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Abstract
The formation of rogue waves is studied in the framework of nonlinear
hyperbolic systems with an application to nonlinear shallow-water waves. It is
shown that the nonlinearity in the random Riemann (travelling) wave, which
manifests in the steeping of the face-front of the wave, does not lead to extreme
wave formation. At the same time, the strongly nonlinear Riemann wave cannot
be described by the Gaussian statistics for all components of the wave field. It is
shown that rogue waves can appear in nonlinear hyperbolic systems only in the
result of nonlinear wave–wave or/and wave–bottom interaction. Two special
cases of wave interaction with a vertical wall (interaction of two Riemann
waves propagating in opposite directions) and wave transformation in the basin
of variable depth are studied in detail. Open problems of the rogue wave
occurrence in nonlinear hyperbolic systems are discussed.

Mathematics Subject Classification: 35L70, 35L76, 35L86

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rogue waves in the ocean, whose height is two or more times greater than the typical wave
background, have become very popular and have been actively studied over the last 20 years;
see, for example, the following book and reviews (Kharif and Pelinovsky 2003, Dysthe et al
2008, Kharif et al 2009). The general study of rogue waves usually follows two directions.
The first one is the statistical description of the nonlinear wave field based on the Gaussian
distribution of the sea surface in the linear approximation (central limit theorem due to the
large number of independent spectral components). It should be mentioned that distribution of
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extremes in general is a hard mathematical task even for a Gaussian sea (Machado and Rychlik
2003, Baxevani and Rychlik 2006) with the exception of the narrow-band wind wave process,
when the extremes are distributed by the Rayleigh law (Kharif et al 2009). It is known that
nonlinearity leads to the correlation of the spectral components and non-Gaussianity of the
wave field (Dysthe et al 2008). The most famous examples of this effect are Stokes waves in
deep water and cnoidal waves and solitons in shallow water. This effect is manifested in the
development of sharp and pointed wave crests and long and gentle troughs. As a result, the
distribution of the wave crests differs from the distribution of wave troughs in the nonlinear
theory (Dysthe et al 2008).

Another approach is aimed at studying physical mechanisms of rogue wave generation in
the ocean (Kharif et al 2009). Modern theory considers several basic mechanisms. First of all,
these are the focusing effects caused by geometry of the wave front (the lens’s effect), wave
dispersion (dispersive focusing) and wave–bottom and wave–current interaction. Of course,
all these mechanisms are valid in linear theory as well, but nonlinearity makes its principal
contribution on the structure of wave field in singular points (focuses and caustics). A second
group of rogue wave generation mechanisms is connected to nonlinear wave interaction and
instability. For instance, the oblique soliton interaction in the framework of the Kadomtsev–
Petviashvilli (KP) equation may lead to the four-time amplification of the wave field (Soomere
2010, Yeh et al 2010). One of the most popular models demonstrating modulation or Benjamin–
Feir instability is the nonlinear Schrodinger equation, which is fully integrable in mathematical
physics (Zakharov and Ostrovsky 2009). This modulation instability leads to the appearance
of short-lived groups of high-amplitude waves (breathers), where amplitude may exceed the
amplitude of the wave background by up to three times (Peregrine 1983, Dysthe and Trulsen
1999, Akhmediev et al 2009b). In the framework of the nonlinear Schrodinger equation the
breather and wave packets interaction can lead to the generation of super rogue waves (Kharif
et al 2001, Onorato et al 2001, Akhmediev et al 2009a). The breather solution has recently
found to be numerically within fully nonlinear equations of water waves (Dyachenko and
Zakharov 2005, 2008, Slunyaev 2009).

The third group of mechanisms of the rogue wave generation in the ocean is related to
external factors: wind flow above the water surface and bottom friction; most of the results
here are obtained numerically (Kharif et al 2008, Voronovich et al 2008). Appropriate models
for the description of these effects are forced nonlinear evolution equations, for example, the
forced Korteweg–de Vries equation.

Four years ago the rogue wave phenomenon was discovered in nonlinear optical fibres
(Solli et al 2007) and then in other nonlinear systems: superfluid helium, laboratory and space
plasma, Bose–Einstein condensates and geophysical flows, see, for example, Ruban et al (2010)
and other papers in this special issue. The most popular model, used in all these problems, is
the nonlinear Schrodinger equation and its generalizations. The main physical mechanism in
this case is modulation instability. That is why modulation instability is considered as a major
factor of the rogue wave appearance in all branches of physics. In particular, for unidirectional
water wave propagation the modulation instability occurs for kh > 1.36, where k is the wave
number, h is the water depth.

Nevertheless, numerous eye-witness observations and coastal sea level records
demonstrate that rogue waves also occur in shallow water, where modulation instability
becomes weak. Therefore, we can expect that the main contribution to rogue wave formation in
shallow water is given by the first group of mechanisms: geometrical and dispersive focusing,
wave–bottom and wave–current interaction.

In nearshore water waves can be considered as long waves (their wavelength is much
greater than the water depth due to decreasing water depth near the coast) and, therefore, the
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Figure 1. Freak waves in Mavericks Beach (California, USA) on 14 February 2010 (© Scott
Anderson).

basic mathematical model may be a hyperbolic system of nonlinear shallow-water equations
or its weakly dispersive generalizations (KdV, KP and Bousinesq equations). This paper aims
to describe the rogue wave phenomenon in the 1 + 1 hyperbolic system for nonlinear water
waves.

The paper is organized as follows. Manifestations of coastal rogue waves are presented in
section 2. The 1 + 1 hyperbolic system and its Riemann invariants for nonlinear water waves
in inclined channels of various cross-sections are discussed in section 3. The statistics of
Riemann waves propagating in the channel of constant cross-section is analysed in section 4.
The interaction of two Riemann waves propagating in opposite directions and wave–wall
interaction is studied in section 5. Nonlinear wave shoaling and runup in the inclined channel
is considered in section 6. The main results are summarized in the conclusion.

2. Rogue waves in the coastal zone: observations and records

Rogue events occurring onshore usually result in a short-time sudden flooding of the coast
(figure 1) or strong impact upon a steep bank or coastal structure (figure 2). Descriptions
of such accidents are given in Dean and Dalrymple (2002) and Kharif et al (2009). They
frequently lead to damage of coastal structures and loss of lives. Chien et al (2002) reports
about 140 rogue wave events in the coastal zone of Taiwan in the past 50 years (1949–1999),
because of which more than 496 people lost their lives and more than 35 crafts were capsized.
Didenkulova et al (2006) collected and analysed information about rogue wave accidents,
reported by the mass media in 2005. Nine cases were selected as true rogue wave events, from
which six occurred nearshore. Two of the very recent events occurred on 14 February 2010
in Mavericks Beach in California, USA, when two unexpected 6 m high waves washed off 13
people standing on the parapet at the coast (figure 1) and on 7 March 2010 in Kristiansund,
Norway, when two 9-year old girls were killed by a rogue wave. A similar phenomenon was
noticed in Cassis, France, on 26 June 2010 when suddenly four unexpectedly high waves
attacked the coast and washed away a lot of people’s belongings.

A peculiar rogue wave was observed on Kamchatka coast, Russia, on 11 June 2006
(figure 3). The 4 m wave appeared suddenly, propagated about 50 m and collapsed during
tens of seconds. A similar wave was seen at the Sakhalin coast of Russia on 2 August 2010.
Observations of such events become more frequent, and they broaden the area of possible freak
wave occurrence.

Rogue waves in the coastal zone have a strongly nonlinear character due to decreasing
water depth, but manifestations of this nonlinearity can be different. Figure 1 demonstrates



R4 Invited Article

Figure 2. Wave impact on the steep rock bank on Sotra, Norway on 26 December 2007.

Figure 3. The wave near Kamchatka coast, Russia, on 11 June 2006 (© Mstislav Sokolovsky).
Two different viewing angles of the same wave.

the turbulent structure of the climbing beach flow. Figure 2 displays a vertical wave splash on
a rock and figure 3 shows the 2D wave of an asymmetric shape.

The asymmetric shape of the wave by means of face-back slope asymmetry has often been
observed in the recorded time-series as well. Figures 4 and 5 show the rogue waves of both
positive and negative polarity, recorded in the coastal zone of the Baltic Sea, at the depth 2.7 m
(Didenkulova and Anderson 2010, Didenkulova 2011). Both waves have a clearly identified
asymmetric front and significantly exceed all other neighbouring waves.

Examples of rogue waves nearshore demonstrate the important role of nonlinearity in their
formation and nonlinear theory is required for their description.
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Figure 4. Rogue wave of a positive shape on 9 July 2008 in the Baltic Sea, depth 2.7 m.
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Figure 5. Rogue wave of a negative shape on 19 July 2008 in the Baltic Sea, depth 2.7 m.

Figure 6. Cross-section and longitudinal projection of the bay.

3. Nonlinear hyperbolic equations for water waves in channels

As a characteristic example of rogue waves in nonlinear hyperbolic equations, let us consider
rogue wave phenomenon in water channels of arbitrary longitudinal and transversal projections
(figure 6). In this case the basic equations describing the dynamics of long nonlinear waves
are nonlinear shallow-water equations, which represent the mass (continuity) and momentum
conservation along the channel axis

∂S

∂t
+

∂

∂x
(Su) = 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂H

∂x
= g

dh

dx
, (1)

where S(x, t) is the water-filled cross-section area of the channel, H(x, t) = h(x) + η(x, t) is
the total depth along the main channel axis (positive-definite function), h(x) is an unperturbed
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water depth along the channel axis, η(x, t) is the water surface displacement and u(x, t) is the
flow velocity averaged over the cross-section. System (1) can be closed taking into account
the specific shape of the channel cross-section. If we assume that the channel topography is
described by

z(x, y) = −h(x) + f (y), (2)

where f is a symmetric function f (y) = f (−y) describing the cross-section geometry, which
has its minimum at the channel axis and increases to both sides, and does not depend on the
horizontal coordinate x, then

S = S(H), (3)

and system (1) becomes closed.
Equations (1) together with equation (3) represent the nonlinear hyperbolic system with

an external forcing (dh/dx). The boundary conditions for this system depend on h(x). If h(x)

is a gradually increasing function, the kinematic boundary condition is given at the unknown
moving boundary:

H(x, t) = 0. (4)

This situation is realized in narrow bays and fjords, where the moving boundary is represented
by the moving shoreline.

Another boundary condition should describe the incident wave entering the channel (it
will be discussed later). In the context of rogue wave phenomenon the incident wave represents
the random function with known statistics. Initial conditions can be assumed to be zero.

Thus, in general, we should solve the nonlinear hyperbolic system in the domain with one
unknown moving boundary (the moving shoreline) and random input defined at the opposite
side of the domain (the open sea). In sections 4, 5 and 6 we consider three special cases that
allow rigorous analytical analysis of the random nonlinear wave field.

4. Riemann waves and their statistics

It is natural to start with the case of nonlinear wave propagation in the basin with h(x) = const.
Due to the hyperbolic character of the system the travelling wave solution of equations (1) has
a form of the Riemann wave (Stoker 1957, Engelbrecht et al 1988, Zahibo et al 2008). In this
case we should assume u = u(H) or u = u(η) and the required compatibility condition for
equations leads to the following relation between the velocity u and the water level η:

u(η) = ±
∫ h+η

h

√
g

S

dS

dζ
dζ , (5)

where the sign +/− corresponds to the wave propagating in right/left direction along the
x-axis. Let us consider the wave propagating to the right here. Substituting equation (5) into
any equation of system (1), we have one equation for the water displacement

∂η

∂t
+ V (h, η)

∂η

∂x
= 0, (6)

where the nonlinear speed of the wave propagation is

V (h, η) =
√

gS

dS/dζ |ζ=h+η

+
∫ h+η

h

√
g

S

dS

dζ
dζ . (7)
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The first-order equation (6) can be solved analytically, and its solution satisfying the boundary
condition η(x0, t) = η0(t) represents the simple (Riemann) wave

η(x, t) = η0

(
t − x − x0

V (h, η)

)
. (8)

The shape of the boundary function η0(t) can be arbitrary in the space L2. Taking into account
physical applications of the obtained solutions we may assume that the incident wave has a
smooth shape and can be presented by the convergent Fourier series with the random phase
of spectral components. This approach is very popular in the modelling of random wave
phenomena.

The nonlinear deformation of the Riemann wave is manifested in its front, which becomes
steeper with the distance, and finally transforms into a shock wave (bore). This can also be
confirmed by the direct calculation of the face-slope wave steepness. The steepness of the
wave profile in time-series can be found from equation (8):

∂η

∂t
= dη0/dt

1 + (x − x0)(dV −1/dη)(dη0/dt)
, (9)

and it tends to infinity at the ‘breaking length’

L = 1

max(−(dV −1/dη)(dη0/dt))
. (10)

For demonstration of the effect of wave deformation we consider the ‘power’ approximation
of the channel walls

h(y) = b|y/y0|m, (11)

where coefficients b and m are positive and y0 is the effective width of the channel. In this
case the nonlinear and linear speeds of wave propagation in the channel are

V (h, η) = 2

√
m + 1

m
(
√

g(h + η) −
√

gh) +

√
m

1 + m

√
g(h + η), (12)

c = V (h, η = 0) =
√

m

1 + m
gh. (13)

In the limit of the rectangular channel (m → ∞) c = √
gh. The nonlinearity leads to

the increase in speed for wave elevations (crests) and decrease in speed for wave depressions
(troughs). As a result, the wave front becomes steeper (figure 7).

It is important to mention that the nonlinear speed of wave deformation can be negative
for large-amplitude wave troughs and the critical depth, when V = 0, is

Hcr = 4

(
m + 1

3m + 2

)2

h0. (14)

In the case of rectangular basin the critical depth is Hcr = 4h0/9 (Zahibo et al 2008). When
m decreases, the critical depth tends to h0 (figure 8). Surprisingly, large-amplitude wave
troughs move to the left and, therefore, cannot be in the domain x > x0, where we solve the
boundary problem. At the same time we assume that the nonlinear wave propagates to the
right. This paradox can be resolved by the analysis of the breaking length (10) that shows that
large-amplitude waves break in the vicinity of the x = x0. It means that the correct solution
of the boundary problem for hyperbolic equations (1) can be given only for initially smooth
disturbances with an additional condition to ‘negative’ wave amplitudes: H > −Hcr.

The velocity field in the Riemann wave is described by equation (5). In the case of the
channel with the ‘power’ cross-section it is

u(η) = 2

√
m + 1

m
(
√

g(h + η) −
√

gh). (15)
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Figure 7. Nonlinear transformation of a sine wave with distance x = 0 (dotted), L/2 (dashed) and
L (solid line).
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Figure 8. The critical depth (solid line), Hcr/h0 = 4/9 (dashed line).

It follows from equation (15) that the velocity is positive under the wave crest and negative
under the trough. In fact, the appropriate nonlinear parameter here is the Mach number that
is the ratio of the flow velocity (15) and the wave speed (12). It varies from zero in the linear
limit to infinity (considering absolute value of the ratio) demonstrating a strongly nonlinear
character of Riemann waves in water channels.

Description of the process of the wave breaking even for shallow-water waves is a hard
mathematical task. As it is known (Stoker 1957) a large-amplitude long wave can develop into
a typical shock wave (bore), while a weak-amplitude long wave may transform into an undular
bore or a set of solitons. The mathematical description of the water wave breaking process is
an open problem (Pomeau et al 2008), which is not discussed here.

The approach described above is usually used for deterministic incident waves, while it
can also be applied to the random wave field. Such processes have actively been studied in
nonlinear acoustics for narrow-band signals (Rudenko and Soluyan 1977). In this case the
statistical analysis of various characteristics of the wave field (the breaking length, intensities
of generated super- and sub-harmonics, etc) can be performed. Some rigorous analytical
results have been obtained for random Riemann waves (Gurbatov et al 1991). In particular,
if the incident wave field represents the stationary random process, its probability distribution
does not vary with distance (of course, if the wave breaking can be neglected). Physically,
it is understandable, since each local point of the wave profile moves with its own speed and
does not change in amplitude, hence the number of local points with close amplitudes in the
Riemann wave conserves.
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Figure 9. The geometry of the problem.

Very often the Gaussian distribution is used for description of the random wave field in
nonlinear acoustics. For the weakly nonlinear acoustical signals both water displacement and
particle velocity can represent Gaussian processes, while for strongly nonlinear Riemann waves
due to equation (15) both wave characteristics cannot be described by the same distribution.
In this case if the water displacement is the Gaussian process then the particle velocity cannot
be described by the Gaussian process and vice versa. Their probability density functions W

are related by

W(u) = W(η)|dη/du|. (16)

Going back to the rogue wave phenomenon we should conclude that the probability of
the appearance of high-amplitude picks in the Riemann wave field does not change with
the distance, and nonlinear deformation of shallow-water waves does not influence on the
statistics of extreme waves. Of course, wave breaking may change the probability distribution
significantly, but it is outside of the Riemann wave approximation.

5. Riemann wave interaction with the wall

The nonlinear interaction of Riemann waves cardinally changes the statistics of the wave field in
hyperbolic systems. Let us consider the interaction of two waves of the same shape propagating
in opposite directions in the channel of constant depth along the longitudinal direction. In the
water wave application this situation usually occurs, when the wave approaches the steep coast
(cliff) or the seawall, which is used for protection of population and coastal structures against
high waves (figure 9).

In this case, from the mathematical point of view system (1) with h(x) = const should be
solved with the following boundary condition at the wall x = 0:

u(x = 0, t) = 0, (17)

which indicates that there is no water penetration through the wall. Taking into account the
hyperbolic type of system (1), it is convenient to re-determine Riemann invariants

I± = u ±
∫ H

h

√
g

S

dS

dζ
dζ , (18)

assuming that invariants are zero for the calm sea state, when there is no wave motion, and to
rewrite equations (1) in the form

∂I±
∂t

+ V±
∂I±
∂x

= 0, (19)



R10 Invited Article

Figure 10. Characteristics of the interaction between the incident and reflected waves.

where the characteristic speeds are

V± = u ±
√

gS

dS/dH
. (20)

It follows from equation (19) that I± do not change along characteristics V±. Let us study the
wave–wall interaction for the case when an incident wave approaching the wall from x < 0
has a finite duration first (figure 10). As it is known and also follows from equation (19) the
characteristics V± represent straight parallel lines in the linear theory framework (dashed lines
in figure 10). In the nonlinear theory framework the characteristic speeds V± depend on the
wave field, therefore, they can be presented as straight non-parallel lines only outside of the
near-wall interaction domain (figure 10). Inside the interaction domain characteristics bend,
as shown in figure 10. Since Riemann invariants do not change along the characteristics, the
nonlinear interaction reduces to the additional phase shift between waves. For the incident
wave defined at any location from the wall I− = 0 and I+ is determined by

I+(ηin) = 2
∫ h+ηin

h

√
g

S

dS

dζ
dζ . (21)

At the wall due to the boundary condition (17) the same Riemann invariant is

I+(ηw) =
∫ h+ηw

h

√
g

S

dS

dζ
dζ . (22)

Equating equations (21) and (22) we can find the integral relation between the water
displacement at the wall ηw and the incident wave ηin:∫ h+ηw

h

√
g

S

dS

dζ
dζ = 2

∫ h+ηin

h

√
g

S

dS

dζ
dζ . (23)

As a result, sea level oscillations at the wall can be expressed through the water displacement
in the incident wave. Unfortunately, this method does not predict the time shift τ between
two functions, which is generally the unknown functional of the wave field in the interaction
zone. That is why it is hard to use equation (23) for calculations of time-series of near-wall
sea level oscillations even for known characteristics of the incident wave. Meanwhile, there is
one practical consequence that follows from equation (23) if we consider the extreme values
of the wave field far offshore and at the wall:∫ Hw

h

√
g

S

dS

dζ
dζ = 2

∫ Hin

h

√
g

S

dS

dζ
dζ , (24)
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where Hin and Hw are extreme values of the total depth (depth of water flow) far offshore and at
the wall, respectively, which are usually used for the estimate of the wave impact on the wall.

Let us consider again the channel of the ‘power’ cross-section (11). In this case the
integrals in equation (24) can be found analytically:

Hw

h
= 1 + 4

[
Hin

h
−

√
Hin

h

]
. (25)

Surprisingly, equation (25) does not depend on the shape of the channel cross-section and is
the same for ‘power’ and rectangular type of the channel (figure 11). This expression for the
rectangular channel was found in Pelinovsky (1995) and Pelinovsky et al (2008).

Since an incident and reflected waves can always be separated in space, this approach can
also be applied to the irregular wave field. In this case, it can be used to analyse distribution
functions of the wave field and its spectrum. Unfortunately, as it has been pointed out above,
it cannot predict the time shift between the incident field and water oscillations at the wall,
and, therefore, the function ηw(t) is not fully determined within the nonlinear shallow-water
theory framework. Hence, the water level distribution at the wall cannot be found even if
the statistics of the incident wave is known. At the same time, the obtained relation between
the extremes of the incident water flow and the flow depth at the wall equation (25) does not
include the time shift. As a result using equation (25) we can find the distribution of the
extreme water oscillations at the wall by knowing the distribution function of the extremes of
the incident water flow field. In this case the probability density function can be expressed
similar to equation (16):

WHw(Hw) = WHin(Hin)

∣∣∣∣dHin

dHw

∣∣∣∣
∣∣∣∣
Hin(Hw)

. (26)

The exceedance probability of water extremes can be found by integrating the probability
density function equation (26). If we assume that the distribution of the incident wave
amplitudes (extreme values of the total depth) are described by the Rayleigh distribution,
which is usually used in statistical theory of linear narrow-band wind waves (Kharif et al
2009):

P(Hin) = exp

(
−2(Hin − h)2

A2
s

)
, (27)

where As is the so-called significant wave amplitude, which is determined as 2σ for the
Gaussian process, whereσ is a standard deviation, the exceedance probability of water extremes
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different values of the parameter ε = 0.2 (dashed), 0.4 (dotted) and 0.6 (dashed–dotted line); the
solid line corresponds to the Rayleigh distribution.

at the wall can be calculated and is presented in figure 12 for different values of the parameter
ε = Hs/h, where Hs = 2As (the significant wave height at the wall is twice as large as far
offshore in the linear theory).

It can be seen that nonlinearity increases the probability of the appearance of high water at
the wall, and, therefore, rogue waves appear more frequently at the coast than in the open sea.
It may explain why the accidents caused by unusual and short-lived overtopping of breakwaters
described in section 2 occur so often. Another physical effect, which has a major importance
for large-amplitude waves, is the wave breaking. Taking it into account in the study of freak
wave formation at the wall and coastal structures remains an open problem.

6. Runup of random waves in inclined channels

If the depth along channel axes is varied, the rigorous analytical solution of the nonlinear
system (1) is known only for the case when the function h(x) is linear, and only for specific
cross-sections of the channel. In this case, the linearly inclined bottom profile along the channel
allows wave propagation and runup to the dry beach. This mathematical problem is extremely
important in the context of coastal engineering since it allows the calculation of wave heights
on a beach, the inundation level, and waving impact on coasts and coastal constructions.

If we fix h(x) = αx, the ‘forced’ term in equations (1) can be removed by the
transformation

u(x, t) = gαt + v(x, t), x ′ = x − gαt2/2, (28)

and the new system takes the following form
∂S

∂t
+

∂

∂x ′ (Sv) = 0,
∂v

∂t
+ v

∂v

∂x ′ + g
∂H

∂x ′ = 0. (29)

As it has been demonstrated in the previous section, equations (29) can be rewritten through
Riemann invariants (18):

∂I±
∂t

+ V±
∂I±
∂x ′ = 0, V± = v ±

√
gS

dS/dH
. (30)

An effective approach of solving nonlinear equations is a hodograph transformation, which
suggests using x ′ and t as functions and I+ and I− as arguments. If we consider again the
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inclined channel with the ‘power’ cross-section, the solution of the nonlinear system (1) can
be expressed in terms of the initial physical variables (see Zahibo et al (2006) for details):

∂2�

∂λ2
− ∂2�

∂σ 2
− (m + 2)

mσ

∂�

∂σ
= 0, (31)

η = 1

2g

[
m

(m + 1)

∂�

∂λ
− u2

]
, H = m

(m + 1)

σ 2

4g
, u = 1

σ

∂�

∂σ
, (32)

x = η

α
− mσ 2

4gα(m + 1)
, t = λ − u

gα
. (33)

As a result, the initial system of nonlinear shallow-water equations (1) has been reduced to the
linear wave equation (31) and all physical variables can be found from �. The main advantage
of this form is that the moving (unknown) boundary (the shoreline) corresponds to the fixed
value of σ = 0 (the total depth H = 0 from equation (32)) and, therefore, equation (31) is
solved in the half-space 0 < σ < ∞ with the fixed boundary. This transformation has first
been suggested for waves climbing the plane beach (Carrier and Greenspan 1958), and then has
been generalized for the inclined channels (Zahibo et al 2006, Choi et al 2008, Didenkulova
and Pelinovsky 2009).

Since the channel has a 2D geometry, we need to specify the location of the moving
boundary (the shoreline) across the channel axis. From equation (11) it follows that

y(x, t) = H 1/m(x, t)

b1/m
y0 ∼ σ 2/m. (34)

The wave equation (31) defined on the semi-axis is well studied in mathematical physics. In
particular, for a plane beach or rectangular channel it reduces to the radial cylindrical wave
equation and for the channel of a parabolic shape (m = 2)—to the radial spherical wave
equation. Both equations have been used to study wave runup on a beach including the runup
of the Korteweg–de Vries (KdV) soliton (Synolakis 1987, Choi et al 2008). At the same time
the initial conditions for equation (31) are not so trivial. General initial conditions for the
physical wave field (the water displacement and flow velocity) transform to the conditions on
the function � and ∂�/∂λ along the line λ(σ), which can be complicated. Only in the case
when the initial velocity is zero (a so-called ‘piston’ model for tsunami wave generation), are
the initial conditions for equation (31) determined in the point λ = 0 and correspond to the
‘standard’ initial conditions for wave equation. An attempt to study the runup problem with
non-zero initial condition for the flow velocity was made by Kânoğlu and Synolakis (2006)
and still remains an open problem.

Boundary conditions for equation (31) naturally correspond to the boundedness of the
function � and its derivative in the point of the moving shoreline σ = 0, and the Sommerfeld
radiation condition at infinity.

In the following we do not discuss the specific features of solving the initial or boundary
problem for equation (31), but focus on the nonlinear dynamics of the moving shoreline
(σ = 0) only. From the last equation in (33) we get the implicit expression for the velocity
of the moving shoreline u = u(λ, σ = 0) = u(gαt + u), which can be rewritten in a more
elegant form

u(t) = U

(
t +

u

αg

)
, (35)

where U has a physical sense of the shoreline velocity computed in the linear approximation.
If we consider the incident wave given far from the shoreline where all nonlinear terms can
be neglected, this function U can be easily found from the linear shallow-water equation and
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expressed in terms of the parameters of the incident wave. In a similar way we can express
the vertical displacement of the moving shoreline along the main channel axis

r(t) = η(λ, σ = 0) = R

(
t +

u

αg

)
− u2

2g
, (36)

through the vertical water displacement R(t) at the unperturbed shoreline (x = 0) found in
the linear approximation.

Both pairs of variables, ‘linear’ (R and U) and ‘nonlinear’ (r and u), are also connected to
each other since the velocity (u or U) represents the time derivative of the water displacement
(r or R), divided by the bottom slope (it is clear from the geometry). So, a simplified way
to study the nonlinear dynamics of the moving shoreline is to solve the linear shallow-water
equations first and find the vertical water displacement in the point x = 0 and then to find
‘real’ (nonlinear) characteristics of the moving shoreline using equations (35) and (36).

The described approach is general and can be applied to regular and irregular initial
conditions. With an application to the rogue wave phenomenon we assume that the incident
wave field (given far from the shoreline where the waves are linear) represents the Gaussian
stationary random process. In this case the functions R(t) and U(t) are also the random
functions with Gaussian statistics, and do not correlate with each other. The nonlinearity in
equations (35) and (36) is manifested by the transformation of time and in the additional term in
equation (36). The velocity of the moving shoreline represents the ‘frozen’ Riemann wave (8),
and can be described by the same Gaussian statistics. The function r(t) is more complicated.
On the one hand, it is an integral of u(t), which usually represents a non-stationary process with
the Brownian diffusion. On the other hand, it is described by equation (36), which contains
the nonlinear quadratic term u2, and should lead to the non-Gaussianity of the process. It is
shown in Didenkulova et al (2011) that the function r(t) represents the stationary non-Gaussian
process. Finding the distribution function of the vertical shoreline displacement described by
equation (36) still remains an open problem, but its statistical moments can be found explicitly.

Here we calculate statistical moments of the displacement of the moving shoreline,
assuming the process to be ergodic and using time averaging. For example, the first moment is

〈r〉 = 1

T

∫ T

0
R

(
t +

u

gα

)
dt − 〈u2〉

2g
, (37)

where T is the time of the record (the length of the realization). It is also convenient to introduce
a new variable

τ = t +
u(t)

αg
. (38)

In this case

dτ = dt

[
1 +

1

αg

du

dt

]
, (39)

and du/dt in equation (39) can be found exactly from equation (35)

du

dt
= dU/dτ

1 − (gα)−1dU/dτ
. (40)

Substituting equation (40) into equation (39) gives us the final expression for dt

dt = ⌊
1 − (gα)−1dU/dτ

⌋
dτ, (41)

and integral (37) becomes explicit

〈r〉 = 1

T

∫ T

0
R(τ) dτ − 1

gαT

∫ T

0
R(τ)

dU

dτ
dτ − 〈U 2〉

2g
. (42)
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Figure 13. Probability density function of the displacement of the moving shoreline for B = 0
(solid line), 0.3 (dashed line) and 0.6 (dashed–dotted line).

Since R(t) is defined with respect to the mean sea level and the mean sea level is constant
in linear theory, we can assume it to be zero (the first term in equation (42)), hence the final
expression for the mean displacement of the moving shoreline is

〈r〉 = 〈U 2〉
2g

. (43)

It follows from equation (43) that the nonlinearity leads to an increase in the mean sea level at
the coast (set-up) for any distribution of the wave field.

Omitting mathematical manipulations and again using assumptions of the Gaussian
stationary process for the incident wave field we can write expressions for the standard deviation
σr , skewness s and kurtosis k of the displacement of the moving shoreline, which can be
presented in terms of the standard deviation in the linear theory σR:

σ 2
r = 〈r2〉 − 〈r〉2 = σ 2

R − 2〈r〉2, (44)

s = 〈(r − 〈r〉)3〉
σ 3

r

= 8〈r〉3

(σ 2
R − 2〈r〉2)3/2

, (45)

k = 〈(r − 〈r〉)4〉
σ 4

r

− 3 = 〈r〉2(4σ 2
R − 23〈r〉2)

(σ 2
R − 2〈r〉2)2

. (46)

Equations (45) and (46) demonstrate that the vertical displacement of the moving shoreline
differs from the Gaussian distribution. If this deviation is weak (weak-amplitude waves), its
probability density function can be found by a perturbation technique based on the Gram-
Charlier series of type A (Kendall and Stuart 1969), where the coefficients are the statistical
moments. The probability density function of the runup of the monochromatic wave with the
frequency ω is shown in figure 13 for several values of the parameter B:

B = ω2Rs

gα2
, (47)

where Rs is the significant wave height on the beach determined as 2σR . It is evident from
figure 13 that the probability density function becomes asymmetric and shifts towards large
values of shoreline displacement with an increase in parameter B.

Thus, in both cases of long-wave runup on a vertical wall and on an inclined beach the
nonlinearity increases the probability of rogue wave appearance.
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It should be noted again that the process of wave breaking may influence the statistics of
the nonlinear wave field. The breaking condition can be found from equation (40):

Br = max

[
1

αg

dU

dt

]
= 1, (48)

and it is fully determined by the statistical properties of the Gaussian process U(t).
Nevertheless, the contribution of the breaking components on the runup characteristics rermains
an open problem.

7. Conclusion

The described examples demonstrate that rogue waves can appear in 1D nonlinear hyperbolic
systems. This phenomenon is studied here for random shallow-water waves. It is shown that
although the nonlinearity in the Riemann wave significantly influences the shape of the wave
and leads to the steeping of its face-front, it cannot lead to the extreme wave formation. At the
same time the strongly nonlinear Riemann wave cannot be described by the Gaussian statistics
(at least, for all components of the wave field). Waves of abnormal height (rogue waves)
in nonlinear hyperbolic systems can appear only as a result of nonlinear wave–wave or/and
wave–bottom interaction and here we analyse in detail two examples of such interaction:
(i) interaction of two Riemann waves moving in opposite directions and (ii) random wave
transformation in the basin of variable depth. Although the number of examples, when the
probability of rogue wave appearance can be found analytically, is limited, it is obvious that
rogue waves exist in nonlinear hyperbolic systems with constant (homogeneous media) and
with variable (inhomogeneous media) coefficients.

In 2D and 3D cases the formation of rogue waves becomes even more evident because of
the additional space coordinate that allows geometrical focusing of the wave (for example, in
KP equation). Nevertheless, analysis of the statistical properties of the nonlinear wave field
focusing on rogue wave appearance in such systems has not yet been done and represents an
open problem in physics.

Wave breaking (gradient catastrophe), which inevitably occurs in nonlinear hyperbolic
systems, should also influence the statistics of rogue wave formation. It is reasonable to
assume that wave breaking will reduce the probability of rogue wave formation, since it limits
the height of the waves. This influence still stays an open problem, which requires special
analysis.

And finally, we should say a few words about dispersive generalizations of nonlinear
hyperbolic systems. It has been shown numerically that rogue waves can appear in the random
wave field in the framework of KdV and modified Korteweg–de Vries (mKdV) equations
(Pelinovsky et al 2000, Grimshaw et al 2005, Pelinovsky and Sergeeva 2006). Similar effects
occur in the framework of KP equation, which is a 2D generalization of KdV equation (Soomere
2010, Yeh et al 2010). In all these cases the wave field is considered to be unidirectional or
almost unidirectional. At the present moment there are no any studies of rogue wave formation
in 1D and 2D nonlinear equations of the Boussinesq type, which also represent an open problem.

Acknowledgments

This research is supported partially by grants from RFBR (11-05-00216), State Contract
(02.740.11.0732), Russian President Program (6734.2010.5), and 7th framework programme
‘Extreme Seas’.



Invited Article R17

References

Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009a Rogue waves and rational solutions of the nonlinear
Schrodinger equation Phys. Rev. E 80 026601

Akhmediev N, Ankiewicz A and Taki M 2009b Waves that appear from nowhere and disappear without a trace Phys.
Lett. A 373 675–8

Baxevani A and Rychlik I 2006 Maxima for Gaussian seas Ocean Eng. 33 895–911
Carrier G F and Greenspan H P 1958 Water waves of finite amplitude on a sloping beach J. Fluid Mech. 4 97–109
Chien H, Kao C-C and Chuang L Z H 2002 On the characteristics of observed coastal freak waves Coast. Eng. J.

44 301–19
Choi B H, Pelinovsky E, Kim D C, Didenkulova I and Woo S B 2008 Two- and three-dimensional computation of

solitary wave runup on non-plane beach Nonlinear Process. Geophys. 15 489–502
Dean R G and Dalrymple R A 2002 Coastal Processes with Engineering Applications (Cambridge: Cambridge

University Press)
Didenkulova I 2011 Shapes of freak waves in the coastal zone of the Baltic Sea (Tallinn Bay) Boreal Environ. Res. 16
Didenkulova I and Anderson C 2010 Freak waves of different types in the coastal zone of the Baltic Sea Natural

Hazards Earth Syst. Sci. 10 2021–9
Didenkulova I and Pelinovsky E 2009 Non-dispersive traveling waves in inclined shallow water channels Phys. Lett. A

373 3883–7
Didenkulova I, Pelinovsky E and Sergeeva A 2011 Statistical characteristics of long waves nearshore Coast. Eng.

58 94–102
Didenkulova I I, Slunyaev A V, Pelinovsky E N and Kharif Ch 2006 Freak Waves in 2005 Natural Hazards Earth

Syst. Sci. 6 1007–15
Dyachenko A I and Zakharov V E 2005 Modulational instability of Stokes wave → freak wave JETP Lett.

81 255–9
Dyachenko A I and Zakharov V E 2008 On the formation of freak waves on the surface of deep water JETP Lett.

88 307–11
Dysthe K, Krogstad H E and Muller P 2008 Oceanic rogue waves Annu. Rev. Fluid Mech. 40 287–310
Dysthe K and Trulsen K 1999 Note on breather type solutions of the NLS as a model for freak waves Phys. Scr.

T82 48–52
Engelbrecht J K, Fridman V E and Pelinovsky E N 1988 Nonlinear Evolution Equations (Pitman Research Notes in

Mathematics Series No 180) (London: Longman)
Grimshaw R, Pelinovsky E, Talipova T, Ruderman M and Erdelyi R 2005 Short-lived large-amplitude pulses in

the nonlinear long-wave model described by the modified Korteweg–de Vries equation Stud. Appl. Math.
114 189–210

Gurbatov S, Malakhov A and Saichev A 1991 Nonlinear Random Waves and Turbulence in Nondispersive Media:
Waves, Rays and Particles (Manchester: Manchester University Press)
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