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A b s t r a c t .  We use the theory of tilting modules for algebraic groups to propose 

a characteristic free approach to "Howe duality" in the exterior algebra. 

To any series of classical groups (general linear, symplectic, orthogonal, or 

spinor) over an algebraically closed field k, we set in correspondence another series 

of classical groups (usually the same one). Denote by G1 (m) the group of rank 
m from the first series and by G2 (n) the group of rank n from the second series. 

For any pair (Ga(m),G2(n)) we construct the Gl(m) x G2(n)-module M(m,n) .  

The construction of M(m,  n) is independent of characteristic; for char k -~ 0, the 

actions of Gl(m) and G2(n) on M ( m , n )  form a reductive dual pair in the sense 
of Howe. 

We prove that  M ( m , n )  is a tilting Gl(m)- and G2(n)-module and that  

Endvl(m) M(m, n) is generated by G2(n) and vice versa. The existence of such 

a module provides much information about the relations between the category 

/(:l(m, n) of rational G1 (rn)-modules with highest weights bounded in a certain 

sense by n and the category /C2(m,n) of rational G2(n)-modules with highest 

weights bounded in the same sense by rn. More specifically, we prove that  there is 

a bijection of the set of dominant weights of Gl(m)-modules from/Cl(m, n) to the 

set of dominant weights of G2(m)-modules from K:2(m, n) such that  Ext groups 

for induced G](m)-modules from/Cl(m, n) are isomorphic to Ext groups for corre- 

sponding Weyl modules over G2(n). Moreover, the derived categories DblCI (m, n) 
and DblC2(m, n) appear to be equivalent. 

We also use our study of the modules M(m, n) to find generators and relations 

for the algebra of all G-invariants in A ' (V  "1 @(V*)'2), where G =GL,,, Sp2,~, Om 
and V is the natural G-module. 
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I n t r o d u c t i o n  

In this paper we study modules for reductive algebraic groups from the 
classical series (general linear, symplectic, orthogonal, and spinor). For ex- 
ample, let us describe our results in the case of the symplectic series. 

Suppose k is an algebraically closed field of arbitrary characteristic. De- 
note by G1 = Gl(m) the symplectic group Sp2,,~ over the field k and by V 
the natural  2m-dimensional Gl-module. 

Let M = A~ n and let T1 be the set of all dominant weights of the 
group G1 such that  the corresponding Young diagram lies in the rectangle 
m x n. Note that  T1 is the set of all dominant weights of the Gl-module M. 
Moreover, for each A E T1 there is an Gl-extremal A-weight vector in M. 
Let K:I be the category of all rational Gl-modules such that  all their simple 
subquotients are of the form L(A) with A E T1. 

Suppose char k = 0. Then it is well known that  the algebra Endcl M is 
generated by a distinguished Lie subalgebra that  is isomorphic to the Lie 
algebra of the group G2 = G2(n) = Sp2n. It is a simple special case of 
Howe's theory of "reductive dual pairs" (see [9]). 

As a G2-module, M ~_ A ~  "~, where W is the natural 2n-dimensional G2- 
module. Let us define the set T2 of dominant weights for the group G2 and 
the category ]C2 of G2-modules in the same way as T1 and K:I (with m instead 
of n). Since in characteristic 0 any Gi-module (i ---- 1, 2) is semisimple, it 
follows that  M is a G1 x G2-module with simple spectrum and the functor 
F : X ~-* Horn(M, X) yields an equivalence of the category K;1 and the 
category ]C~. 

We show that  in the case of arbitrary characteristic the group G: also acts 
on M by Gl-automorphisms, and there is a G2-isomorphism M "~ A ' W  m. 
Since the category of Gi-modules is not semisimple for char k r 0, the sit- 
uation becomes more complicated. To study it we use the theory of tilting 
modules for quasi-hereditary algebras, see [4, 12, 7]. 

The category K:~ is naturally equivalent to the category of modules over the 
generalized Schur algebra S~ = S(G~, T~) (see [6]), which is quasi-hereditary. 
Any Gi-module from K:i can be viewed as Si-module and vice versa. 

We prove that  M is a tilting G~-module, that  is, M has both Weyl and 
good filtrations. Moreover, we show that  M is a full tilting Si-module. Using 
this, we prove that  the ring of Gl-endomorphisms of M is generated by the 
image of G2 and vice versa. More precisely, we show that  Ends1 M - 82 
and Ends2 M -~ S~. We consider this as a generalization of Howe's theory 
of reductive dual pairs to the case of arbitrary characteristic. 

The theory of tilting modules provides us with more information than just 
the fact that  S~ and $2 are mutual commutants. For example, we prove that  
the functor F takes any induced Gl-module Vz()~) with A E T1 to Weyl 
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G2-module A2(,kt ) ,  where A --* )~t is an order-reversing bijection of T1 onto 
T2. Moreover, the functor F yields an equivalence of the category ~(V1) of 
Sl-modules admitting good filtration and the category ~'(A2) of S2-modules 
admitting Weyl filtration. Besides, for any two modules X , Y  E E(V1) and 
any k 7> 0 we have 

Ext,2 (FX, F Y  ) = Ex t~  (X, Y). 

In particular, 

= V l ( , ) )  

for any k ~> 0 and A,/~ E T1. 
In the language of derived categories the corresponding result sounds even 

better: the functor R F  : DbIC1 ---, DblC2 yields an equivalence of triangulated 
categories. 

In the study of dual pairs [9] Howe used the well-known description of the 
ring of vector invariants for the classical group G1 in terms of generators 
and relations (see [14]). He considered (for chark -- 0) three alternatives: 
the invariants in the symmetric algebra, in the tensor algebra, and in the 
exterior algebra of the sum of several copies of the natural Gl-module. For 
char k > 0, the invariants in the symmetric algebra were studied by De 
Concini and Procesi in [5]. The description of invariants in the tensor algebra 
follows easily from the description of invariants in the symmetric algebra. 

We produce a characteristic free description of invariants in the remaining 
case of the exterior algebra. The exterior algebra A~ n is just our module 
M, and the subalgebra of Gl-invariants is the space of all Gl-extremal 0- 
weight vectors. It follows from our results that this space is isomorphic to 
the Weyl module for the group G2 with highest weight 0*. Using this, we 
show that 

(1) The subalgebra of Gl-invariants is generated by the divided powers 
r of the classical basic invariants Crs- 

(2) All the relations for these generators follow from the standard rela- 
tions for divided powers and the relations of the form ~(r = 0, 
where s(r is a skew-symmetric tensor of rank more than 2m ex- 
pressed in terms of the generators Cr~. 

We get similar results for all other classical series as well. In the case of 
the general linear series our results (except for the description of invariants) 
were proved by Donldn in [7] (or follow easily from the facts proved there). 
Our proof is based on a different approach and applies to all series of classical 
groups. 

The paper is organized as follows. In Section 1 we recall some defini- 
tions and facts about algebraic groups, quasi-hereditary algebras, and til- 
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ting modules. In Section 2 we state our main result, i.e., Theorem 2.1, and 

derive some of its consequences. Sections 3 and 4 contain the proof of The- 

orem 2.1. In Section 5 we use Theorem 2.1 to find generators and relations 

for the subring of G-invariants in the exterior algebra. 

1. Pre l iminar i e s  

Throughout this paper the ground field k is algebraically closed. 

Let G be a connected reductive linear algebraic group over k, let T be a 

maximal torus of G, and let B + D T and B -  D T be two opposite Borel 

subgroups. 
Let X = X(T) be the weight lattice, R the root system, R + the system 

of positive roots which makes B + the positive Borel subgroup and B -  the 
negative Borel subgroup, R -  = - R  +, and let II be the set of simple roots. 

The weight lattice X is partially ordered: for A, # E X we write A ~ # iff 
# - A is a sum of simple roots. We define the T-module L~ as k with the 

action of T via A E X. 
Let W ---- Nc(T)/CG(T) be the Weyl group, let ( , / be a nonsingular, 

symmetric, positive definite W-invariant form on ~ | X, and let ]]AII - 
x/(A,A) for A E ] R |  Let X + = { A e X  [ (a,A) ~ > 0 f o r a l l a  e l l }  be 
the set of dominant weights. If A E X + and # > A, then [I/z[[ > [[A[[. 

Suppose V is a rational G-module. By V ~ we denote the A-weight space 

of V. Let U + and U-  be the unipotent radicals of the groups B + and B - ,  
respectively. If v E V ~ and u E U +, then uv --- v + w, where w E (~ Vu 

(if u E U- ,  then w E (~) V~). 

An element v of a rational G-module V is called an extremal vector if 
uv  ---- v for all u E U +. The subspace of all extremal vectors in V is equal 

to the sum of its intersections with weight spaces. Any nonzero extremal 

vector of weight A in V generates a submodule with unique highest weight 

A. Conversely, any highest weight vector is extremal. 

Let x(A) be the Weyl character corresponding to a dominant weight A E 

X +. The following two indecomposable G-modules have the same character 

x(A): 
(1) The Weyl module A(A) with highest weight A. It is a universal 

G-module generated by a vector of highest weight A. By the word 

"universal" we mean that  for any G-module V that  is generated by a 

vector of highest weight A, there is an epimorphism A(A) --. V such 

that  the highest weight vector of A(A) maps to the highest weight 

vector of V. 
(2) The induced module V(A) = Ind G_ L~, where L~ is considered as a 

B--module  with trivial action of U- .  The socle L(A) of V(A) is a 
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unique (up to isomorphism) simple G-module with highest weight A. 
The head of A(A) is isomorphic to L(A). 

If #, A E X + and/~ ~ A, then 

Ext~(V(~) ,  V(A)) = Ext~(A(A), A(/~)) = 0. 

An ascending filtration 0 = M0 c M1 C .-- C M of a G-module M is 
called a V-filtration (A-filtration) if each successive quotient is isomorphic 
to V(A) (respectively A(A)) for some A E X +. A G-module M is called a 
tilting module if it has both V-filtration and A-filtration. We denote the 
class of all tilting modules by To. Any direct summand of a tilting module 
is also a tilting module (see [12, Theorem 2]). 

T h e o r e m  1.1. (rUngel, [12]; Donkin, [7, (1.1)]) For each A E X + there is 
an indecomposable G-module T(A) E Tc which has unique highest weight A. 
Furthermore, A occurs with multiplicity 1 as a weight ofT(A).  The modules 
T(A) form a complete set of nonequivalent indecomposable modules in 7-c. 

Now we recall some definitions from [6, 7]. 

Let T be a finite subset of X + which is saturated, i.e., whenever A E T 
and/~ is an element of X + satisfying/z ~< A, we have # E T. We say that  a 
G-module M belongs to T if the highest weights of all composition factors 
of M belong to T. Among all G-submodules belonging to T of an arbitrary 
G-module M, there  is a unique maximal one which we denote by OT(M).  
In particular, regarding k[G] as a left G-module via (x .  f ) (z)  = f ( zx ) ,  for 
x, z e G, f E k[G], we get a submodule Ov(k[G]). In fact, Or(k[G]) is a 
subcoalgebra of k[G]. The dual algebra S = S(G, T) = OT(k[G])* is called 
a generalized Schur algebra. We have 

d imS(G,  T) = :~-~ (dim A(A)) 2. 
AET 

Let M be a rational G-module belonging to T. Thus M is a right k[G]- 
comodule with structure map T M : M --~ M ~ k[G], say. Then T M i s  a 

G-module map, where G acts on M | k[G] with trivial action on the left 
factor. Applying the functor Or, we get the restriction T~ : O r ( M )  --* 
M | Ov(k[G]). But O r ( M )  = M, therefore r ~  gives M the structure o f  
a right Ov(k[G])-comodule and hence a left S-module. Conversely, starting 
with a left S-module M, and reversing the procedure, we obtain on M a 
structure of rational G-module belonging to T. In this way, the category 
of G-modules belonging to T is equivalent to the category of S-modules. 
Further on we study only finite-dimensional rational G-modules and do not 
distinguish between a G-module belonging to T and the corresponding S- 
module. 
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P r o p o s i t i o n  1.2. (Donkin, [6, (2.2d)]) For all left S-modules X and Y and 
k >1 0 we have Extw Y) = E x t , ( X ,  Y) .  

It  is clear from the definitions tha t  the set {L(),) [ A E T} is a full 
set of simple S-modules. Let T = {A(1) , . . . ,  A(r)}, where i < j when- 
ever A(i) < A(j). The  algebra S is quasi-hereditary with respect to the 
ordering L(A(1) ) , . . . ,  L(A(r)) of simple S-modules (see [6, 7]). The modules 
A(A(i)) form the set of s tandard S-modules with simple head; the modules 
V(A(i)) form the set of costandard S-modules with simple socle. By $'(A) 
(resp. ~'(V)) denote the class of finite-dimensional S-modules admit t ing a 
A-filtration (resp. V-filtration). For M E ~'(A) (resp. N E f ( V ) )  we denote 
by ( M :  A(A)) (resp. ( N :  V(A))) the multiplicity of A(A) in a A-filtration 
of M (resp. V(),) in a V-filtration of N). An S-module M is called a tilting 
module if it admits  a V-filtration and admits a A-filtration. Such an M is 
a sum of T(A(i)) 's and we call M a full tilting module if T(A(i)) occurs as 
a direct summand  for each i = 1 , . . . ,  r. We denote the class of all tilting 
S-modules by Ts. Clearly, S-module M E Ts iff M E TG as a G-module. 

Let M E Ts be a full tilting module and let S t ----- Ends  M.  We write 
endomorphisms to the right of M;  thus M is a right St-module.  There is a 
functor F : X ~-~ Horns(M, X) from the category of left S-modules to the 
category of left St-modules.  

T h e o r e m  1.3. (Ringel, [12, Theorem 6]) Let A~ = FV(A(i)) .  Then for 
each i = 1 , . . . , r  the St-module A t has simple head, L~ say, {Lt I i = 
1 , . . . ,  r} is a full set of simple St-modules, and S t is a quasi-hereditary 
algebra with respect to the ordering L~, . . . ,  L[ of simple St-modules. The 
modules A t form the set of standard S t -modules with simple head. Besides, 
the functor F yields an equivalence between the category .T'(V) of S-modules 
admitting a V-filtration and the category ~ ( A  t) of St-modules admitting a 
A t -filtration. 

By [12, Theorem 4 and Corollary 3] we have E x t k ( x , Y )  = 0 whenever 
X E 9~(A), Y E ~-(V), and k > 0. Hence E x t w  = 0 for k > 0. 
Besides, the module M has finite projective dimension, and the ring S has 
a finite resolution 0 --* S --. To --* T1 --+ --. -~ Tm --* 0, where Ti  E Ts (see 
[12, Theorem 5]). Thus  by [3, (2.1)] we have 

P r o p o s i t i o n  1.4. The functor R F  : Db(S-moa~ --~ Db(St-moa~ yields a n  
equivalence of triangulated categories. 

We also need the following two propositions: 
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P r o p o s i t i o n  1.5. (Donkin, [7, (3.2)]) For any X, Y �9 ~'(V) and k >~ 0 we 

have Ext , ,  (FX,  F Y )  = Extw Y) .  In particular, 

k t t Exts,  (A~, A,)  = Ext~(V(A(j)),  V(A(i))) 

for any k >/0 and j,  i 6 [1, r]. 

Denote costandard St-modules with simple socle by V~. 

P r o p o s i t i o n  1.6. (Donkin, [7, (3.1)]) For 1 < i , j  < r we have 

(T(A(i)) : V(A(j))) = i vy :  L~], 

where IVy: L~] /s the composition multiplicity. 

Let a : G --~ G (g H g") be an involutive anti-antomorphism such that 
qlT ---- idT. For example, if G = GLm, then we take g~ to be the transpose 
of the matrix g E G. Clearly, a maps U + to U -  and U -  to U +. Besides, 
such an anti-automorphism induces an anti-antomorphism of any generalized 
Schur algebra S J= S(G, T). 

In the sequel we fix such an anti-automorphism a for any group G under 
consideration. Thus we may view any left G-module (or S-module) V as 
a right G-module (S-module) via the anti-automorphism a: for any v E V 
and g E G we put vg = f v .  Further on we shall not distinguish between 
left and right G-modules (S-modules). 

Let V be a G-module. We define the transpose V ~ of the module V in the 
following way: as a vector space V ~ --- Hom(V, k), and the action of G on 

V ~ is given by (gf ) (v)  = f ( f v )  for all v E V, f E Horn(V, k), g E G. The 
functor "Transpose" is contravariant and exact. Besides, it has the following 
properties: 

�9 V;  

�9 chc V ~ = chc V; 
�9 E x t , ( V ,  W )  _~ E x t ~ ( W  ~, V ~ for k >/0; 
�9 

�9 If V admits a V-filtration, then V ~ admits a A-filtration, and vice 
versa. 

Let M be a G-module and let ( , ) be a bilinear form on M. This form is 

called contravariant if (gvl, v2) = (vt, f v 2 )  for all vl ,  v2 E M,  g E G. Since 
a is identical on the torus T, we see that  different weight spaces of M are 
orthogonal w. r. t. contravariant form. It is clear that  if V is a G-submodule 
of M and the form ( , )  is contravariant and nonsingular, then M / V  • - V% 
In particular, M - M ~ for any G-module M with nonsingular contravariant 

form. 
In [10] Mathieu proved 
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T h e o r e m  1.7. The G-module V(X) | V(p) admits a V-filtration. [] 

With the help of the functor "Transpose" we get 

C o r o l l a r y  1.8. The G-module A(A) | A(#) admits a A-filtration. [] 

C o r o l l a r y  1.9. Suppose v is highest weight vector in A(A) | A(#) (i.e., 
v is the tensor product of highest weight vectors of the two factors); then 
it generates a submodule that is isomorphic to the Weyl module: (Gv I ~_ 
A(A + , ) .  [] 

Combining Theorem 1.7 and Corollary 1.8 (see also [7]), we get 

T h e o r e m  1.10. If M,  N E 7"G, then M | N E 7"G. [] 

Now let us say a few words about classical groups. In the sequel we use 
the following notations. 

The symplectic group SP2m consists of all matrices preserving the bilinear 
form 

x~e,, yiei) --- ~ (xiy - i -  x - iy  i) 
i = - - m  i ~ - - r n  i ~ l  

on the vector space k 2"n with the standard basis ( e l , . . . ,  era, e - m , . . . ,  e - l ) .  
Here ~ '  means that  the summation is taken over i r 0. 

The orthogonal group O2,~ consists of all matrices preserving the quadratic 
form 

m m 
I . ~ 

on the vector space k 2m with the standard basis ( e l , . . . ,  e~,  e - m , . . . ,  e - l ) .  
The orthogonal group O2~+1 consists of all matrices preserving the quadratic 
form 

i = - - m  i-~ l 

on the vector space k 2"~+1 with the standard basis (e;, ..., era, e0, e-m, ..., e - l ) .  
We consider orthogonal groups only for char k ~ 2. 

For the groups GL,~, Sp2,~, S02m, and S02,~+1 we take the group of 
diagonal matrices from G for T and the groups of upper and lower triangular 
matrices from G for B + and B - ,  respectively. The group X = X(T)  has 
the natural basis (El , . . . ,  E'~), where the character r takes each matrix from 
T to its i-th diagonal entry. By A1,. . . ,  Am we denote the coordinates of the 
weight A E X in the basis (r 

If G = GL,~, Sp2m, and O2m, then we take matrix transposition for the 
anti-antomorphism a. Thus the bilinear form given by the unity matrix in 
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the standard basis of the na tura l  G-module is contravariant. If G = O2m+1, 
then we put  f = Q-lgtQ, where 

Q = d i ag ( I , . . . ,  1 , 2 , 1 , . . . ,  1). 

m m 

The standard contravariant bilinear form on the natural G-module is given 
by the matrix Q. 

We say that a weight A of the group GLm is a polynomial weight if all 
Ai ~> 0. The Young diagram ~(A) associated to a polynomial dominant 
weight A consists of A1 + - - -  + A,~ squares arranged in consecutive rows so 
that  i-th row has A~ squares. The rows are counted from top to bot tom and 
arranged so that  they all start  from the same left extremity. In the same 
way we associate a Young diagram to any dominant weight of the groups 
Sp2m and S02m+1. In all these three cases the dominant weight A is uniquely 
determined by the Young diagram fl)(A). 

For any dominant weight A of the group S02m, we have A1/> . . . />  Am-1 >~ 
)tin ~ --,)tin_ 1. Let O(A) be the Young diagram with rows A1, . . . ,  Am-l, [Aml. 
The dominant weight A is uniquely determined by the Young diagram if)(A) 
and 6(A) = sign(Am). 

The groups O2,~ and O2,,+1 are not connected. Nonetheless the theory of 
tilting modules and generalized Schur algebras may be applied to them. 

Let G be one of these groups and let 0 be its maximal connected subgroup. 
Thus 0 = S02m or S02~+1. Let us describe what  we mean by dominant 
weights, Weyl modules, Weyl characters, etc. for the group G. As a rule, we 
denote the corresponding objects for the group 0 by the same letter with " 
over it: for example, by T we denote the maximal torus of 0 ,  etc. 

The Weyl group of the group G is defined in the same way as for connected 
groups: W = Na(T)/Ca(T ). Its action on R @z )~ preserves the same 
nonsingular, symmetric, positive definite bilinear form ( , ). 

Let B + = Na(B a:) and let T = Na(~') n B +. The group T is generated 
by 7 ~ and the element s E G \ 0 ,  where 

/ e_i, if G = O2,, and i = +m; 

s(ei) = -e~, if G = O2,,+1 and i = 0; 

[ e i ,  otherwise. 

Denote by g the image of s in the Weyl group W. Clearly, if G = O2m+1, 
then ~ is the unity element, and if G = 02,,,  then ~(A) = ,,~1 E1 71- - - .  "~- 
Am--1 grn-1 --  Amr m for any A : A1 E1 Ji- -- �9 -~ Am grn ~ if(, 

Any G-module M can be decomposed in a direct sum of simple T-modules. 
The isotypical components of M as T-module play the role of weight spaces 
for the G-module M.  
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Let X be the set of all pairs (D, ~ )  such that D is an S-orbit in )C and 

6 �9 
if Iol 

[ { - 1 ,  +1}, i f l 9  I 

Suppose A �9 X; then by 6(A) we mean the 
(D, 6 )  = A. If [D[ = 1, then we denote by 
[D[ = 2, then we denote by A the element of 
positive. In any case we denote by A1,. . . ,  Am 
standard basis of )( .  

Let 

= 2;  

= 1 .  

second element of the pair 
the unique element of D; if 
D with the last coordinate 
the coordinates of A in the 

~Lx, if ~(A) -- + l ;  
L ~ = [ L  x ~ L , x ,  i f |  

We define the action of s on L~ as follows: if | -- + l ,  then s acts via 
multiplication by | if | -- 0, then s acts via interchanging the direct 
summands L~ and L,x. Thus L~ becomes a T-module. It is clear that  
{L~ [ A E X} is a full set of simple T-modules. We call the elements of X 
the weights of the group G. 

We denote by G the free Z-module with the basis (eX)xex. For any finite- 
dimensional G-module M, we define its formal character 

chM---  ~ [ M : L ~ ] e  ~EG. 
AEX 

We call a weight A E X dominant, if the weight A of the group G is 
dominant. The set of dominant weights is denoted by X +. For a dominant 
weight A E X + we denote by ~(A) the Young diagram, corresponding to A. 
Clearly, the dominant weight A is uniquely determined by ffA(A) and G(A). 

Let us introduce the following paxtial order in the set X: put A > /z 
iff A > /2 or A > S/2. The simple G-modules are parametrized by their 
highest weights, which belong to X +. Denote the simple G-module with 
highest weight A by L(A). We define the Weyl character X(A) as the formal 
character of L(A) in characteristic zero. 

The Weyl module A(A) and the induced module V(A) axe defined in the 
same way as for connected groups. We have chA(A) = ch V(A) : X(A). 
It is readily seen that  with these conventions the theory of tilting modules 
and generalized Schur algebras for the group G is the same as for connected 
groups. 

We shall also s tudy spinor groups. Let us recall their definition. Assume 
that  chark  r 2. Let V = k 2m, and let C(~) be the Clifford algebra of the 
quadratic form ~ preserved by O2,,  We regard V as a subspace of C(~).  
Let us put V_ = (e_,~, . . . ,  e_m) and U = A~ The basis of U consisting 
of elements ei, A--. Aei k with il < .-.  < ik will be referred to as the standard 
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Let G be one of 

Spin2m, Pin,m, and 
that  char k r 2). 

basis of U.  It is well known that  U is a unique (up to isomorphism) simple 
C(~))-module. 

Denote by Pin2m the subgroup of the group of all invertible elements o f  
C(~)  generated by the elements v e V C C(~)  such that  v 2 = 1. It is a 

two-fold cover of the orthogonal group O2m. Abusing terminology, we shall 
call the natural O2,~-module V also the natural Pin2m-module. The vector 
space U,  regarded as a Pin2m-module, is called the spinor Pin,m-module. 

The preimage of SO~,~ under the natural projection Pin2m --~ O2m is 
denoted by Spin2, ~. Note that  Spin2m = Pin2,~ AC+(~), where C+((~) is the 
even part of the Clifford algebra C(r  Let us call Spin2, ~ the special spinor 
group. 

The anti-automorphism a can be naturally extended from the orthogonal 
group to the corresponding spinor group We consider the anti-automorphism 
of the Clifford algebra that  takes ei to e_i for i = + l , . . . ,  =kin. The restric- 
tion of this anti-automorphism to the spinor group (special or general) is the 
desired anti-automorphism a. The bilinear form given by the unity matrix 
in the standard basis of U is contravariant. 

Now let V -- k 2m+1 and let ~ be the quadratic form on V that is preserved 
by the group O2m+1. The vector space U = A ' V _  is a unique (up to 
isomorphism) simple C+((I))-module. The spinor group Spin2m+l is a subset 
of C+(~) defined in the same way as Spin2m. It is a two-fold cover of 
the special orthogonal group S02m+1. The anti-automorphism a can be 
naturally extended from SO2m+l to Spin2,~+ 1 in the same way as in the even 
case. The standard contravariant bilinear form on U is again given by the 
unity matrix in the standard basis. 

Any weight A of the special spinor group Spin2m or Spin2,~+ 1 can be 
expressed as A = Ale 1 q- --. + A,~ m, where either Ai E Z for all i E [1,m], 

1 for all i E [1,m]. Here by r we denote the weights that  or A~ E Z + 7 
correspond to the elements of the standard basis for the weight lattice of the 
corresponding special orthogonal group. 

�9 For a dominant weight A of the group Spin2m or SFin2m+l , we define 
!0(A ) as the Young diagram with rows [A~],..., [A,~-I], [[Am[], where brackets 
denote the integral part. We also put  G(A) = sign Am. The dominant weights 

for the group Pin2m are defined in the same way as for the group O2m. 

the groups GLm, Sp2m, 02,~, S02m, O2m+1, S02,,+1, 
Spm2m+l (for orthogonal and spinor groups we assume 

We shall consider the following category C of G-modules. If G is a sym- 
plectic or orthogonal group, then C is the category of all finite-dimensional 
rational modules. If G is a general linear group, then C is the category of 
all finite-dimensional polynomial modules (that is, the modules such that  all 
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their weights are polynomial). If G is a spinor group, then the category of all 
finite-dimensional rational modules is the direct sum of two subcategories: 
the first one consists of the modules with integral weights (this subcategory 
is equivalent to the category of all finite-dimensional rational modules over 
the corresponding special orthogonal group) and the second one consists of 
modules with the coordinates Ai of all the weights in 7, § ~. We take the 
latter subcategory for C. 

Let 3s be the set of dominant weights of G-modules from C. To any 
dominant weight )~ we have assigned the Young diagram ~(A). If G = 
S02,,~, Spin2,n, O2,~, O2,,+1, then the dominant weight ~ E 3s + is uniquely 
determined by ~(A) and G(A); if G is any other group from our list, then 
the dominant weight A E 3s is uniquely determined by r alone. 

There is a standard partial order in the set of Young diagrams: if) >7 fly 
i i 

iff ~ ki/> ~ k~ for all j ,  where ki (resp. k~) is the length of the i-th row of 
i~- I i = l  

the diagram ~V (resp. ~ ) .  We introduce the induced partial order in the set 
3s i.e., we write A > p iff ~(A) > ~(p) .  This partial order is stronger than 
the restriction of the standard partial order in the weight lattice X to 3s 

2. T h e  m a i n  t h e o r e m  

Let ra and n be nonnegative integers and let (G1, G2) be one of the fol- 
lowing pairs of classical groups: (GLm, GLn), (Sp~m, Sp~n), (02m, S02.), 
(O~,n+l, Spin2,., ), (Pin,m, S02n+1), and (Spin2m+l , Spin~,~+l). For ortho- 
gonal and spinor groups we assume that  char k ~ 2. 

We mark the sets X, 3s category C, elements (~},  etc. corresponding 
to the group G1 (resp. G2) by the subscript 1 (resp. 2). 

Note that  m is the rank of the group G1 and n is the rank of the group 
C2. When we want to emphasize it, we shall write G1 (m) instead of GI, 
G2(n ) instead of G2, 3s instead of 3s Cl(m) instead of C1, and so on. 

Let ]C1 (m, n) be the category consisting of Gl(m)-modules from C~ (m) 
with the weights such that  all their coordinates are less than n § 1. We have 

oo 

]Cl(m,n) C K~(m,n§ 1) for n = 0, 1 , . . . ,  and Cl(m) = [.J ]C,(m,n). When 
n ~ 0  

m and n are fixed, we write IC1 instead of 1C1 (m, n). 

Denote the set of dominant weights of modules from ]C1 by T1 -- T l (m,  n). 
Clearly, the weight ~ E 3s belongs to T1 iff the corresponding Young dia- 
gram ~(A) lies in the rectangle m • n. The set T1 is partially ordered as 
a subset of the partially ordered set 3s Recall that  this order is stronger 
than the standard order in the weight lattice X1. 

It is readily seen that  the set T~ is saturated, and thus the category ]C1 is 
equivalent to the category of finite-dimensional modules over the generalized 
Schur algebra S1 = S l ( m ,  n) -= S(G1, T:).  
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m 

n 

m 

I 

 9(A)  9(At) 

FIGURE 1 

We define the subcategory ](:2 = ]C2(m,n) C C2(m) and the partially 
ordered subset T2 = T2(m,n)  C ~+ in the same way as/C1 and T1 (with m 
and n interchanged). The  weight A E :~+ belongs to T2 iff the corresponding 
Young diagram ffJ(A) lies in the rectangle n • m. The set T2 is saturated and 
the category ](:2 is equivalent to the category of finite-dimensional modules 
over the generalized Schur algebra $2 = S2(m, n) = S(G2, T2). 

For A E T1 we define A t E T2 by the following conditions: 

(1) ~J(A t) is the transpose of the complement of ffJ(A) in the rectangle 
m x n (see fig. 1). 

(2) if G1 = O2m, O2,~+~, then 6(At)  = 6(A). 

It is clear that  the correspondence A ~-* A t is an order-reversing bijection 
TI ~ T2. 

For i = 1, 2 by A,(A) (resp. V,(A)) we denote the Weyl (resp. induced) 
G,-module with highest weight A E X +. By ~'(A,) (resp. ~-(V,)) denote 
the class of finite-dimensial Si-modules admitt ing a Ai-filtration (resp. Vi- 
filtration). 

T h e o r e m  2.1. Let m and n be arbitrary nonnegative integers. There exists 

a G , ( m )  • G2(n)-module M = M ( m , n )  such that 

(1) M is a full tilting Sl-module and a full tilting S~-module; 

(2) the natural homomorphisms S1 --* Ends2 M and $2 ~ Ends,  M are 
isomorphisms; 

(3) there is an Sl-isomorphism A~(A) ~ ,  Homs2(M, V2(At)) and an 

S2-isomorphism A2(At) "~, Horns, (M, V~(A)) for each A E T~. 

The proof of this theorem is to be found in the next two sections. 
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Let F :/C1 --+/C2 be the functor given by F X  = Horn(M, X). By Theorem 
2.1(3) we have FVI(A) -~ A2(A?). 

Now we can apply to the Sl-module M Theorem 1.3 and Propositions 1.4, 
1.5, 1.6. Since by Theorem 2.1(2) the conjugate algebra $I is isomorphic to 
the generalized Schur algebra $2, we obtain (with the help of Proposition 
1.2) the following corollaries. 

Corol lary  2.2. The functor R F  : Db(/C~) --~ Db(/C2) yields an equivalence 
of triangulated categories. 

Corol la ry  2.3. For any X , Y  E ~'(V1) and k >~ O, we have 

Ext~2(FX, F Y  ) = Ext~2 (X, Y). 

In particular, 

Ext~  (A2 (At), A2(#t)) = Ex t~  (V 1 (,~), Vl (~)) 

for any k >~ 0 and A, p E T1. Similarly, 

Ext , ,  (A~ (A), Al(/Z)) = Ex t~  (V2(At), V2(#t)) 

for any k >/0 and A,/z E T1. 

Corol lary  2.4. For A,/z E T1 we have 

(Wl()~) : VI(p)) = [V2(/zt): L2(At)]- 

Similarly, 

(T2(#t) : V2(At)) --- [VI(A): LI(/~)]. 

Remark. In [7, Section 3] Donkin obtained similar results for G1 = GLm. 
He considered the set T(r) C 3s + consisting of all weights with Young dia- 
grams of r squares. In this case the corresponding generalized Schur algebra 
S(G1, T(r)) is the classical Schur algebra S = S(m, r). Donkin proved that 
Ar(V n) (where V is the natural m-dimensional Gl-module and n/> r, m) is 
a full tilting S-module and that the conjugate algebra S t is isomorphic to 
a generalized Schur algebra of the group G2 = GL,.  In his approach the 
corresponding map A H At from T to T t c 3C + is the transposition of the 
Young diagram. 
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3. C o n s t r u c t i o n s  

In this section we construct the G1 • G2-module M for different pairs of 
classical groups G1 and G2 listed in the previous section. We also obtain 
some elementary properties of M. 

Let V be the natural G1-module and let W be the natural G2-module 
(recall that for a spinor group by the natural module we mean the natural 
module for the corresponding orthogonal group). We denote the standard 
bases of the vector spaces V and W as follows: 

V Standard basis W Standard basis 
k m ( e l , . . .  ,era) k" (fl ,--- ,fn) 
k 2"~ (e l ,  �9 �9 �9 era, e _ ~ , . . . ,  e _ l )  k 2" ( f l , . - - ,  fn, f - , , - . . ,  f -L) 
k 2"~+1 ( e ~ , . . . , e m ,  eo, e _ m , . . . , e _ l )  k 2n+x ( t x , . . . , f n ,  f0, f _ , , . . . , f - ~ )  

If G1 -- GL,,~ (thus G2 -- GLn), then we denote by e_i the i-th element of 
the dual basis for V* and by f_j the j - th  element of the dual basis for W*. 

If V = k:m,k 2m+1, then we denote the linear span of the vectors 
e_,~, . . .  ,e_1 by V_. Similarly, i f W  = k2",k 2"+1, then we denote the linear 
span of the vectors f - n , - . . ,  f-~ by W_.  

Let the vector space N and its subspaces N1, N2 be defined by the fol- 
lowing table. 

G1 G2 N N1 N2 

GL,, 

Sp2,~ 

02m 

O2m+l 

Pin2m 

Spin2m+ l 

GL, 

Sp2n 

V |  
@ V * |  

V |  

V @ W *  

V |  

V * |  

V _ |  

SO2. 

Spin2. 

S02,,+1 

Spin2n+l 

V |  

V @ W  

V @ W  

V |  

V| 

V |  

V |  
ev_| 

V| 
�9 V_| 

V _ |  

V _ @ W  
e0@W_ 

V _ @ W  

V _ |  
@ e0@W- 

The elements of the form rid -- ei | fl constitute a basis for N. 
We introduce a quadratic form ~ on N as follows: 

r v j  | fj) = ~-:~(Vj, V_ j l l  -- (Vo, Voll,  
j---n i=1 

where ( , 11 is the pairing of V* with V in the general linear case, the 
standard Gl-invariant skew-symmetric bilinear form on V in the symplectic 
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case, and the polarization of the standard Gl-invariant quadratic form on V 
in the orthogonal (or spinor) case. Clearly, the last term (vo, v0)l appears 
only for W = k 2n+1. On the other hand, it is readily seen that  

m m 

�9 ( ~ e, |  ~ ' ( w , , w _ , / 2  - (w0,w0)2. 
a r n  i = l  

Therefore the natural action of each of the groups G1 and G2 on N preserves 
�9 . The actions of these two groups on N are permutable, hence the group 
G1 • G2 acts on N by orthogonal (w.r.t. ~) transformations. This action of 
G1 • G2 on N extends uniquely to the action on the Clifford algebra C(ff) 
by automorphisms. 

We put MI  = A ' N 1  and Ms = A ' N 2 .  If G1 = Pin2m, Spin2m+x, then we 
have Mx "~ (A~ | | (A'V_) .  Recall that  A 'V_ is the spinor Gl-module. 
For all other cases we have M1 ~ (A'V) | Thus M1 has natural structure 
of Gl-module. Similarly, Ms has natural structure of G2-module. 

The standard Gl-contravariant form on V was introduced in Section 1. 
It naturally extends to the contravariant form on A~ If G1 = Pin2m, 
Spin2m+l , then we have also the standard Gl-eontravariant form on the 
spinor module. Thus we get the non-singular Gx-contravariant symmetric 
bilinear form ( , )1 on M1. In the same way we get the nonsingular G2- 
contravariant symmetric bilinear form ( , )2 on Ms. 

Let 

~C(~) ,  if d i m N  is even; 

C = [C+(~) ,  if d i m N  is odd. 

Since N1 and N2 are maximal isotropic subspaces of N, we see that  there 
are natural isomorphisms 7ri : C --* End~ M1 and r2 : C --* Endk Ms. 

There is a unique C-isomorphism ~ : M1 ~ Ms such that  

~ ( 1 ) :  A t i j .  
i=--rn j = l  

Let us identify the C-modules Ma and Ms via the isomorphism ~. Clearly, 
the forms ( , ) 1  and ( , ) 2  coincide after this identification. We shall write 
M instead of MI  and Ms; and ( , )  instead of ( , ) 1  and ( , ) 2 .  Thus M has 
the structures of Gl-module and G2-module. In addition, the bilinear form 
( , ) on M is Gx- and G2-contravariant. 

Proposition 3.1. The actions of Ga and G9 on M are permutable. In other 
words, M is a G1 • G2-module. 
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Proof. We have the commutative diagram 

G1 P ' ,  GL(M)  , ~ G2 

1 i, l 
Aut(C) '~ , P G L ( M ) ,  "" Aut(C) 

Here r is the canonical projection. The images of (71 and G2 in P G L ( M )  ~- 
Aut(C) commute. Let us show that the same is true for the images of G1 
and G2 in GL(M).  

Suppose gl �9 G1 and g2 �9 G2. Since their images r and ~(P2(g2)) 
in P G L ( M )  commute, we see that  pl(gl)-lp2(g2)-lpl(gl)p2(g2) �9 GL(M) 
is a scalar operator. Clearly, its determinant is equal to 1, hence it is an 
element of the finite group of scalar operators with determinant 1. But the 
group G2 is connected, therefore for all gl �9 GI, g2 �9 G2 we have 

pl(gl)- lp2(g2)-lpl(gl)P2(g2):pl(gl)- lp2(e2)-lpl(gl)P2(e2)=id,  

where e2 is the unity element of the group G2. Thus Pl(gl) and P2(g2) 
commute for all gl �9 G1, g2 �9 G2. [] 

Further on we shall use the realization of M as M1 : A'N1 (resp. M2 
A*N2) to study M as a Gl-module (resp. G2-module)..  

It is readily seen that  all the dominant weights of the Gl-module M1 
belong to T1, and all the dominantweights of the G2-module M~ belong to 

]'2- 
Suppose A E T1. Let k l , . . . , k ,~  be the lengths of rows of the Young 

diagram ~(A) and let k~, . . . ,  kt~ be the lengths of rows of the Young diagram 
~(At).  Let I = m - k~ and I t = n - kin. In other words, l is the number 
of nonempty rows of the diagram O(A), and I t is the number of nonempty 
rows of the diagram r 

Let us define the "row products" r~)( i)  E M,  and r(2~')(j) E M2, where 
i =  l , . . . , m a n d  j =  l , . . . , n .  W e p u t  

r~)(i)  -- t i ,-n A ti,-n+l A-- .  h t~,-n+k,-1 

and 

4")(/) = t_mj ^-.. ̂  t-m+k~-l,#" 

If (71 = O2,~, O2m-t-1 , then we put also 

r(~t)(_n) = ~'t_m,_~ A - . - A  t m+k~_l,_n, 
(t0,_~ A t_m,_~ A - - .  A t_m+~s 

if (71 = 02m, 

if GI = 02,,,+1. 
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/,~1 r~)(i) '  

ml~ ---- ~ (,~1 r~x, ( i))A q(Z), 

where 

Consider the following element of M,: 

if G1 ~ 02,,, O2~+1 or | ~ -1,  

if G1 = 02,,, O2,~+1 and | = -1,  

I =~+1(t', - �9 nA t _ i _ n )  ~ if G1 : O2~, 
q(/) i 

m 
(t0,-n A ,=A+a(ti'-" A t-i,-n), if G1 = O2m+l- 

It is easily checked that ml x is a Gl-extremal A-weight vector. 
Let m~ = ~(mt).  Then 

/--~1 2 ~ j, i fGar  O2m+l o r ~ ( A ) r  
m~ = =-1 

/ (-1- i~a r(2X')(i))A r(;U)(--n)' i f G 1  = 0 2 m ' O 2 m + l a n d ~ ( A ) : - l "  

Clearly, m2 x is a Gz-extremal At-weight vector. 
Denote by re(A) the vector in M that corresponds to m~ E M1 and to 

m2 x E M2 under the identification M = M1 = Mz. 

Propos i t ion  3.2. The character of M as GI • G2-module is 9iven by the 
formula 

ehGxxG, M= Z x I ( A ) x 2 ( A t ) '  
AETx 

where Xl(A) (reap. X2(A*)) is the WeUt ~h~ract~r for the g,~up Cl (r~,p. C2). 

Proof. Suppose char k = 0. Then the well-known description of the ring of 
vector invariants for the classical group G1 (see [14]) is essentially equivalent 
to the fact that the centralizer of the image of G1 in Endk M -~ C is generated 
by the image of the Lie algebra of the group G2 (see [9]). It follows that as 
a Ga x G2-module 

M ~ + L[ ') | L~ ), 
i=l  

where L~0's (resp. L(2')'s) are simple Gl-mOdules (resp. G2-modules), L~/) 
L~ ) and L~ ) ~ L(2 ~) for i r j .  

We have shown that for each A E T1 the vector m(A) E M is G1- and 
G2-extremal and belongs to the A-weight space w.r.t. G1 and to the A t- 
weight space w.r.t. G2. Hence for some i E [1, r] we have L~ ~) = LI(A) and 
L(20 = L2(At). Since all the dominant weights of the Gl-module M belong 
to T~, we see that for any j E [1,r] there is/~ E T~ such that L~ ~) = LI(#). 
Hence ,  

M ~ ( ~  L~(A) | L2(At). 
AETx 
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and thus the character formula is true for char k -- 0. But  the character of 
M doesn' t  depend on char k. [] 

Suppose K is a G1 • G2-module; then by K ~'~ we denote the u-weight 
space of K w.r.t. G1 and by K ~ we denote the fLweight space of K w.r.t. 
G2. Evidently, K ~,. is a G2-module and K ",~ is a Gl-module.  Let K ~'~ = 
K ~,. n K .,~. Since A ~-~ A t is an order-reversing bijection of T1 onto T2, we 
get from Proposit ion 3.2 

C o r o l l a r y  3.3. If  #, v E Tt  and v ~ #, then dim M ~'~t = O. 

C o r o l l a r y  3.4. For any A E T1 the Tt • T2-module M ~'~* is generated by 
re(A). 

Let YI(A) = (Glm(A)) and Y2(A t) = (G2m(A)). 

P r o p o s i t i o n  3.5. The Gx-module Yi(A) is isomorphic to AI(A) and the 
G2-module Y2(A t) is isomorphic to A2(At). 

Proof. Let us show tha t  YI(A) -~ A~(A). 
Denote by 1i the height of j - t h  column of the Young diagram !~ (A) (j = 

1 , . . . ,  n). Clearly, ll --- l. 
The highest weight vector m~, which was defined in terms of the "row 

products" r~ ~) (i), may also be expressed in terms of the "column products" 

C~)9(j) : tl,-n+j-1 A t2,-n+j-1 A ' ' "  A tl~,-n+j-1- 

It is readily seen tha t  

f:t :  /~ ~)( j) ,  if G1 ~ O2,~,O2m+~ or |  - 1 ,  1C 
ml~= 

[-4-Ci~)(1)Aq(/)A A Cl)9(j), ifGl=O2m, O2m+i and G(A) = - 1 .  
( j=2 

Let 
l, if G1 r O2,~, O2m+1 or | ~t - 1 ,  

q = 2 m -  l, if G1 -- 02,,  and | = - 1 ,  

2m + 1 - l, if G1 : O2,~+1 and G(A) -- - 1 .  

Now it is clear tha t  m l  x is unique (up to action of T1) highest weight vector 
in the G-module 

Aq(V@f_n) Aht2(V |  f_n+l)A .- -AAt"(V|  f_l) ~ h q V @ A t 2 V |  

(if G1 ~t Pin2m, Spin2m+,) or in 

A t` (V | f_n) A . . .  A At" (V | f_~) ^ h*(V_ | ~- A t ' V |  --" | At"V | h ~  

(if G1 = Pin2,,,, Spin2m+l ). By Corollary 1.9 it remains to show that  the 
highest weight vector of A~ (for spinor groups) and the highest weight 
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vector of AkV (with any k for orthogonal groups and with 0 ~< k ~ m for all 
other groups) generate submodules that  are isomorphic to Weyl modules. 

For G1 -= Pin2m, Spin2m+l the unique dominant weight of the spinor G1- 
module is minimal in ~1 +, hence the spinor Gl-module is isomorphic to the 
Weyl module (which is simple). The same argument applies to AkV for 

G1 = GL, , .  

For orthogonal groups (and thus for spinor groups) it can easily be checked 
that  AkV is generated by its highest weight vector. For example, we may 
apply the argument from [2, w 13], which is valid not only for char k -- 0 (as 
stated) but for char k ~ 2. 

For G1 = Sp2,, we may use [11, Lemma 2 and Proposition 1]. The authors 
of [11] assume that  chark  ~ 2, but the proof of the fact that  we need doesn't 
depend on this assumption. 

Thus we have proved that  Y~(A) ~_ A~(A). 

The isomorphism Y2(A t) _~ A2(At ) is established in the same way. [] 

4.  T h e  p r o o f  o f  t h e  m a i n  t h e o r e m  

Suppose G1, G2, and M are as in the previous section. We continue to 
study the G1 x G2-module M. 

Let T~ -- {A(1), . . . ,  A(r)}, where i < j whenever A(i) < A(j). Then T2 - 
( A t ( l ) , . . . ,  At(r)}, and i < j whenever At(j) < At(i). For each i --- 1 , . . . ,  r 
we put 

/ 

Mi = )-~(G2M"~t(3))- 
j = l  

It is evident that  Mi is a G1 • G2-module and that  0 -- M0 C M1 C --- C 
Mr  = M. We put M / =  M j M ~ _ I .  

For A E T1 we put ZI(A) --- {m E M *'~* I u m  -- m for all u E U+). In 
other words, Zl (A) is the subspace of all G2-extremal vectors in M *,~* . Since 
by Corollaries 3.3 and 3.4 A t is the highest weight of the G2-module M ~'*, 
we have M ~,~' C Zl(A), thus re(A) E Zl(A). Moreover, since the action 
of G1 on M is permutable with the action of G2, we see that  the subspace 
ZI(A ) is G~-invariant. In particular, YI(A) -- (Glm(A)) C Z~(A). 

P r o p o s i t i o n  4.1. Suppose A = A(i) E T1. Then 

(1) the Vl • T -moduZe Z (A) isomorphic to | L . ,  
(2) the • r i omo hic to V (A) | h2(At). 

Remark. The special case G1 = Sp2m, G2 = SL2 was considered in [1]. 

Proof. Let us show that  the first assertion of the proposition implies the 
second one. We need two lemmas. 
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L e m m a  4.1.1.  Gl-module ZI(A)  a is isomorphic to M~  '~' . 

Proof. Let ( , )M. .~ t  be the restriction of the form ( , )  to M "'~t, let ZI(A) • 
be the orthogonal complement of Zl (A) w.r.t. ( , )M. .~ t ,  and let 7r ''~' be the 
orthoprojector of M onto M ",~'. We have 

ZI(A)= ( N K e r ( u - i d ) ) A M " X '  =Tr"X'(  A K e r ( u - i d ) ) .  

Here and further on we use the same notation for elements of G2 and 
the corresponding elements of End M.  Since the operators u and u ~ are 
adjoint w.r.t, the nonsingular G2-contravariant form and since the anti- 
automorphism a maps bijectively U + onto U~-, we get 

Z , ( A ) •  I m ( u ' - i d ) ) =  ( ~ I m ( u ' - i d ) ) M M  ~ 
~'eu; ~'eu; 

Let us prove that  ZI(A) • = M:'_~I ' .  For any u'  E [/2, /3 6 X +, and 
m 6 M ~ we have 

u'm -- m E ~ M "'~. 

Hence 

I m ( u ' - i d )  M M  ~  ~ ( ( u ' - i d ) ( ( ~ M ' " ) )  MM~ 
u'ev~ u'eu~ 

Further, if 6 e X 2 is such that  6 > A t and M .'6 # 0, then 6 6 W27, where 
q' 6 T2, 7 > At, and W2 is the Weyl group for G2. Denote by x the preimage 
of 7 under the bijection T1 --* T2, then 7 = xt- Obviously, ~ < A, thus 
~r = A(j) for some j < i. Hence, 

M *,6 C_ ( G 2 M ' ' * )  C M j  C M~-I. 

Therefore, 

and 

On the other hand, 

u'6U~" 6>At 

ZI(A) -I- C I%'l"'lt 
-- *'"-i-1 �9 

i - 1  i - 1  

j = l  

Let us show that  the last sum lies in ZI(A) • 



22 A. M. ADAMOVICH AND G. L. RYBNIKOV 

Suppose 9 ~ G2. Consider the Bruhat decomposition g -= u~wu, where 
u'  ~ U~ ,  w E NG,(T2) ,  and u ~ U +. For any m ~ M ~ with j < i we 
have 

w u m  E ( ~  M 0''~'~, 

where ~ is the image of w in W2. Note that if A t = z07, then A t /> 7; besides, 
A t ~ At(j). Hence for any 7 >/At(j) we have A t r z07. 

Therefore r~  = 0. It follows that  

Hence, 

and 

Thus, 

~r*)J u'  w u m  = ~r *'~J (u'  - id)wum. 

~r *'~. (G2M *'~'0)} C 7r*,~' ( E I m C u ' -  i d ) ) =  Zz(A) • 

i - - 1  

j = l  

M e  )~t ~'-'I = ZI(A) • 

Since the form ( , ) M * J , t  is nonsingular and Gl-contravariant, we get 

t ;  - - e  )~t Z ,  ( A ) ~ = M "'~ , /M~'_ ~- M i ' . [ ]  

L e m m a  4.1.2. The  ~ t -we igh t  space M~ C M~ consists  o f  G2-ex t remal  

vectors. 

_----= �9 )~t l~re,)~t Proof. Let  IYa E M i '  , t ha t  is rh  : m + M i - 1 ,  where m E - - - i  = M * ' ~ t .  

Then for any u E U + we have u m  : m + n with n E (~ M *'~. Besides, 
/5)>~t 

if 6 > A t and M *'6 ~ 0, then M ~ C_ Mi-z (see the proof of Lemma 4.1.1). 
Hence u~a -- ~ ,  thus rh is a G2-extremal vector. [] 

Suppose the first assertion of the proposition is true. Then by Lemma 
_---= e , ~  t 

4.1.1 there exists a Gz -isomorphism 7/: Vx(A) --~ M~ . For any V E ~I(A) 
o,.~ t 

its image y(v)  E M i is a G2-extremal vector in M~ (see Lemma 4.1.2), 
therefore y(v)  is the highest weight vector of (G2~(v)). Hence there is a 
G2-epimorphism 0v : A2(At) --* (G2~(v)) c_ M~ that  takes the fixed high- 
est weight vector h E A2(A t) to y(v).  Let T be a G~ • G2-homomorphism 
Vl(A) | A2(A t )  --~ M~ such that  r ( E v |  : ~ 0 v ( w )  for all v E VI(A), 

w e A2(At). By definition we have M,  = (G2M~*'A'). Hence ~ is an epimor- 
phism. 
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Let us prove that r is an isomorphism. Assume the converse: Kerv  ~ 0. 

Let L be a simple G1 x G2-submodule of Ker r .  Then L -~ Ll(/z) | L2(u t) 
for some p, u E T1. We have the embeddings 

L ~ Socc~• ~-* Socc, xG2(VI(A) | A2(At)) 

(SocG, V,(A)) | A2(At ). 

Since Socc, V (A) ----- L I (A) ,  we see that = A, thus L LI (A)  | 
Let z be the highest weight vector of L (w.r.t. g l  x G2). Then z be- 

longs to the tensor product of the weight spaces VI(A) ~ @ A2(At) ~*. Since 
dimVi(A) ~ : 1, we have z = x | y with x E W~(A) ~, y E A2(At)vt. By 

definition z E L C_ KerT, hence ~'(z) = 0x(y) : 0. So the epimorphism 0~ 
has nonzero kernel, therefore A~(A t) ~ (G2y(x)). 

Since x E VI(A) ~ and 7/is a Gl-isomorphism, we see that ~?(x) is a unique 
=--= o,A t 

(up to scalar multiple) nonzero A-weight vector in the Gl-module M i . 
Hence (7/(x)) = M ~'~' + M,-1 and 

(G2r/(x)) = (G~M ~'~') + Mi-1 = Y2(A t) + M,_~. 

Further, we have Y2(A ?) C M ~,. and 

i - -1  i - -1  

M~_"I : )--~<G2M"~t(J)) ~ ' ~  )--~(G2M A'~'(i)) = 0 
j----1 j = l  

(the last equality follows from Corollary 3.3). Thus Y2(A t) A M~-I : 0 and 

IG2 (x)) y2(At) 

(we use Proposition 3.5). But  we saw that Ker 7 ~ 0 implies 

This contradiction proves that  T is an isomorphism. 
It remains to prove the first assertion of the proposition. Let us do it by 

induction on i. 
Let i : 1. Then A : A(i) is the minimal weight in T1 and A t = At(i) is the 

maximal weight in T2. Using Proposition 3.2, we get cb_v, M *'~* = XI(A). 

Since A is minimal, we see that  this character is irreducible. Hence the G1- 
modules M ~ LI(A), and AI(A) are isomorphic. At the same time ZI(A) 
is a nonzero submodule of M ~ therefore Zl(A) = M *'At ~" AI(A). Thus 

for i = 1 the first assertion of the proposition is true. 
Let j > 1 and • = A(j) E T1. Suppose the first assertion of the proposi- 

tion is true for all i < j .  Then the second assertion is also true for all i < j .  
Let us prove the first assertion for i = j .  

- - e ~ x  t 
L e m m a  4.1.3. chc, M j  : Xl(x)- 
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Proof. By Proposit ion 3.2  w e  have  

cha, x a 2 M  = Y~. X I ( , ~ ) X 2 ( , ~ t ) .  
)~ETx 

Hence, 

7 
cha, M ' "  = y ~  Xl(A)hx(;4 t) = ~-~Xl(A(i))h~(i)(;4t), 

)~ET1 ,=1 

where h~(;4 t) is the dimension of ;4t-weight space for the Weyl module 

On the other hand, the second assertion of the proposition for i < j 
implies tha t  

j --1 j--1 

cha~xa, M7-1 = cha,• ( ~ M ,  = ZxI(A(i))x2(At(i)). 
/=1 /=1 

Therefore 
j--1 

l~Al'*,sct cha, -'-7-1 = Y~ X1 (A(i))h~(i)(;4t). 
i=1 

__~  ~ M~ ~ Since have w e  ---7 / 7-z ,  

j 7 - 1  

chv, M--7 *''`t = ~ X1 (A(i) )h~(,) (;4 t) - ~ X1 (A(i)) h~(,) (sr t) 
i=1 i=1 

= Xa(~)h,,(;4 t) = X1(;4). [ ]  

By Proposit ion 3.5 we have chYl(;4)  = ch A1(;4) ---- X1(;4)- Combining 
Lemmas 4.1.1 and 4.1.3, we get chcl Zx(;4) -- X1(;4)- But  Y1(;4) is a sub- 
module of Zl (;4), hence as a e l -modu le  Zl (;4) = Y1 (;4) -~ Al (g ) .  [ ]  

Let Z2(A t) = {m e M ~'~ I um- - -  m f o r a l l u  e U+}. Clearly, it is a 
7'1 x G2-module, and Y2(A t) _C Z2(At). 

P r o p o s i t i o n  4.2.  Suppose A = A(i) E TI.  Then the T1 x G2-module Z2(A t) 
is isomorphic to lx | A2(At). 

Proof. We must  interchange G1 with G2 and repeat the proof of Proposition 
4.1 with filtration 

�9 " -D ~--~(G:M ~ D (G2M ~ D . . .  
j=i  j = i + l  

instead of filtration --. C M,  C M,+x C . . . .  
Since the group G~ is not  always connected, it is necessary to make some 

changes in the proofs of the  lemmas. For instance, if G1 is not a connected 
group, then its Weyl group doesn' t  act on X1, but  acts on X1 (the weight 
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lattice for the connected group r hence we must use the weight decom- 
position w.r.t. r as well as the weight decomposition w.r.t. G1. The details 
are left to the reader. [] 

Consider the generali~.ed Schur algebras $1 = S ( G1 ,T1) and $2 = S ( G2 , T 2 ) . 
Recall that the Gl-module M belongs to T1, hence it is an Sl-module; 
similarly, G2-module M belongs to T2, hence it is an S2-module. 

P r o p o s i t i o n  4.3. M is a .full tilting $1 -module and a full tilting S~-module. 

Proof. First let us show that M E Ts,. By the second assertion of Proposi- 
tion 4.1 the Gl-module M admits a Vl-filtration. Since the Gl-contravariant 
form ( , ) is nousingular, we see that  M ~ ___ M, hence M also admits a A1- 
filtration. 

Now let us show that  T1 (A) occurs as a direct summand of the Gl-module 
M for each A E T1. Indeed, the Gl-submodule M ~ is a direct summand 
of M, hence M ~ E Ts, and M .'~t is a sum of Tl(#) 's .  Moreover, by 
Corollary 3.3 we see that  )~ is highest weight of the Gl-module M ''~t. Thus 
TI(A) occurs as a direct summand of M ''~t and hence of M. The same 
argument show that M is a full tilting S2-module. [] 

Since M is an S2-module, we have a homomorphism r : $2 --* Endk M. 
The action of $2 is permutable with the action of $1, hence r C_ Ends, M. 

P r o p o s i t i o n  4.4. ~ : $2 --* Ends, M is an isomorphism. 

Proof. First let us show that  Ker r -- 0. 
Consider $2 as a left S2-module. By [6, (3.2a)], $2 admits a A2-filtration. 

Combining this with [12, Lemma 6], we see that  there exists an embedding 
$2 ~-* N, where N E Ts,. Since $2 is an algebra with unit, we see that  the 
representation of $2 in $2 is faithful, hence the representation of $2 in N is 
also faithful. Therefore the representation of $2 in any full tilting module is 
faithful. Thus r is a monomorphism. 

Now let us prove that  dim Ends~ M -- dim $2. We know that  

dimS2 ~- ~ (dimA2(~t)) 2. 
,~ET, 

Note that 

Ends, M _~ noma ,  (M, M)  ~_ Homa, (k, M|  ~ Homa, (V1 (0), M|  

By Proposition 4.3 we have M E Ta,. Hence M | M* ETa, ,  by Proposition 
1.10. In particular, M | M* admits a V-filtration. 

L e m m a  4.4.1. Suppose a Gl-rnodule N admits a Vl-filtration. Then 

dim Homa, (VI(0), N) = ( N :  VI(0)). 
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Proof. Suppose we have a short exact sequence of Gl-modules 

0 ---, 7 1  (A) --, N --, K - ,  0 ,  

and L admits a Vl-filtration. Applying the functor I-Iomcl (V1 (0), .), we get 
the long exact sequence 

0 --* HnomG, (VI(0), VI(A)) --* Home, (V1 (0), N) --* HomG,(V~(0), K) 

- - .  Ext, ,  ( V l ( O ) ,  V l ( , , ~ ) )  - - ~  . . . 

Since 0 ~ A, we have Ext~,(Vl(0), Vx(A)) -- 0. Hence we obtain 

dim Homal (V1 (0), N) = dim HomGl (V1 (0), K) + dim I'ioma, (V1 (0), V1 (A)). 

Since Socal Vx (A) _~ Lx (A), we have 

0, if A r 0; 
HomG,(VI(0),Va(A))~ k, if A = 0 .  

Thus, 

dim I'iOmG, (Va (0), N) --- dim It'on~, (V1 (0), K) + 6o.a. 

Now the lemma follows by induction on the length of Vl-filtration. [] 

Using the lemma, we get 

dimEnds, M = dimHomc, (VI(0), M | M*) = (M | M* : 71(0)). 

The last number equals (cha (M| : X1 (0)), that is the coefficient of Xx (0) 
in the expansion of chl (M| M*) as a linear combination of Weyl characters. 
By Proposition 3.2 we have 

Clearly, 

Thus, 

1, if ~ = A, 
(x,(A)xI(-U):  XI(0)) = 0, i f#  # A. 

dimEndsl M = ~ (dimA2(At)) 2. 
A s  

This completes the proof of the proposition. [] 

Propos i t ion  4.5. For each A E T1 there is an Sl-isomorphism Ax(A) ~ 
Homs2(M, V2(M)) and an S2-isomorphism A2(A t) ~ Horns, (M, VI(A)). 
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Proof. We have Homs~(M, V2(,~t)) = Homv~(M, V~()d)). Using the prop- 
erties of the flmctor "Transpose", we obtain 

�9 Homa~ (M, V2(,kt)) '~ Homa~ (V2(At) ~, M")  ~ Homv~ (A2 (At), M).  

The last module is naturally isomorphic to Zl (A), i.e. the subspace of all G2- 
extremal At-weight vectors in M. But Z~(,k) ~ A~()~), by Proposition 4.1. 

In the same way from Proposition 4.2 we obtain an S2-isomorphism 
Ag()~ t) "~, Homs,(M,  Va()~)). [] 

Propositions 4.1, 4.2, 4.3, 4.4 and 4.5 imply Theorem 2.1. 

5. Invariants  

Suppose G is one of the groups GLm, Sp2,n, or Ore. Let V be the natural  
G-module. For G = Gi,n (resp. G = Sp2m) we denote by (e~, . . . ,  e,~) (resp. 
( e l , . . . , e m ,  e _ m , . . . , e - 1 ) )  the standard basis for the vector space V. If 
G = GL,n, then we also need the dual basis (e~, . . . ,  e*)  for V*. If G = Ore, 
then  we assume that  chark  r 2, and denote by ( e l , . . .  ,era) an orthonormal 
basis of V (thus we are changing our notation). 

Let us consider the space 

(1) y e . . . e v e y - e . . . e v ; .  
n l  n 2 

We put 

A= A*(V VCV" V*). 

Our goal is to describe the subalgebra A a of all G-invariants in A. 

Let n = nl n u rb2. For G = Sp2,, or G -- Or, the G-modules V and V* are 
isomorphic, so we shall consider only the case n2 -- 0 (thus n ---- h i ) .  

Denote the basis of the j - th  summand in (1) by (e l~, . . . ,  emj) (if 1 ~ j ~< 
hi)  or by ( e ~ j , . . . , e ~ )  (if nl + 1 ~< j ~< n). 

Consider the following elements r E A: 

(1) Suppose G = GL,,~. Then we put 

m--k-{-1 m--k+2 

Z: Z "' 
i1=1 i 2 = i 1 + 1  i k = i k - - l + l  

for 1 ~< r ~< nl,  nl + 1 ~< s ~< n, and 1 ~< k ~< m. 
(2) Suppose G = Sp2m. Then we put 

m - - k + l  

= - - .  A A . . .  A A 

i x = l  i k = i ~ _ x + l  
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f o r l ~ r ~ n a n d l ~ k ~ < m .  We also put  

m - k + l  

r  Z " ' "  ( e i , ' A e - i , ' - - e - h r A e i , ' ) A " "  
i ; = l  i k = i k _  1-1-1 

for l ~ r  < s<. n a n d  l <. k<.~ m. 
(3) Suppose G = Ore. Then we put 

m-k..t-1 

r ~ " ' "  e i , ~ A e i , , A . . . A e i k ~ A e i h ,  
i x = l  ik=i~--l+l 

for l <<. r < s <~ n and l <~ k <. m. 

In all the cases we put  d~ (~ = 1 and dJ (k) = 0 for k > m. 
It is readily seen that r is the classical basic invariant of the group O 

(see [14]) and r is its k-th divided power. 

T h e o r e m  5.1. The algebra A G is generated by the elements r  listed above. 

Proof. We put G1 = G and 

I GL,, for G = GL,n, 

Sp2. for G = Sp2~, 

G2 = I S 0 2 "  for G = O., with rn even, 

[ Spin2. for G = Om with m odd, 

and consider the G1 • G2-module M = A" (V | W _ )  defined in Section 3. 
As Gx-module 

A ~ { M  | (AmV*)| f o r G = G L m ,  
for G = Sp2,~, O,~. 

Such an isomorphism is constructed as follows. For G = GL,~ we have 

A = h ' (V r  r v C y *  r  cV*)  
Y 

n l  n 2  

,A'v |  | A'v| |  | A'V; 
n I n 2  

" ~ A * V | 1 7 4 1 7 6 1 7 4 1 7 6 1 7 4 1 7 4 1 7 4 1 7 4  *) 

n l  n2 

_,-,,,,r |  | A - v |  o"~ ~_ A ' ( y  @... ~ V) | (.~'~V') | 
n n 

_~ A ' ( v  | f-x e . - .  �9 v | f_,) | (A~v*)  on~ -- M | (A'~V') ~ 

For other groups we just  have 

A =  A ' ( , V r  _~A ' (V |  e . - - e V |  M.  
Y 

n 
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Recall that  ( f - m , . . . ,  f - l )  is the basis of W_.  

We see that  A has a natural structure of G1 • G2-module (for G = GLm 
we regard (AmV*) | as a trivial G2-module). The subalgebra A c coincides 
with the subspace of Gl-extremal 0-weight vectors in A, hence 

/ M ~,~ @ (hmV*) | A = (n2, . . .  ,n~) for G = GLm, 
AG ~ " 7~ 

[ M  ~'., A = 0 for G = Sp2,~, Ore. 

By Proposition 4.1 the G2-module A G is isomorphic to the Weyl module 
A2(At), where 

, m , 0 , . . . , 0 )  f o r G = G L m ,  

At = ( m , . . . , m )  for G = Sp2m, 

m m 
( ~ - , . . . ,  ~-) for G = Ore. 

The unity element 1A of the algebra A belongs to A G and has weight 
At w.r.t. G2. Hence 1A is highest weight vector in A v -~ A2(At), thus 
A G = (U2--1A). 

For any algebraic group K we denote by H(K)  its hyperalgebra (algebra 
of distributions). By [8, Lemma 7.15], we see that  <UflA) = H(U~-)IA. 

Suppose c~ is a root of O2; then by X~ we denote the corresponding element 
of the Chevalley basis for the Lie algebra g2- We choose the Chevalley basis 
for the classical Lie algebra It2 as in [2, w 13]. The hyperalgebra H(U2) is 
generated by the devided powers X~ (~) for a E R2-. 

Consider the following subset of R~-: 

{ { 0 ( % s ) = e , - e r l l ~ < r ~ < n l , n l + l < s ~ < n }  f o r G - - G L m ,  

O =  { O ( r , s ) = - s , - E ,  l l  < . r < ~ s < . n }  f o r C = S p 2 = ,  

{8(r, s) = - e ,  - E, ] 1 <~ r < s <~ n} for G = O,~. 

It is clear that  X(~k)IA = 0 unless k -- 0 or a E O. 

Suppose E _ / / 2 ;  then by/d= we denote the subalgebra of H(G2) that  is 
generated by all X~ (k) with a E .--. and k e Z+. By the Poincar6-Birkhoff- 
Wit t  theorem for H(G2) (see [13, theorem 2]), we have H(U~) = He "Hp~-\o. 
Since A G = H ( U f  )IA and H R - \ o l  A ----- klA, we see that  A G = HolA.  

But for any a �9 A, 0 = O(r, s) E O, and k E Z+ we have Xs(k)a = r A a. 
This completes the proof. [] 

Let us describe relations for the generators r of the ring A G. 
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First of all we have standard relations for divided powers 

(2) ~b (k') A d~ (k~) ---- kl -{- 

Assume that  G = GLm. 

Suppose ar (for r e [1, n~]) and b~ (for s e [n~ + 1, n]) are nonnegative 

integers such that  ~ a~ = b8 > m. Then 
r = l  S~nl-{-1 

(3) ( - 1 )  A : 0, 
(kr~) r = l  s=nl-{-1 

where the summation is taken over all (k~)~e[1,ml,~e[,~+l,n I with k~ E Z+ 
nl 

such that  ~ k , 8 = a ~ ,  ~ k ~ : b ~ , a n d  
8=n1-[-1 r = l  

l((k!rs) ) = ~ kTl#lk~'282- 
7"1<:7" 2 

Assume that  G ---- Sp2,,. 

Suppose a~ (for r E [1, n]) are nonnegative integers such that  ~ ar = 2l, 
r---~l 

l E Z+, and l > m. Then 

(kr.) r=t s=r 

where the summation is taken over all (k~,)rell,nl,,eIr,,t with k~s E Z+ such 
:i--1 

that  ~ k O + 2kjj + ~.  kj~ = a~ for a n y j e [ 1 , n ] .  
r = l  s = j + l  

Assume that  G = O,,. 

Suppose a~ (for r e [1, n]) and 58 (for s e [1, hi) axe nonnegative integers 

such that  ~ a~ = ~ b, > m. Then 
r = l  $=I 

n r - 1  ~ ) 

(-1) r A r 0, 
(kr~) r = l  s = r + l  

where the summation is taken over all (kr~)~e[1,,~l,se[1,. ] with k~8 E Z+ such 

that  k~r = 0 for any r e [1, n], ~ k~. --- a~, kr8 = bs, and 
S=l r = l  

= 
rl ( r2  
81>82 

Clearly, it is enough to verify these relations over Z or, equivalently, over 
a field of characteristic zero, in which case they fol/ow from the fact that  the 
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rank of nonzero skew-symmetric tensor can' t  exceed the dimension of vector 
space (cf. the relations in Weyl's book [14]). 

T h e o r e m  5.2. All relations for the generators r of the algebra A a follow 
from the relations listed above. 

Proof. As we mentioned in the proof of the previous theorem, the G2-module 
A G is isomorphic to the Weyl module As(M ). The latter is a universal finite- 
dimensional/g(G2)-module generated by a vector of highest weight A t. In 
other words, A2(M) is isomorphic to the maximal finite-dimensional quotient 
module of the Verma module V(M). 

Let P be the quotient module of V(A t) by the submodule generated by 
X(~k)v with a E R2- \ O and k > 0 ,  where v is the highest weight vector of 
V(At). Clearly, the projection V(A t) ~ A2(At) factors through P.  By the 
Poincar&Birkhoff-Witt theorem for U(G2), we see that  P is a free/go-module 
of rank 1. 

Consider an arbitrary Uo-isomorphism T : Us -~ P .  With  the help of this 
isomorphism we introduce a structure of associative algebra on P .  Pu t  x (k) ---- 
T(X (k)) for all 0 E O and k �9 Z+. Since the algebra Uo is commutative,  
we see that  P is also commutative.  The algebra P may be defined as the 
algebra with generators x (k) (0 �9 O, k �9 Z+) and relations 

(6) .(kl)~(k2) (k l  + k2) 
~'0 "~0 = ]gl x(okl+k2)" 

Consider the/g(G2)-homomorphism ~ : P --* A v that  takes the unity ele- 
ment  1p �9 P to l a  �9 A c. It is easily shown that  it is an algebra homomor- 
phism. Besides, for any 0 = O(r, s) �9 0 and k �9 7/.+ we have ~(x(0 k)) ---- ~b (k) Tr$  ~ 

The relations (6) for the generators x(0 k) of P correspond to the relations (2) 
for the generators r of A c. 

Let I = Ker ~. We must  prove that  the ideal I is generated by the elements 
corresponding to the relations of the form (3), (4), or (5) (depending on the 
group G). 

(1) Let G = GL,~. The relation (3) correspond to 

"' f I  X ( a l '  . . . . . .  ' a " l  ; b("lJt-1)' ' b n )  : Z ( - -1 ) / ( (k r ' ) )  H :LE'--(kr')--$r �9 I .  
( k , , )  

Let a0 -- r - r Note that  

na --i 

X(al,  ., an,; b(m+l ), ., bn) 1-[ X("') . . . .  ~ En 1 --Ev- 

r----1 s----nl+l 

s~..~nl-{-2 

for k -~ a l  + - . . + a n l .  
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(2) Let  G -- Sp2,,. The  relation (4) corresponds to 

f l  ~ �9 "" 11 x_~._~. E I .  
(/r r=l s = r  

Let a0 = 2~,. We have 

n- -1  
X(a l ,  , an) ----- T-r xr(a~) Ok) 

"'" 11  Ai~--e~X-ao 
o r = l  

for k = (al + . . .  + an)~2.  

(3) Let  G = O,~. The relation (5) corresponds to 

2 r  an; bl, . . . , bn) = 

Y ~ ( - 1 )  '((k~')).,~, ( I I ( - 1 ) k " x ? / : ) - ~  11 x - ~ . - ~ , - ) ~ I "  
( k . , )  r = l  \ s = ,  s = r + l  / 

Let a0 = en- ,  + z , .  Suppose an- ,  = bn = 0; then  we have 

n - 2  n - 2  

X(a,,...,ao;bl,...,bo) = II  II  
r = l  s = l  

f o r k = a l + . - - + a n .  

Let  J be the ideal in P generated by X ( a ~ , . . . )  (for G = O m  we take 
for the generators of d only X ( a , , . . . ,  an; b l , . . . ,  b,) wi th  an-1 = bn = 0). 
Clearly, we have d C I.  I t  remains to show tha t  I C J .  

Firs t  we prove tha t  J is a H(G2)-submodule of P .  Let k > m. For 

a E P~  \ {~0} we have ~((~)~(k) = 0. At the same time, 

_ - re - 1 x(k~_oz) 

It  follows tha t  the linear span of the elements _(k) with k > re is / , [ (B+)-  

invariant. By  the Poincar~-Birkhoff-Witt  theorem for/A(G2), we see tha t  
the H(G2)-submodule of P generated by all x (k) wi th  k > re coincides with 

the / , / (U~)-submodule  generated by the same elements. 

Let  

f { z n , - z ~ l r < n l } w { r  l s > n l + l }  f o r G = G L m ,  

n =  ~ { E n -  r Iv < n} for G = Sp2m, 
l 

[ { z , - e ~ l r < n - 1 } U { z , _ l - z ~ l r < n - 1 }  for G = Ore. 

As we noted, the generators of J have the form 

with w l , . . . , w t  E ~ ,  k , , . , . , k t  E Z+, and k > re. 
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By the Poincard-Birkhoff-Witt theorem for L/(G2), we have/4(U~-) =/go"  
Ha. H~-\(oon). Since X(Olx(k)~, -~oJ ~ ----- 0 for any a e P~- \ (O t.J f/) and l > 0, 

7J X(k) ~ (k) Hence _ (k) ,~ _(k) U(U i )X_~o = U~ C J we see that ~'R;\(eoa) -ao = ~x-ao- "~'Qx-~o 

for k > m. Therefore the/i(G2)-submodule of P generated by all x-so-(k) with 

k > m coincides with J. Thus J is a//(G:)-submodule of P. 

Since x(0 k) E J for all 0 E O and k > m, we see that the algebra P/J is 
finite-dimensional. Hence P/J is a finite-dlmensional/4(G2)-module. Since 
J C_ I and P/I ~- A~(At), by universality of the Weyl module it follows that 

J = I . ~  

By the same method it is possible to get a similar description of invariants 
in exterior algebra for the groups SL,~ and SO,~. 

References 

[1] A. M. Adamovich, An analog of the space of primitive forms over a field 
of positive characteristic, Vestnik Mosk. Univ., Ser. Mat., Mech. (1984), 
no. 1, pp. 64-66 (in Russian). 

[2] N. Bourbaki, Groupes et Alg~bres de Lie. Chap. VII-VIII,  Hermann, 
Paris, 1975. 

[3] E. Cline, B. Paxshall and L. Scott, Derived categories and Morita theory, 
J. Algebra 104 (1986), 397-409. 

[4] E. Cline, B. Parshall and L. Scott, Finite dimensional algebras and highest 
weight categories, J. reine angew. Math. 391 (1988), 85-99. 

[5] C. De Concini and C. Procesi, A characteristic free approach to invariant 
theory, Advances in Mathematics 21 (1976), 330-354. 

[6] S. Donkin, On Schur algebras and related algebras /, J. Algebra 104 
(1986), 310-328. 

[7] S. Donkin, On tilting modules for algebraic groups, Math. Zeitschrift 212 
(1993), 39-60. 

[8] J. C. Jantzen, Representations of Algebraic Groups, Pure Appl. Math. 
131, Academic Press, 1987. 

[9] R. Howe, Remarks on classical invariant theory, Trans. of the AMS, 313 
(1989), 539-570. 

[10] O. Mathieu, Filtrations of G-modules, Ann. Scient. Ec. Norm. Sup. 23 : 2, 
(1990), 625-644. 

[11] A. A. Premet, I. D. Suprunenko, The Weyl modules and the irreducible 
representations of the symplectic group with the fundamental highest 
weights, Comm. Algebra 11 (1983), 1309-1342. 

[12] C. M. Ringel, The category of modules with good filtrations over a 
quasi-hereditary algebra has almost split sequences, Math. Zeitschrift 208 
(1991), 209-225. 



34 A. M. ADAMOVICH AND G. L. RYBNIKOV 

[13] R. Steinberg, Lectures on Chevalley Groups, mimeographed lecture notes, 
Yale Univ. Math. Dept., New Haven, 1968. 

[14] H. Weyl, The Classical Groups, Their Invariants and Representations, 
Princeton University Press, Princeton, 1939. 


