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Abstract—While variability of the motor responses to tran-

scranial magnetic stimulation (TMS) is widely acknowl-

edged, little is known about its central origin. One

plausible explanation for such variability may relate to differ-

ent neuronal states defining the reactivity of the cortex to

TMS. In this study intrinsic spatio-temporal neuronal

dynamics were estimated with Long-Range Temporal Corre-

lations (LRTC) in order to predict the inter-individual differ-

ences in the strength of intra-cortical facilitation (ICF) and

short-interval intracortical inhibition (SICI) produced by

paired-pulse TMS (ppTMS) of the left primary motor cortex.

LRTC in the alpha frequency range were assessed from mul-

tichannel electroencephalography (EEG) obtained at rest

before and after the application of ppTMS protocols. For

the EEG session, preceding TMS application, we showed a

positive correlation across subjects between the strength

of ICF and LRTC in the fronto-central and parietal areas. This

in turn attests to the existence of subject-specific neuronal

phenotypes defining the reactivity of the brain to ppTMS.

In addition, we also showed that ICF was associated with

the changes in neuronal dynamics in the EEG session after

the application of the stimulation. This result provides a

complementary evidence for the recent findings

demonstrating that the cortical stimulation with sparse
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0306-4522/� 2016 Published by Elsevier Ltd on behalf of IBRO.

*Correspondence to: T. Fedele, Klinik für Neurochirurgie, Univer-
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non-regular stimuli might have considerable long-lasting

effects on the cortical activity. � 2016 Published by Elsevier

Ltd on behalf of IBRO.

Key words: EEG, TMS, variability, neuronal oscillations, neu-

ronal dynamics, motor cortex.
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INTRODUCTION

A high variability of motor-evoked potentials (MEPs) to

transcranial magnetic stimulation (TMS) is a widely

recognized phenomenon and it is a subject of extensive

research (Kiers et al., 1993; Ellaway et al., 1998;

Livingston and Ingersoll, 2008; Rösler et al., 2008). One

of the most likely explanations for this variability relates

to changes in cortical excitability (Sauseng et al., 2009;

Takemi et al., 2013; Keil et al., 2014; Kundu et al.,

2014). A combination of TMS and electroencephalogra-

phy (EEG) (Ilmoniemi et al., 1997; Nikulin et al., 2003;

Lioumis et al., 2009) represents a particularly attractive

approach for studying excitability since it directly relates

cortical activity to motor responses. A quantification of

the cortical activity on the basis of alpha oscillations

(8–13 Hz) has a number of advantages given their pres-

ence in many individuals, susceptibility to experimental

manipulations and high signal-to-noise ratio (SNR)

(Palva et al., 2005; Palva and Palva, 2007; Klimesch,

2012; Frey et al., 2015). In line with these observations,

previous TMS–EEG studies have shown that changes in

cortical neuronal oscillations are indicative of the changes

in cortical excitability reflected in MEPs (Sauseng et al.,

2009; Takemi et al., 2013; Keil et al., 2014; Kundu

et al., 2014) or in phosphenes (Romei et al., 2009;

Dugué et al., 2011).

While abovementioned studies primarily used single-

pulse TMS (spTMS) paradigms, in order to further

elucidate the origin of TMS-responses variability across

participants, we focused on the association of alpha

oscillations at rest with the effects of paired-pulse TMS

(ppTMS) phenomena including short-interval intracortical

inhibition (SICI) and intra-cortical facilitation (ICF). We

used relatively long time intervals of EEG recordings

(�10 min) at rest, which allowed a quantification of

subject-specific neuronal dynamics. The interest in the

inter-individual analysis stems from the neuro-genetic

studies showing high heritability of the amplitude of

http://dx.doi.org/10.1016/j.neuroscience.2016.06.015
mailto:tommaso.fedele@usz.ch
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alpha oscillations (van Beijsterveldt and van Baal, 2002;

Smit et al., 2006). Such heritability should also be mani-

fested in high test–retest reproducibility of alpha oscilla-

tions’ amplitude as has been shown previously (Gasser

et al., 1985; Salinsky et al., 1991; Nikulin and Brismar,

2004). Interestingly, ppTMS phenomena are also

subject-specific and demonstrate significant test–retest

reliability, especially for SICI (Orth et al., 2003; Fleming

et al., 2012; Hermsen et al., 2016). Moreover, ICF and

SICI are known to depend on the ongoing status of the

cortical excitability as demonstrated in pharmacological

(Jung et al., 2004; Ziemann et al., 2015) and

movement-related (Liepert et al., 1998; Muellbacher

et al., 2000; Beck and Hallett, 2010) experiments. There-

fore, given that the amplitude of alpha oscillations reflects

cortical excitability, we hypothesized that it can also relate

to subject-specific strength of ICF or SICI phenomena.

In addition to the commonly investigated amplitude of

neuronal oscillations, we were particularly interested in

the predictive value of their temporal dynamics for the

effects of ppTMS. The dynamics of alpha oscillations

were studied here with LRTC, which describe the decay

of autocorrelation function (Kantelhardt et al., 2001;

Blythe et al., 2014) and thus show how the neuronal acti-

vation at a given point in time depends on the history of

the preceding neuronal events. Previous EEG/MEG

research in humans has shown that LRTC are present

in the amplitude dynamics of many neuronal oscillations

including theta, alpha and beta frequency bands and

may extend for tens of seconds (Linkenkaer-Hansen

et al., 2001, 2004, 2007; Nikulin and Brismar, 2005;

Montez et al., 2009; Palva et al., 2013; Smit et al.,

2013). Moreover, the ubiquity of LRTC is also manifested

through their presence in both cortical and subcortical

structures (Hohlefeld et al., 2012).

Given the results presented above, we investigated

the association of alpha oscillations with the strength of

ICF and SICI and formulated the following two

hypotheses. (1) Resting-state alpha oscillations before

TMS sessions can predict the strength of ICF and SICI

phenomena. (2) Prolonged TMS sessions with ppTMS

protocols can affect the generation of alpha oscillations

for a time period extending beyond the termination of

stimulation. This second hypothesis was motivated by

the fact that during the last few years long-lasting effect

of the prolonged sessions with spTMS were reported

(Julkunen et al., 2012; Pellicciari et al., 2015). Conse-

quently we conjectured that by combining multichannel

EEG with a novel sensitive method for the assessment

of temporal neuronal dynamics (LRTC) we may detect

changes in the neuronal activation due to ppTMS.

166

167

168

169

170

171

172

173

174

175

176
EXPERIMENTAL PROCEDURES

Participants

Seventeen healthy volunteers, 19–34 years of age (mean

age 24.2 ± 4.4, six females) participated in the

experiment after giving a written informed consent. All

subjects were right-handed according to self-report.

Subjects were screened for contraindications to TMS

(Rossi et al., 2009) before the consenting process.
Please cite this article in press as: Fedele T et al. Long-Range Temporal Correla

intracortical facilitation: Combined TMS and EEG study. Neuroscience (2016),
Experiments were approved by the local Ethics Commit-

tee of the HSE, Moscow.
Coil positioning and threshold determination

A MagPro X100 (MagVenture) stimulator with MCF-B65

induction coil (75-mm wing radius) was used to produce

biphasic TMS pulses. A frameless TMS navigation

system (Localite TMS Navigator, Localite GmbH) was

used for MRI-guided navigation allowing optimization

and recording of the identified ‘‘hot spot” and ensuring

consistent cortical target through the sequence of

stimulations. The individual MR scans (T1 weighted;

1 mm thickness; sagittal orientation; acquisition matrix

256 � 256) were obtained with 1.5 T MRI scanner

(Siemens Magnetom Avanto). Stimulation targeted the

left primary motor cortex – the region of so-called

‘‘motor knob” (Yousry et al., 1997) at the motor represen-

tation of the right abductor pollicis brevis (APB) muscle.

The final stimulation point was determined as the coil

position with the strongest MEPs recorded from the

APB. The resting motor threshold (RMT) for the given

‘‘hot spot” was determined as the minimal stimulator out-

put evoking contralateral APB MEPs of minimum 50 lV in

a resting muscle, in five out of 10 given stimuli (Rossini

et al., 1999).
Protocol

After RMT determination, the first recording session was

always 10-min rest EEG recording (Pre-TMS). During

this and all other sessions, the subjects were sitting

comfortably in a chair with elbows flexed at �90�, prone
hands. Participants were instructed to relax, keep eyes

open while fixating on a small dot on the wall in front of

them. Then three 10-min sessions of TMS of the APB

‘‘hotspot” in the left precentral gyrus followed. These

sessions included: spTMS, ppTMS with an inter-

stimulus-interval (ISI) of 2 ms for SICI and ppTMS with

12 ms ISI for ICF. ppTMS protocols, consisting of two

stimuli, delivered sequentially on the same cortical area

(Kujirai et al., 1993), are widely used to evaluate

inhibitory/facilitatory processes (Bütefisch et al., 2008;

Byblow et al., 2012; Lioumis et al., 2012; Du et al.,

2014). In these paradigms the first conditioning stimulus

(CS) modifies the response to the second test stimulus

(TS). The effect of ppTMS depends on the intensity of

both stimuli and on their ISI. Thus, ISIs of 1–5 ms lead

to inhibitory effect - SICI, which involves GABA-A-ergic

neurotransmission (Chen, 2004; Ziemann, 2004;

Ziemann et al., 2015). Longer ISIs of 7–20 ms result in

facilitatory phenomenon – ICF, which is believed to be

distinct from SICI (Di Lazzaro et al., 2006; Rossini et al.,

2015) and was shown to be mediated by glutamatergic

drugs (Liepert et al., 1997; Ziemann et al., 2015).

The intensity of the spTMS pulses and test stimulus

for SICI and ICF was 110% of RMT, the intensity of the

conditioning stimulus for ICF and SICI was 90% of

RMT. The interval between the consecutive pairs of

TMS stimuli varied randomly between 4 and 10 s to

prevent habituation (Ferreri et al., 2011). During each

10-min TMS sessions 100–120 trials were applied. Such
tions in the amplitude of alpha oscillations predict and reflect strength of
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design with separate spTMS, SICI and ICF TMS sessions

was chosen because it is similar to what is often used for

ppTMS investigation in healthy subjects (Ferreri et al.,

2011) and patients (Lioumis et al., 2012; Mäkelä et al.,

2015). After these three TMS sessions a second 10-min

rest EEG session (Post-TMS) was recorded. Between

all sessions there were 2–5 min breaks allowing subjects

to relax.
239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
EEG and EMG acquisition

The EEG/EMG data were recorded with BrainAmp

amplifiers and BrainVision Recorder software (Brain

Products GmbH, Munich, Germany). During the data

acquisition the signals were band-pass filtered between

0.016 and 1000 Hz and digitized at a rate of 5000 Hz.

For the EEG recordings we used 91-channel EEG cap

(Ag/AgCl electrodes, Easycap GmbH, Herrsching,

Germany). During the acquisition, EEG electrodes were

referenced to the nasion, and the ground electrode was

placed on the left cheekbone. Three electrooculographic

(EOG) electrodes were placed above the nasion and

below the outer canthi of the eyes (Schlögl et al., 2007).

MEPs during the three TMS protocols (SP, SICI, ICF)

were obtained from the right APB using surface bipolar

EMG, with Ag-AgCl electrodes in a belly–tendon montage.
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Data analysis
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MEP. For the offline processing, EMG signals were

high-pass filtered at 10 Hz and additional notch filter

was applied for the removal of 50-Hz power-line noise.

Bad epochs, contaminated by the background EMG

activity or electromechanical artifacts were removed

(approximately 5%). We measured peak-to-peak

amplitude of MEPs in the period of 20–50 ms after the

TMS stimulus for three conditions (SP, SICI, ICF). The

average amplitude across all epochs for a given subject

and condition were used for the following statistical

analysis. MEPs in SICI and ICF conditions were

normalized by the MEPs in SP condition, thus providing

a ratio between MEPs describing the strength of

ppTMS. A statistical comparison for MEPs was

performed with the t-tests.

EEG. EEG signals from the two resting sessions

(before and after the application of TMS protocols) were

band-pass filtered between 1 and 45 Hz (4th-order

Butterworth filters (roll-off 80 dB/decade), and

downsampled to 100-Hz sampling frequency. Visual

inspection was performed in order to reject noisy

channels (on average five channels were removed in

each subject). Blink artifacts were removed with Fast

ICA (Hyvarinen, 1999). The EEG data was re-

referenced to a common average electrode.
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Amplitude envelopes and detrended fluctuation
analysis (DFA)

We used LRTC in order to quantify neuronal dynamics in

the amplitude of alpha oscillations. Temporal correlation
Please cite this article in press as: Fedele T et al. Long-Range Temporal Correla

intracortical facilitation: Combined TMS and EEG study. Neuroscience (2016),
can be expressed in terms of the attenuation of

autocorrelation function (Peng et al., 1995; Kantelhardt

et al., 2001). While short-range temporal correlations

are characterized by an exponential decay, LRTC follow

a power law attenuation (Gisiger, 2001; Kantelhardt

et al., 2001; Kello et al., 2010), implying that very remote

parts of a process relate to the upcoming ones. In this

study, we measure LRTC in the amplitude envelope of

neuronal oscillations extracted around the individually

determined peak frequency of alpha rhythm ±2 Hz. The

peak frequency of the alpha oscillations was determined

from a spectrum obtained through the averaging of spec-

tra from all channels in a given subject. We specifically

focused rather on alpha oscillations because: (1) they

are known to reflect cortical excitability (Romei et al.,

2008; Sauseng et al., 2009) and (2) they have high

SNR thus making it less likely that the oscillations can

be contaminated by scalp, neck and shoulder EMG. The

amplitude of oscillations (obtained with Butterworth filter,

4th order) was extracted using analytic signal approach

based on the Hilbert transform. For each subject, channel

and rest session, we calculated corresponding mean

amplitude envelope and LRTC scaling exponent.

In order to quantify LRTC, we use DFA (Peng et al.,

1995; Kantelhardt et al., 2001). Note that LRTC refer to

the correlation between different time points in EEG activ-

ity, not across different spatial locations.

Let a(t) be an instantaneous amplitude of oscillations

extracted with the Hilbert transform for a given EEG

channel and subject at time t. Next we calculate a

cumulative sum of the signal:

YðtÞ ¼
XN

t¼1

aðtÞ

The integrated signal Y(t), was then divided into non-

overlapping windows of size s with the window length

varying from 5 to 50 s distributed equidistantly on a

logarithmic scale. Altogether there were 30 window

sizes in this time range. For each window size s, the

least-squares fitted line was computed and the ordinate

of this line is denoted Ys(t). The integrated signal Y(t)

was then detrended in each window by subtracting Ys(t)
and the variance was calculated as:

F2ðsÞ ¼ 1

N

XN

t¼1

½YðtÞ � YsðtÞ�2

where N is the number of samples in the window size s. All
F2(s) values for a given s were then averaged and the

square root was obtained leading to F(s) value. The

procedure of calculating F(s) was repeated for all

windows sizes s. Usually the relationship between F(s)
and s has a linear form in a double logarithmic

coordinate system across many window-sizes s. The

slope of the least-squares line in this graph is called a

scaling exponent and it quantifies LRTC. Scaling

exponents in the 0.5–1 range indicate a presence of

persistent temporal correlations, where larger

fluctuations are likely to be followed by larger

fluctuations. Uncorrelated signals (e.g. for white noise)

have a scaling exponent 0.5.
tions in the amplitude of alpha oscillations predict and reflect strength of
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Fig. 1. Grand-average of normalized MEPs across subjects. The

values are represented as mean + standard error of the mean

(ICF = intra-cortical facilitation, SICI = short-interval cortical inhibi-

tion, SP = Single Pulse) ** indicates P< 0.001.
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Further technical details on the use of DFA for the

estimation of LRTC in EEG/MEG signals can be found

in Hardstone et al. (2012). Apart from the calculation of

LRTC, we also calculated a mean of the amplitude envel-

opes separately in Pre- and Post-TMS sessions. A calcu-

lation of the mean amplitude over long time interval is

frequently used as a contrast to the dynamic measures

capturing a temporal propagation of the signal.

Statistical analysis. Scaling exponents v and mean

amplitude envelopes a between the two rest conditions

(Pre-TMS and Post-TMS) were compared for each

channel across subjects with non-parametric Wilcoxon

signed-rank test correcting for multiple comparison with

cluster statistics based on the permutation approaches

(Maris and Oostenveld, 2007). In addition, in order to esti-

mate reproducibility of LRTC and amplitude of oscillations

between the two rest sessions in each EEG channel,

Intra-Class Correlation (ICC) was calculated (McGraw

and Wong, 1996). ICC is used for the assessment of

reproducibility (test–retest reliability), which is relevant

for us since we aimed at analyzing the reproducibility of

amplitude and LRTC of neuronal oscillations in Pre- and

Post-TMS sessions. Values of 1 and 0 would indicate

complete and entirely absent reproducibility, respectively.

Correlation between LRTC, amplitude and strength of
ICF and SICI. For each EEG channel we computed

Spearman correlation across subjects between the

scaling exponent v (or amplitude a) obtained from the

rest EEG sessions and ICF and SICI strength.

In order to compensate for the multiple statistical

estimation of the correlations in different EEG channels,

we used cluster statistics (Maris and Oostenveld, 2007).

All analysis steps were performed with scripts

implemented in Matlab (The MathWorks Inc., Natick,

Massachusetts, USA).
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RESULTS

ICF and SICI effects

ppTMS with the ICF protocol resulted in the enhancement

of MEPs amplitudes compared to MEPs amplitudes from

SP session. This was statistically verified with the t-test

comparing normalized MEPs against the unitary mean

(ICF/SP mean ratio 2.28 ± 0.27; P< 0.001, Fig. 1).

Likewise, SICI protocol resulted in the significant

attenuation of MEPs compared to the SP session

(SICI/SP mean ratio: 0.49 ± 0.07; P< 0.001, Fig. 1).
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The amplitude of alpha oscillations

Fig. 2 shows a time course of the amplitude envelopes of

alpha oscillations (8–13 Hz) in the electrode P3 in one

representative subject in both rest sessions. Note the

amplitude fluctuations at different time scales. Such

intermittent patterns of amplitude fluctuations, varying in

duration, represent a typical temporal structure of the

signals with persistent LRTC. The overall strength of the

signal was captured with the mean amplitude. On
Please cite this article in press as: Fedele T et al. Long-Range Temporal Correla
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average the peak frequency of alpha oscillations was

9.8 ± 1.3 Hz.

Fig. 3A shows an example of a spatial distribution of

alpha-oscillations’ amplitude in the representative

subject in two rest sessions. The largest values were

observed over occipito-parietal areas. In addition the

figure shows in panel B spectra from all channels clearly

displaying a prominent peak in the alpha frequency

range. Fig. 3C demonstrates a grand average of the

amplitudes across all subjects revealing again a spatial

maximum over the posterior areas of the head. The

topographies of the alpha oscillations were similar in the

two resting sessions. This topographic similarity was

further confirmed with the intra-class correlation,

calculated across subjects (Fig. 3D), showing high and

significant values for all electrodes, being particularly

pronounced over the fronto-central and parietal areas.

Importantly, we have not observed any significant

differences in the amplitude of alpha oscillations

between the two rest sessions.
LRTC in the amplitude dynamics of alpha oscillations

Amplitude dynamics of alpha oscillations have been

reliably captured with DFA revealing a linear relationship

between different time scales and corresponding

fluctuations extending up to 50 s with the scaling

exponents being on average 0.69 ± 0.01 (mean

± SEM). An example of the scaling behavior is

presented in Fig. 4.

A topography of the scaling exponents in two rest

sessions for a representative subject is presented in

Fig. 5A. A grand-average topography across all subjects

is presented in Fig. 5B. The topographic maxima of the

scaling exponents were mostly over the frontal and

centro-parietal areas. Compared to the amplitude of

alpha oscillations, topographies of the scaling exponents

were less reproducible across the two rest sessions,

this being indicated by smaller values of ICC (Fig. 5C).

Yet in many electrodes ICC values were significant thus

suggesting a moderate reproducibility. Significant ICC

values were absent in the occipital and left central areas

(Fig. 5C). However, as in the case of the amplitude of

alpha oscillations, the scaling exponents were not

significantly different between the two rest sessions.
tions in the amplitude of alpha oscillations predict and reflect strength of
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Fig. 3. The amplitude of alpha oscillations. (A) The topographies of the amplitude of alpha oscillations (9–13 Hz) for a representative subject (S7).

(B) Corresponding spectra from all channels. (C) The grand-average of the amplitude topographies (across all subjects). The Pre-TMS and Post-

TMS sessions are shown in the upper and lower panels, respectively. (D) The similarity between the two rest sessions across subjects is shown in

terms of ICC (ICC values were significant for all channels, P< 0.05).

Fig. 2. An example of amplitude envelope dynamics. The amplitude envelope in the individual alpha frequency range (in this case: 9–13 Hz) for a

representative subject (S7, channel P3) is presented for both rest sessions and different time scales. In the upper panels a larger interval of 300 s is

displayed, and a shorter 30-s segment, marked by the red dotted lines, is extended in the lower panels. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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Prediction of ICF and SICI strength on the basis of
amplitude and LRTC of alpha oscillations in Pre-TMS
rest session

A prediction of ICF and SICI strength can in principle be

achieved only with the Pre-TMS rest condition, before
Please cite this article in press as: Fedele T et al. Long-Range Temporal Correla

intracortical facilitation: Combined TMS and EEG study. Neuroscience (2016),
the application of TMS, since the parameters of the

neuronal oscillations in the Post-TMS rest session might

also reflect an effect of TMS.

The amplitude of alpha oscillations in the individually

determined alpha range did not correlate significantly
tions in the amplitude of alpha oscillations predict and reflect strength of

http://dx.doi.org/10.1016/j.neuroscience.2016.06.015
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Fig. 4. An example of the DFA analysis for the amplitude envelope of

alpha oscillations. Detrended fluctuations (S11, channel C6) are

shown for both Pre-TMS (blue) and Post-TMS (red) sessions. Axes

are in the logarithmic scale. The slope of the least-squares fitted lines

(black) corresponds to the scaling exponent, v= 0.69 in Pre-TMS

session to v= 0.67 in Post-TMS session. (For interpretation of the

references to color in this figure legend, the reader is referred to the

web version of this article.)
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with the size of the normalized MEPs from the SICI or ICF

protocols. At the same time, scaling exponents,

characterizing LRTC of the alpha oscillations were

positively correlated with the enhancement of MEPs
Fig. 5. LRTC of the amplitude envelopes of alpha oscillations. (A) The

representative subject (S11). (B) The grand-average of the scaling-expone

sessions are shown in the upper and lower panels, respectively. (C) The simil

channels were significant (P< 0.05) apart from the channels highlighted with

legend, the reader is referred to the web version of this article.)

Please cite this article in press as: Fedele T et al. Long-Range Temporal Correla

intracortical facilitation: Combined TMS and EEG study. Neuroscience (2016),
during ICF. This correlation was observed in electrodes

over fronto-central and parietal areas, as shown in

Fig. 6, panel A. The cluster statistic indicated a

significant Spearman correlation at the level P< 0.05.

No significant correlation was found between the scaling

exponents and SICI strength.

Effect of ppTMS on the neuronal dynamics in Post-
TMS rest session

Although there were no significant differences in the

strength of LRTC between Pre-TMS and Post-TMS

sessions, we found that the strength of ICF was

positively correlated with the scaling exponents of alpha

oscillations in the Post-TMS session (Fig. 6B).

Topographically this correlation, largely overlapping with

the cluster identified in the Pre-TMS session, extended

to the sensorimotor areas of both hemispheres. For

SICI we did not find a significant correlation between the

MEPs and the scaling exponents. Moreover, no

significant correlations were found between the

amplitude of alpha and the strength of ICF or SICI

phenomena.

DISCUSSION

We showed that the temporal neuronal dynamics,

manifested in the LRTC of alpha oscillations at rest, can

predict the strength of ICF. Moreover, the application of

ppTMS also changed LRTC in alpha oscillations at rest.
topographies of the scaling exponents of alpha oscillations for a

nt topographies (across all subjects). The Pre-TMS and Post-TMS

arity between the two rest sessions is shown in terms of ICC. ICC in all

a red cross. (For interpretation of the references to color in this figure

tions in the amplitude of alpha oscillations predict and reflect strength of
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In contrast, the amplitude of oscillations frequently used in

many EEG studies had no association with the strength of

ICF or SICI phenomena. Below we discuss the

implications of these findings for the understanding of

the cortical excitability in the context of TMS–EEG

research.
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Strength of SICI and ICF

On average MEPs were decreased by about 49% and

increased by 120% during SICI and ICF protocols,

respectively, in agreement with the values reported in

the previous studies (Kujirai et al., 1993; Classen et al.,

1998; Cohen et al., 1998; Du et al., 2014; Ito et al.,

2015). There was a considerable variability in the strength

of ICF and SICI phenomena across subjects. This vari-

ability is important for the present study since it provides

a basis for determining its possible neural correlates

associated with the amplitude or LRTC of the neuronal

oscillations. Inter-subject variability in the strength of

ppTMS phenomena was a topic of the previous research

(Maeda et al., 2002; Orth et al., 2003; Fleming et al.,

2012; Hermsen et al., 2016) investigating the reproducibil-

ity of subject-specific ICF and SICI strength. In these

studies SICI showed the largest intra-subjects repro-

ducibility. ICF/SICI ratio, so- called inhibition/facilitation

profile, also demonstrated a high intra-subject repro-

ducibility (Du et al., 2014). A reproducibility of ICF and

SICI strength indicates that there might exist a relatively

stable configuration of neural networks in each individual

determining the reactivity to ppTMS, most likely reflecting

complex cortical network interactions between interneu-

rons and pyramidal cells (Lackmy-Vallee et al., 2012; Zie-

mann et al., 2014; Murase et al., 2015). Such intra-subject

reproducibility is in a good agreement with the findings of

ppTMS phenomena having genetic predisposition (Yi

et al., 2013; Menzler et al., 2014). In the present study

we showed that oscillatory dynamics, captured with

LRTC, might serve as a correlate for the characterization

of such subject-specific inhibition/facilitation profiles.
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LRTC in the amplitude dynamics of alpha oscillations

We have primarily studied alpha oscillations as they

allowed the most reliable estimation of the neuronal

dynamics because of the high SNR. Our results provide

an important outlook into the characterization of cortical

excitability investigated by TMS–EEG.

The scaling exponents for alpha oscillations were on

average v= 0.69 ± 0.1, in agreement with the previous

studies investigating LRTC in rest conditions with EEG/

MEG (Nikulin and Brismar, 2004; Nikulin et al., 2012;

Blythe et al., 2014). In the present study we could inves-

tigate LRTC only for the time intervals extending up to

50 s this being due to the limit imposed by the duration

of the rest recordings. The presence of LRTC indicates

that the remote parts the amplitude envelope of alpha

oscillations are correlated and that this correlation attenu-

ates slowly, according to a power-law. The presence of

LRTC has been linked to the criticality phenomenon in

neuronal networks (Linkenkaer-Hansen et al., 2001; Poil

et al., 2012). The criticality implies that the system is at
Please cite this article in press as: Fedele T et al. Long-Range Temporal Correla
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a metastable state which for the neuronal networks

defines a delicate balance between excitation and inhibi-

tion (Beggs and Plenz, 2003; Poil et al., 2012; Shew

and Plenz, 2013). Such balance is important for the

proper functioning of the neuronal networks as demon-

strated by the previous studies showing that the critical

states are associated with the maximization of a dynamic

range (Kinouchi and Copelli, 2006; Shew et al., 2009),

information transfer and capacity in the brain (Shew

et al., 2011).

LRTC of the Pre-TMS session predict strength of ICF

Scaling exponents of individual alpha oscillations were

significantly and positively correlated with the strength of

ICF (Fig. 6) in the Pre-TMS rest session. Since this

session preceded application of ppTMS protocols, this

result indicates that LRTC may define a subject-specific

strength of ICF phenomenon. Given that LRTC in the

alpha range show significant test–retest reliability across

different days (Nikulin and Brismar, 2004) as well as high

genetic heritability (Linkenkaer-Hansen et al., 2007) one

can conclude that temporal correlations reflect a certain

neuronal phenotype which is most likely shaped by the

persistent individual anatomical and synaptic organization

of the brain. The prediction of ICF strength was most pro-

nounced for the cluster of electrodes covering fronto-

central to occipito-parietal cortex. Although no definite

conclusions can be made about the exact neuronal

sources responsible for this prediction on the basis of

the sensor-space data, a broad distribution of the elec-

trodes, showing significant predictions, might indicate

involvement of multiple cortical areas whose temporal

dynamics at rest predict strength of ICF. In the present

study we stimulated motor cortex, which is known to be

tightly integrated in a larger sensorimotor network includ-

ing SMA, pre-motor cortex and contralateral motor cortex

(Bestmann et al., 2010; Kroeger et al., 2010; Rothwell,

2011). Therefore neuronal dynamics in these networks

are likely to relate to the susceptibility of the motor cortex

to TMS. A posterior part of the electrode cluster might

reflect neuronal activity originating in the parietal cortical

areas known to be associated with the alertness and

arousal levels (Posner and Petersen, 1990; Petersen

and Posner, 2012; Greene et al., 2014), the latter were

also shown to affect susceptibility to TMS (Löfberg

et al., 2014; Herring et al., 2015). ICF protocol includes

a relatively long interval (12 ms) between conditioning

and testing pulse and therefore ICF is likely to be based

on many synaptic connections (Di Lazzaro et al., 2006;

Di Lazzaro and Ziemann, 2013; Ziemann et al., 2015).

Therefore ICF might reflect dynamics of larger neuronal

networks than in the case of SICI. Such spatially dis-

tributed networks are also important for the generation

of LRTC (Linkenkaer-Hansen et al., 2001; Poil et al.,

2012). Consequently, ICF might be more prone to a

long-range synaptic modulation than SICI. In line with this

observation we indeed found predictive value of LRTC

only for the strength of ICF.

While ICF relates to glutamatergic activity, it may

reflect at the same time tales of GABA-A processes

triggered by the conditioning stimulus (Cohen et al.,
tions in the amplitude of alpha oscillations predict and reflect strength of

http://dx.doi.org/10.1016/j.neuroscience.2016.06.015
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1998; Chen, 2004; Ziemann et al., 2015). Such a complex

combination of neurotransmitter effects along with the

long latency of the testing pulse might provide an ample

basis for ICF strength to reflect modulatory effects of

other spatially distributed cortical areas.
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Effects of ppTMS on LRTC

Surprisingly, despite the lack of a difference in the scaling

exponents between the two rest sessions, we

nonetheless found significant correlations between the

scaling exponents and the strength of ICF phenomena.

Naturally, the fact that the scaling exponents were not

significantly different between the Pre- and Post-TMS

conditions, does not mathematically preclude a

correlation between the scaling exponents and the

strength of ICF and SICI. Without the Pre-TMS rest

session it would be difficult to conclude whether such

correlations are due to the already existing correlation of

Pre-TMS LRTC and the strength of ICF or whether

LRTC indeed were affected by ppTMS.

The correlation of LRTC obtained in Post-TMS

session with the strength of ICF showed considerably

larger central distribution (Fig. 6B) compared to the

topography obtained with pre-TMS LRTC (Fig. 6A).

This difference in the correlation topographies thus

clearly indicates that the effect of ICF on LRTC in the
Please cite this article in press as: Fedele T et al. Long-Range Temporal Correla

intracortical facilitation: Combined TMS and EEG study. Neuroscience (2016),
Post-TMS session cannot be reduced to the correlation

of Pre-TMS LRTC and ICF strength. It is important to

note that since we assessed neuronal dynamics

directly with EEG, our findings most likely reflect

cortical processes rather than the changes in the spinal

cord, which might occur when the cortical excitability is

assessed only with MEPs.

For many years repetitive TMS (Pascual-Leone et al.,

1998; Tsuji and Rothwell, 2002; Wolters et al., 2005;

Huber et al., 2008; Thut and Pascual-Leone, 2010),

including patterned TMS like theta-burst (Huang and

Rothwell, 2004) and some other TMS protocols with a

regular order of stimuli (Cash et al., 2010, 2014) have

been shown to have long-lasting neuromodulatory effects.

However, recently some studies demonstrated cumula-

tive effects of the prolonged protocols with spTMS both

on the MEPs amplitudes (Julkunen et al., 2012;

Pellicciari et al., 2015) and EEG dynamics (Stamoulis

et al., 2011). These results thus echo our findings on

long-lasting offline effect of the prolonged sessions of

spTMS and ppTMS. Our results also agree with a recent

study (Pellicciari et al., 2015), where a similar effect of the

prolonged single-pulse TMS session on MEPs amplitudes

was shown both for random and fixed intervals between

the TMS pulses. However, the present work is the first

demonstrating the long-lasting changes in the neuronal

dynamics after prolonged ppTMS sessions.
tions in the amplitude of alpha oscillations predict and reflect strength of
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It might be that the long-lasting offline effect of ppTMS

on LRTC was not due to the stimuli being paired but

rather due to the fact that there was low-frequency (4–

10 s) magnetic stimulation of the brain. Low-frequency

stimulation at 0.2 Hz was shown to produce a reduction

of cortical excitability (Ikeguchi et al., 2005) which in gen-

eral agrees with the idea of low-frequency TMS (<1 Hz)

having inhibitory effects (for a review see Fitzgerald

et al., 2006). Although the stimulation in the present study

was not repetitive, its low-frequency nature might have

reduced cortical excitability. A decrease in cortical

excitability might prevent a rapid switching between the

neuronal states thus leading to stronger LRTC. In addi-

tion, ppTMS with ICF protocol should lead to stronger

activation of the cortex. Assuming that in our protocol

stronger stimulation leads to stronger reduction of

excitability, a positive correlation between the strength

of ICF and LRTC would be expected (Fig. 6B).
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Limitations of the study and future directions

One of the main limitations of the study was that TMS

protocol was primarily designed to investigate a

predictive value of neuronal dynamics for ppTMS effects

and therefore, the protocols of ppTMS were used

sequentially on the same day. This prediction is based

on EEG being recorded before any TMS and thus does

not reflect a combination of different stimulations. For

Post-TMS effect, however, further research will be

necessary to disentangle the influence of each TMS

protocol on the neuronal dynamics. Given the presence

of long-lasting effects on the intrinsic neuronal

dynamics, it would be important to assess the role of

the stimulation parameters and the duration of the post-

stimulation effect in addition to the studied 10-min

interval in the Post-TMS session.
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CONCLUSIONS

We investigated cortical neuronal dynamics associated

with ppTMS paradigms. In contrast to many previous

TMS–EEG studies, using evoked responses or the

mean amplitude of oscillations, we rather used a

complex description of spatio-temporal neuronal

dynamics captured with LRTC. With this measure, we

showed that the strength of ICF can be predicted inter-

individually from the rest recordings, which in turn

attests to the existence of subject-specific neuronal

phenotypes defining the reactivity of the brain to

ppTMS. In addition, we showed that a combination of

ppTMS and spTMS might affect neuronal dynamics

recorded after the cessation of stimulation, this finding

being in agreement with the emerging notion that not

only repetitive TMS protocols but also the stimulation

with sparse non-regular pulses might have considerable

effect on the cortical dynamics.
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Ferreri F, Pasqualetti P, Määttä S, Ponzo D, Ferrarelli F, Tononi G,

Mervaala E, Miniussi C, Rossini PM (2011) Human brain

connectivity during single and paired pulse transcranial

magnetic stimulation. NeuroImage 54:90–102.

Fitzgerald PB, Fountain S, Daskalakis ZJ (2006) A comprehensive

review of the effects of rTMS on motor cortical excitability and

inhibition. Clin Neurophysiol 117:2584–2596.

Fleming MK, Sorinola IO, Newham DJ, Roberts-Lewis SF, Bergmann

JHM (2012) The effect of coil type and navigation on the reliability

of transcranial magnetic stimulation. IEEE Trans Neural Syst

Rehabil Eng 20:617–625.

Frey JN, Ruhnau P, Weisz N (2015) Not so different after all: The

same oscillatory processes support different types of attention.

Brain Res 1626:183–197.

Gasser T, Bacher P, Steinberg H (1985) Test-retest reliability of

spectral parameters of the EEG. Electroencephalogr Clin

Neurophysiol 60:312–319.
tions in the amplitude of alpha oscillations predict and reflect strength of

http://dx.doi.org/10.1016/j.neuroscience.2016.06.015

http://dx.doi.org/10.1016/j.neuroscience.2016.06.015


722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

10 T. Fedele et al. / Neuroscience xxx (2016) xxx–xxx

NSC 17162 No. of Pages 11

16 June 2016
Gisiger T (2001) Scale invariance in biology: coincidence or footprint

of a universal mechanism? Biol Rev Camb Philos Soc

76:161–209.

Greene CM, Flannery O, Soto D (2014) Distinct parietal sites mediate

the influences of mood, arousal, and their interaction on human

recognition memory. Cogn Affect Behav Neurosci 14:1327–1339.

Hardstone R, Poil SS, Schiavone G, Jansen R, Nikulin VV,

Mansvelder HD, Linkenkaer-Hansen K (2012) Detrended

fluctuation analysis: a scale-free view on neuronal oscillations.

Front Physiol 30(3):450.

Hermsen AM, Haag A, Duddek C, Balkenhol K, Bugiel H, Bauer S,

Mylius V, Menzler K, Rosenow F (2016) Test-retest reliability of

single and paired pulse transcranial magnetic stimulation

parameters in healthy subjects. J Neurol Sci 362:209–216.

Herring JD, Thut G, Jensen O, Bergmann TO (2015) Attention

modulates TMS-locked alpha oscillations in the visual cortex. J

Neurosci 35:14435–14447.

Hohlefeld FU, Huebl J, Huchzermeyer C, Schneider G-H,
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Julkunen P, Säisänen L, Hukkanen T, Danner N, Könönen M (2012)

Does second-scale intertrial interval affect motor evoked

potentials induced by single-pulse transcranial magnetic

stimulation? Brain Stimul 5:526–532.

Jung HY, Sohn YH, Mason A, Considine E, Hallett M (2004)

Flumazenil does not affect intracortical motor excitability in

humans: a transcranial magnetic stimulation study. Clin

Neurophysiol 115:325–329.

Kantelhardt JW, Koscielny-Bunde E, Rego HH, Havlin S, Bunde A

(2001) Detecting long-range correlations with detrended

fluctuation analysis. Phys A Stat Mech Appl 295:441–454.

Keil J, Timm J, Sanmiguel I, Schulz H, Obleser J, Schönwiesner M

(2014) Cortical brain states and corticospinal synchronization

influence TMS-evoked motor potentials. J Neurophysiol

111:513–519.

Kello CT, Brown GDa, Ferrer-i-Cancho R, Holden JG, Linkenkaer-

Hansen K, Rhodes T, Van Orden GC (2010) Scaling laws in

cognitive sciences. Trends Cogn Sci 14:223–232.

Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor

potentials evoked by transcranial magnetic stimulation.

Electroencephalogr Clin Neurophysiol 89:415–423.

Kinouchi O, Copelli M (2006) Optimal dynamical range of excitable

networks at criticality. Nat Phys 2:348–351.

Klimesch W (2012) Alpha-band oscillations, attention, and controlled

access to stored information. Trends Cogn Sci 16:606–617.

Kroeger J, Baeumer T, Jonas M, Rothwell JC, Siebner HR,

Muenchau A (2010) Charting the excitability of premotor to

motor connections while withholding or initiating a selected

movement. Eur J Neurosci 32:1771–1779.
Please cite this article in press as: Fedele T et al. Long-Range Temporal Correla

intracortical facilitation: Combined TMS and EEG study. Neuroscience (2016),
Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert

A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical

inhibition in human motor cortex. J Physiol 471:501–519.

Kundu B, Johnson JS, Postle BR (2014) Trait-like differences in

underlying oscillatory state predict individual differences in the

TMS-evoked response. Brain Stimul 7:234–242.

Lackmy-Vallee A, Giboin L-S, Marchand-Pauvert V (2012) Non-linear

input-output properties of the cortical networks mediating TMS-

induced short-interval intracortical inhibition in humans. Eur J

Neurosci 35:457–467.

Liepert J, Classen J, Cohen LG, Hallett M (1998) Task-dependent

changes of intracortical inhibition. Exp Brain Res 118:421–426.

Liepert J, Schwenkreis P, Tegenthoff M, Malin JP (1997) The

glutamate antagonist riluzole suppresses intracortical facilitation.

J Neural Transm 104:1207–1214.

Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001)

Long-range temporal correlations and scaling behavior in human

brain oscillations. J Neurosci 21:1370–1377.

Linkenkaer-Hansen K, Nikulin VV, Palva JM, Kaila K, Ilmoniemi RJ

(2004) Stimulus-induced change in long-range temporal

correlations and scaling behaviour of sensorimotor oscillations.

Eur J Neurosci 19:203–211.

Linkenkaer-Hansen K, Smit DJA, Barkil A, van Beijsterveldt TEM,

Brussaard AB, Boomsma DI, van Ooyen A, de Geus EJC (2007)

Genetic contributions to long-range temporal correlations in

ongoing oscillations. J Neurosci 27:13882–13889.

Lioumis P, Mustanoja S, Bikmullina R, Vitikainen A-M, Kičić D,
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Löfberg O, Julkunen P, Pääkkönen A, Karhu J (2014) The auditory-

evoked arousal modulates motor cortex excitability. Neuroscience

274:403–408.

Maeda F, Gangitano M, Thall M, Pascual-Leone A (2002) Inter- and

intra-individual variability of paired-pulse curves with transcranial

magnetic stimulation (TMS). Clin Neurophysiol 113:376–382.
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