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Abstract 

An automated real-time classification of human functional states is an important problem for stress resistance evaluation, 

supervision over operators of critical infrastructure, automated teaching and phobia therapy. In this paper we propose a novel 

method for binary classification of functional states based on the integrated analysis of (peripheral) physiological parameters: 

galvanic skin response, respiratory rate, electrocardiographic data, body temperature, electromyographic data, 

photoplethysmographic data, muscle contraction. The method is based on Gradient Boosted Trees algorithm. A testing of the 

method showed that in case of stress vs. calm wakefulness differentiation a reliability of the method exceeds 80%.  
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1. Introduction 

An automated classification of a human functional state is an important problem for stress resistance 

evaluation, supervision over operators of critical infrastructure, functional and genomic-functional studies of 

sportsmen, medical diagnostics, automated teaching and phobia therapy [1]-[3]. The most important functional 

states for these applications are stress and state of calm wakefulness (also referred to as a normal functional state). 

A method for the automated real-time differentiation of stress and calm wakefulness state based on 

electroencephalographic (EEG) data was introduced in [4]. This method utilized CDF 9/7 wavelet transform [5] 

and included an individual tuning stage that essentially increased the classification reliability [6]. 

In this paper we propose a novel method for an automated real-time binary classification of the same 

functional states based on the integrated analysis peripheral physiological parameters including galvanic skin 

response (GSR), respiratory rate (Resp), electrocardiographic (ECG) data, body temperature (Temp), 

electromyographic (EMG) data, photoplethysmographic (PhPG) data, muscle contraction (MContr). The 

dimension of these data is essentially lower in comparison with EEG data, and hence other approaches to the 

classification algorithm design can be applied. We show that a reliable classification can be obtained by the 

utilization of the Gradient Boosted Trees algorithm [7]; however, peripheral physiological parameters are less 

informative for the functional state classification than EEG data. 

The rest of the paper is organized as follows. In section 2 we describe the structure of the proposed method. In 

section 3 we present results of experimental evaluation of the method.  

2. Method 

2.1. Structure 

The classification is based on the integrated analysis of parameters (features) listed in Table 1 (see [8], [9]). 

These parameters are computed for data segments corresponding to a time window with duration equal to 30 

seconds. 

Similarly to [4], the method has three main stages: 

 global learning; 

 individual tuning; 

 individual testing. 

However, in contrast with [4], the method utilizes the Gradient Boosted Trees algorithm [7] and constructs a set 

of decision trees [10] that are used for the classifier value computation. Individual tuning is a non-standard stage 

for the Gradient Boosted Trees algorithm, but this stage essentially increases the reliability of the classification 

(see section 3). 

2.2. Global learning 

At the global learning stage a learning sample is processed and a set of decision trees is constructed. A 

learning sample contains data segments with standard length (30 seconds) corresponding to stress and to calm 

wakefulness for a representative group of individuals. Data segments corresponding to stress are labeled by +1, 

and data segments corresponding to calm wakefulness are labeled by –1. A set of decision trees is constructed by 

the OpenCV library [11] implementation of the Gradient Boosted Trees algorithm [7] with the square loss 

function ½(y-f(x))
2
, by defaults the set contains 100 trees with the maximum depth equal to 3. 
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Table 1. A list of peripheral physiological parameters used for the classification of functional states. 

Signal Parameters (features) 

EMG Standard deviation 

ECG Heart Rate 

Standard deviation of RR interval 

Low frequency rate for power spectral density of RR sequence 

High frequency rate for power spectral density of RR sequence 

Low-to-high frequency ratio for power spectral density of RR sequence 

PhPG Mean value of response amplitude 

Mean value of  IBI (inter-beat interval) sequence 

Standard deviation  of IBI sequence 

Low frequency rate for power spectral density of IBI sequence 

High frequency rate for power spectral density of IBI sequence 

Low frequency to high frequency ratio for power spectral density of IBI sequence 

Signal mean value 

Number of responses 

Resp Signal mean value 

Mean value of response amplitude 

Standard deviation of response amplitude 

Mean value of  IBI (inter-beat interval) sequence 

Low frequency rate for power spectral density of IBI sequence 

High frequency rate for power spectral density of IBI sequence 

GSR Signal mean value 

Number of responses 

Mean value of response amplitude 

Mean value of response rise time 

Energy (sum over all peaks) 

Temp Mean value 

Standard deviation 

MContr Mean value 

Standard deviation 

 

2.3. Individual tuning 

If one or several data segments are available for an individual, and a correct functional state (stress / calm 

wakefulness) is known for each data segment (e.g., functional states were manually identified by experts), but 

this data is essentially insufficient for a construction of a reliable totally personal classifier for the individual, a 

simple procedure can be used to adapt a constructed set of decision trees for the individual, or, in other words, to 

perform individual tuning. This procedure simply applies each decision tree from a set to each data segment, and 

if a classification result provided by a decision tree is incorrect (i.e., positive for calm wakefulness and negative 

for stress) for at least one data segment, the tree is excluded from a set that is used at the individual testing stage 

for this individual. 

A typical number of data segments used for the individual tuning is 2-4: 1-2 corresponding to stress, and 1-2 

corresponding to calm wakefulness. If no data segments with known correct functional state are available, an 

individual tuning stage can be simply skipped.  
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2.4. Individual testing 

The classification of a functional state for a data segment with a standard length (30 seconds) consists in a 

straightforward application of the decision trees from a set constructed at the global learning stage, that were not 

excluded at the individual tuning stage, summation of the results and the comparison of the sum with zero: if the 

sum is negative, then functional state, associated with the data segment, is classified as calm wakefulness, 

otherwise it is classified as stress. 

3. Results 

The study was performed at Moscow State University; it was approved by the Ethic Committee of the MSU 

Faculty of Psychology. The study used a virtual cave technology, and changes of functional states were attained 

using special scenarios for a virtual cave system developed by the staff members of the MSU Faculty of 

Psychology. Data segmentation and identification of a functional state for each segment were performed 

manually by experts of the MSU Faculty of Psychology basing on a complex analysis of peripheral physiological 

data, EEG data and task performance parameters. 

Data was collected for 19 individuals of different gender (m:f 9:10) with different stress resistance levels aged 

between 18 and 25, and a standard leave-one-out testing procedure [12, Sect. 7.10.1] was applied: one individual 

was excluded from the sample and global learning was performed for the remaining subset of 18 subjects, then 

individual tuning and individual testing was applied to non-intersecting collections of non-overlapping data 

segments, and this procedure was repeated 19 times (one time per individual). Only data segments corresponding 

to stress and calm wakefulness were used for the global learning, tuning and testing. 

Testing showed that average classification reliability equals 81%. Exclusion of the individual tuning stage 

decreased the average reliability of classification to 61%, therefore, individual tuning appreciably increases 

classification reliability. It is worth noting that for certain individuals an application of individual tuning stage 

leads to the reduction of classification quality, but the reduction is generally small, while in case of individuals 

with essential individual peculiarities the increase of the classification quality provided by individual tuning, is 

significant (see Fig. 1). 

Additional analysis of the distribution of peripheral physiological parameters over the decision trees revealed 

the following facts. 

A list of parameters with the highest frequency of occurrence in the set of decision trees (or, in other words, a 

list of most informative parameters) includes MConv mean value, Temp mean value, GSR signal mean value, 

EMG standard deviation, Resp signal mean value. 

 

 

Fig. 1. . Classification reliability (%) for 5 individuals. Blue bars: reliability for the classification without individual tuning; red bars: 

reliability for the classification with individual tuning. 
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A list of parameters with the lowest frequency of occurrence in the set of decision trees (or, in other words, a 

list of the least informative parameters) includes GSR mean value of response amplitude, Resp low frequency to 

high frequency ratio for power spectral density of IBI sequence, PhPG low frequency rate for power spectral 

density of IBI sequence, ECG low frequency rate for power spectral density of RR sequence, PhPG low 

frequency to high frequency ratio for power spectral density of IBI sequence. 

A list of parameters with the highest frequency of occurrence in decision trees excluded at the individual 

tuning stage includes Temp standard deviation, Resp high frequency rate for power spectral density of IBI 

sequence, ECG Low-to-high frequency ratio for power spectral density of RR sequence. 

A list of parameters with the highest frequency of occurrence in decision trees excluded at the individual 

tuning stage includes for individuals with essential individual peculiarities includes GSR mean value of response 

rise time, MConv mean, EMG standard deviation. Here individuals with essential individual peculiarities are a 

group of individuals with lowest classification reliability in case if individual tuning is avoided. 

4. Conclusion 

A reliable binary real-time classification of functional states can be achieved by the integrated analysis of the 

peripheral physiological parameters using a set of decision trees automatically constructed by the Gradient 

Boosted Trees algorithm. However, the average reliability of the resulting classifier is expectedly lower in 

comparison with the classification based on the EEG data [4], [6]. A maximum classification reliability can be 

achieved by combing the analysis of EEG data and analysis of peripheral physiological parameters. 

Similarly to [6], testing results proved the essential increase of the classification results provided by individual 

tuning stage. Testing also revealed key parameters for the functional state classification. A list of these 

parameters includes MConv mean value, Temp mean value, GSR signal mean value, EMG standard deviation, 

Resp signal mean value. 

5. Data availability 

All data and the detail of the study are available upon request from the authors. 
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