

3 1 : 1 : 1 0.80 4.817/5.851 1.21 1.249/1.530 1.22

4 1 : 50 : 100 0.20 1.244/1.770 1.42 4.801/6.733 1.40

5 1 : 50 : 100 0.50 1.973/2.737 1.39 1.971/2.734 1.39

6 1 : 50 : 100 0.80 4.796/6.493 1.35 1.245/1.709 1.37

HAh
opt

/HAh
in

HBh
opt

/HBh
in

HAh
opt

/HAh
in

HAh
opt

/HAh
in

Table 5.  Effect of number of layers K on the ratios of the mean heights of horizontal and vertical stems, HАh/HАv and HBh/HBv,
in the ordered ensemble (N = 100, M = 100; c0 : c1 : c2 = 1 : 50 : 100, p = 0.5, εAA = –1.0, εBB = –1.0, and εAB = –0.1)

Experiment K HАh HАv HAh/HAv HBh HBv HBh/HBv

1 10 2.783 2.379 1.17 2.786 2.383 1.17

2 20 2.738 2.562 1.15 2.735 2.535 1.08

3 30 2.759 2.629 1.05 2.757 2.627 1.05

4 50 2.743 2.681 1.02 2.745 2.685 1.02

5 75 2.735 2.713 1.01 2.736 2.713 1.01

6 100 2.397 2.402 1.00 2.398 2.402 1.00



POLYMER SCIENCE Series A  Vol. 53  No. 10  2011

LATERAL ORDERING DURING SELF�ORGANIZATION 1001

that was previously described for the 2D system, is also
observed for the 3D system.

CONCLUSIONS

It has been shown that the self�organization of
stretched statistical copolymers by the energy of inter�
chain contacts is accompanied by lateral ordering. The
efficiency of such ordering is independent of chain
composition and, as a rule, increases as the length of
blocks increases and the length of chains decreases.
This relationship is, however, violated in the case of
short chains of multiblock copolymers. Lateral order�
ing is accompanied by formation of the system of
interchain nanoclusters that play the role of coopera�
tive physical crosslinks and hence can strongly affect
the mechanical properties of the polymer material.
This subject requires further investigation.

It has been shown that, during the self�organiza�
tion of multiblock copolymers, the probabilistic prop�
erties (stochastic behavior) of the ensemble are vio�
lated. In this situation, adequate information about
the ensemble structure may be provided only by the
Monte Carlo simulation of structure parameters.

The effect of various factors on the efficiency of
ordering for the 3D system is similar to that for the 2D
system. However, in all cases, the efficiency of order�
ing for the 3D system is lower than that for the 2D sys�
tem.

Thus, the simulation algorithms and programs
developed in this study, in combination with theoreti�
cal analysis, make it possible to examine in detail the
effect of various factors on the ordering of statistical
multiblock copolymers.

The above�described data should be taken into
account during the synthesis of multiblock copoly�
mers via polymer analogous reactions with accelera�

tion and for estimation of their self�organization abil�
ity, especially in the case of relatively short chains.
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Table 6.  Effect of number of chains М × K on the number of horizontal single A stems calculated directly from the simulation

data ( ) and with the use of fraction of interchain contacts ( ) for initial and ordered ensembles (3D system, N = 100,
p = 0.50, εAA = –1.0, εBB = –1.0, and εAB = –0.1)

Number of A stems c0 : c1 : c2

Value ash at different М × K

100 330 1000

1 : 1 : 1 1.279/0.867 1.370/0.927 1.253/0.847

1 : 50 : 100 1.266/0.705 1.369/0.749 1.253/0.681

1 : 1 : 1 1.225/0.824 1.353/0.913 1.248/0.839

1 : 50 : 100 1.225/0.635 1.353/0.701 1.248/0.647

 × 100%
1 : 1 : 1 4.2/5.0 1.2/1.5 0.4/0.9

1 : 50 : 100 3.2/9.9 1.2/6.4 0.4/5.0

* The first number refers to the initial ensemble, and the second number refers to the ordered ensemble.
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