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Abstract In this paper, we study Jacobi forms of half-integral index for any even integral
positive definite lattice L (classical Jacobi forms from the book of Eichler and Zagier corre-
spond to the lattice A1 = 〈2〉). We construct Jacobi forms of singular (respectively, critical)
weight in all dimensions n ≥ 8 (respectively, n ≥ 9). We give the Jacobi lifting for Jacobi
forms of half-integral indices and we obtain an additive lifting construction of new reflec-
tive modular forms which are natural generalizations to O(2, n) (n = 4, 5 and 6) of the Igusa
modular form Δ5.

Keywords Jacobi forms for lattices and root systems · Theta-series and Weil
representations · Modular forms of orthogonal type · Lifting of modular forms
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1 Introduction

The divisor of a strongly reflective modular form with respect to an integral orthogonal group
of signature (2, n) is determined by reflections. Such modular forms determine Lorentzian
Kac–Moody Lie (super) algebras. The most famous reflective modular form is the Borcherds
function Φ12 with respect to O+(II2,26) which determines the Fake Monster Lie algebra
(see [1]). One can consider reflective modular forms as automorphic discriminants or multi-
dimensional Dedekind η-functions (see [2, 3, 17–20]). Reflective modular forms play also an
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important role in complex algebraic geometry (see [21] and [14]). All of them are Borcherds
automorphic products and some of them can be constructed as additive (or Jacobi) lifting. If
a reflective modular form can be obtained by a Jacobi lifting then one has a simple formula
for its Fourier coefficients which determine the generators and relations of Lorentzian Kac–
Moody algebras (see [17]).

In [14], the second author constructed the Borcherds-Enriques form Φ4, the automor-
phic discriminant of the moduli space of Enriques surfaces (see [2]), as Jacobi lifting,
Lift(ϑ(τ, z1) . . . ϑ(τ, z8)), of the tensor product of eight classical Jacobi theta-series (see
[11] for the definition of Lift which provides a modular form on orthogonal group by its
first Fourier–Jacobi coefficient). This new construction of Φ4 gives an answer to a problem
formulated by K.-I. Yoshikawa ([33]) and to a question of J.A. Harvey and G. Moore ([24])
about the second Lorentzian Kac–Moody super Lie algebra determined by the Borcherds–
Enriques form Φ4 and its quasi-pullbacks.

Another application of reflective modular forms of type Lift(ϑ(τ, z1) . . . ϑ(τ, z8)) is the
construction of new examples of modular varieties of orthogonal type of Kodaira dimension
0 (see the beginning of Sect. 2). The first two examples of this type of dimension 3 are related
to reflective Siegel cusp forms of weight 3 and Siegel modular three-folds having compact
Calabi–Yau models (see [5, 16] and [9]). In the case of dimension 4, the unique cusp form of
weight 4 was defined in [14] as a Borcherds product but it can also be constructed as a lifting
of a Jacobi form of half-integral index with a character of order 2 of the full modular group
SL2(Z) (see Example 3.4 in Sect. 2). Jacobi forms of half-integral index in one variable
are very important in the theory of Lorentzian Kac–Moody algebras of hyperbolic rank 3
corresponding to Siegel modular forms (see [17–19]). Moreover, they are very natural in
the structure theory of classical Jacobi forms (in the sense of Eichler and Zagier [8]) and in
applications to topology and string theory (see [7, 13]).

In this paper, we consider Jacobi forms of half-integral index for any positive definite
lattice L (Jacobi forms in [8] correspond to the lattice A1 = 〈2〉). Jacobi forms in many
variables naturally appeared in the theory of affine Lie algebras (see [25] and [26]). One
can consider Jacobi forms as vector-valued modular forms in one variable. Vector-valued
modular forms are used in the additive Borcherds lifting (see [3, Sect. 14]) which is a gen-
ralization of the Jacobi lifting of [11]. In this paper, we follow the general approach to Jacobi
forms proposed in [11]. The first section contains all necessary definitions and basic results
on Jacobi forms in many variables. It turns out that the order of the character of the integral
Heisenberg group of such Jacobi forms is always at most 2 (see Proposition 2.3). Using
the classical Jacobi theta-series, we give examples of Jacobi forms for the root lattices. We
show, at the end of the first section (Examples 2.8–2.9), that the natural theta-products give
all Jacobi forms of singular weight (or vector valued SL2(Z)-modular forms of weight 0
related to the Weil representation) for the lattices Dm.

In Sect. 2, we give the Jacobi lifting for Jacobi forms of half-integral index with a possible
character. This explicit construction has many advantages: one can see immediately a part
of its divisor, the maximal modular group of the lifting, etc. (Compare our construction of
Φ4 with the construction of S. Kondo in [28].)

We build many modular forms of singular, critical and canonical weights on orthogonal
groups. In particular, we give in Example 3.4 the Jacobi lifting construction of a new strongly
reflective modular form of singular weight on O(2,6). This modular forms gives a tower of
four reflective modular forms based on the classical Igusa modular form Δ5.

In Sect. 3, we analyze Jacobi forms of singular (the minimal possible) and critical (sin-
gular weight + 1

2 ) weights using the theta-products and their pullbacks (see Proposition 4.1–
4.2). In this way, we construct Jacobi forms of singular and critical weights in all dimensions
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n ≥ 8 (see Propositions 4.3–4.11). In particular, using this approach, we give a new expla-
nation of theta-quarks in Corollary 4.4, which are the simplest examples of holomorphic
theta-blocks (see [23]).

2 Jacobi group and Jacobi modular forms

In this section, we discuss Jacobi forms of orthogonal type. In the definitions below, we fol-
low the papers [10, 11] where Jacobi forms were considered as modular forms with respect
to a parabolic subgroup of an orthogonal group of signature (2, n).

By a lattice we mean a free Z-module equipped with a non-degenerate symmetric bilinear
form (·, ·) with values in Z. A lattice is even if (l, l) is even for all its elements. Let L2 be
a lattice of signature (2, n0 + 2). All the bilinear forms we deal with can be extended to
L2 ⊗ C (respectively to L2 ⊗ R) by C-linearity (respectively by R-linearity) and we use the
same notations for these extensions. Let

D(L2) = {[Z] ∈ P(L2 ⊗ C) | (Z, Z) = 0, (Z, Z) > 0
}+

be the (n0 + 2)-dimensional bounded symmetric Hermitian domain of type IV associated
to the lattice L2 (here + denotes one of its two connected components). We denote by
O+(L2 ⊗ R) the index 2 subgroup of the real orthogonal group preserving D(L2). Then
O+(L2) is the intersection of the integral orthogonal group O(L2) with O+(L2 ⊗ R). We
use the similar notation SO+(L2) for the special orthogonal group.

In this paper, we assume that L2 is an even lattice of signature (2, n0 + 2) containing two
hyperbolic planes

L2 = U ⊕ U1 ⊕ L(−1), U � U1 �
(

0 1
1 0

)

where L is a positive definite even lattice of rank n0 and L(−1) denotes its rescaling by −1.
We fix a basis of the hyperbolic plane U = Ze ⊕ Zf : e · f = (e, f ) = 1 and e2 = f 2 = 0.
Similarly U1 = Ze1 ⊕ Zf1. Let F be the totally isotropic plane spanned by f and f1 and
let PF be the parabolic subgroup of SO+(L2) that preserves F . This corresponds to a 1-
dimensional cusp of the modular variety SO+(L2)\D(L2) (see [21]). We choose a basis
of L2 of the form (e, e1, . . . , f1, f ) where . . . denote a basis of L(−1). In this basis, the
quadratic form associated to the bilinear form on L2 has the following Gram matrix

S2 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
0 0 0 0
...

... −S
...

...

0 0 0 0
0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where S is a positive definite integral matrix with even entries on the main diagonal. We de-
note the positive definite even integral bilinear form on the lattice L by (. , .) and the bilinear
form of signature (1, n0 + 1) on the hyperbolic lattice U1 ⊕ L(−1) by (. , .)1. Therefore, for
any v = ne1 + l + mf1 ∈ L1, we have (v, v)1 = 2nm − (l, l).
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The subgroup Γ J (L) of PF of elements acting trivially on the sublattice L is called the
Jacobi group. The Jacobi group has a subgroup isomorphic to SL2(Z). For any A = ( a b

c d

) ∈
SL2(Z), we denote

{A} :=
⎛

⎝
A∗ 0 0
0 1n0 0
0 0 A

⎞

⎠ ∈ Γ J (L), where A∗ =
(

0 1
1 0

)
tA−1

(
0 1
1 0

)
=
(

a −b

−c d

)
.

(1)
The second standard subgroup of Γ J (L) is the Heisenberg group H(L) acting trivially on
the totally isotropic plane F . This is the central extension Z � (L × L). More precisely, we
define

H(L) =
{
[x, y; r] : x, y ∈ L, r ∈ 1

2
Z with r + 1

2
(x, y) ∈ Z

}

where

[x, y; r] :=

⎛

⎜⎜⎜⎜
⎝

1 0 t yS (x, y)/2 − r (y, y)/2
0 1 t xS (x, x)/2 (x, y)/2 + r

0 0 1n0 x y

0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟
⎠

(2)

with S the positive definite Gram matrix of the quadratic form L of rank n0, (x, y) = t xSy

and we consider x and y as column vectors. The multiplication in H(L) is given by the
following formula

[x, y; r] · [x ′, y ′; r ′]=
[
x + x ′, y + y ′; r + r ′ + 1

2

((
x, y ′)− (x ′, y

))]
. (3)

In particular, the center of H(L) is equal to {[0,0; r], r ∈ Z}. We introduce a subgroup of
H(L)

Hs(L) = 〈[x,0;0], [0, y;0] |x, y ∈ L
〉

with a smaller center and we call it minimal integral Heisenberg group of L. The group
SL2(Z) acts on H(L) by conjugation:

A.[x, y; r] := {A}[x, y; r]{A−1
}= [dx − cy,−bx + ay; r]. (4)

Using (3) and (4), one can define the integral Jacobi group or its subgroup Γ J
s (L) as the

semidirect product of SL2(Z) with the Heisenberg group H(L) or Hs(L)

Γ J (L) � SL2(Z) � H(L) and Γ J
s (L) � SL2(Z) � Hs(L).

Extending the coefficients, we can define the real Jacobi group which is a subgroup of the
real orthogonal group: Γ J (L ⊗ R) � SL2(R) � H(L ⊗ R).

In what follows, we need characters of Jacobi groups. Let χ : Γ J (L) → C
∗ be a character

of finite order. Its restriction to SL2(Z), χ |SL2(Z), is an even power vD
η of the multiplier

system of the Dedekind η-function and we have

χ
({A} · [x, y; r])= vD

η (A) · ν([x, y; r]), where χ |SL2(Z) = vD
η , ν = χ |H(L). (5)

If D is odd then we obtain a multiplier system of the Jacobi group. The properties of the
character of the Heisenberg group are clarified by the next proposition.
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Proposition 2.1 1. Let s(L) ∈ N
∗ (resp. n(L)) denote the generator of the integral ideal

generated by (x, y) (resp. (x, x)) for x and y in L. Let [H(L),H(L)] be the derivated
group of H(L). Then

[
H(L),H(L)

]= [Hs(L),Hs(L)
]= {[0,0; r] | r ∈ s(L)Z

}
.

This subgroup is the center of Hs(L).
2. Let ν : H(L) → C

∗ be a character of finite order which is invariant with respect to the
SL2(Z)-action: ν(A.[x, y; r]) = ν([x, y; r]). Then

ν
([x, y; r])= eπit ((x,x)+(y,y)−(x,y)+2r)

where t ∈ Q such that t · s(L) ∈ Z. The restriction ν|Hs(L) is a binary character which is
trivial if t · n(L) ∈ 2Z.

Remark The constants s(L) and n(L) are called scale and norm of the integral lattice L.
The scale s(L) is the greatest common divisor of the entries of the Gram matrix S of L. For
any even lattice L the norm n(L) is an even divisor of s(L).

Proof The first property follows from the formula for the commutator of the elements of
H(L)

[x, y; r] · [x ′, y ′; r ′] · [x, y; r]−1 · [x ′, y ′; r ′]−1 = [0,0; (x, y ′)− (x ′, y
)]

(6)

because [x, y; r]−1 = [−x,−y;−r].
Considering the restriction of the character to the center of H(L), isomorphic to Z, we

get ν([0,0; r]) = exp(2πitr) with t ∈ Q. The formula for the commutator (6) shows that
t · s(L) ∈ Z.

The invariance of the character with respect to A = −12, A = ( 0 −1
1 0

)
and A =

( 1 1
0 1

)
gives us ν([x, y; r]) = ν([−x,−y; r]) = ν([−y, x; r]) = ν([x, y − x; r]). Therefore

ν([x,0;0]) = ν([−x,0;0]) = ν([x,0;0])−1, ν([0, y;0]) = ν([y,0;0]) and ν([x,0;0]) =
ν([x,−x;0]). We have

[x,−x;0] = [x,0;0] · [0,−x;0] ·
[

0,0; 1

2
(x, x)

]
.

Therefore ν([x,0;0]) = ν([x,−x;0]) = eπit (x,x) and the final formula follows from the de-
composition

[x, y; r] =
[
x, y; 1

2
(x, y)

]
·
[

0,0; r − 1

2
(x, y)

]
= [x,0;0] · [0, y;0] ·

[
0,0; r − 1

2
(x, y)

]
.

We see that t · (x, x) ∈ Z. Therefore the order of ν|Hs(L) is equal to 1 or 2. �

In order to define Jacobi forms, we have to fix a tube realization of the homogeneous
domain D(L2) related to the 1-dimensional boundary component of its Baily–Borel com-
pactification corresponding to the Jacobi group related to the isotropic flag 〈f 〉 ⊂ 〈f,f1〉.
Let [Z] = [X + iY] ∈ D(L2). Then

(X , Y) = 0, (X , X ) = (Y, Y) and (Z, Z) = 2(Y, Y) > 0.



192 F. Cléry, V. Gritsenko

Using the basis 〈e, f 〉Z = U we write Z = z′e + Z̃ + zf with Z̃ ∈ L1 ⊗ C, where

L1 = U1 ⊕ L(−1)

is the hyperbolic lattice of signature (1, n0 + 1) with the bilinear form (· , ·)1. We note that
z = 0. (If z = 0 the real and imaginary parts of Z̃ form two orthogonal vectors of positive
norm in the hyperbolic lattice L1 ⊗ R.) Thus [t Z] = [(− 1

2 (Z,Z)1,
tZ,1)]. Using the basis

〈e1, f1〉Z
= U1 of the second hyperbolic plane in L, we see that D(L2) is isomorphic to the

tube domain

H(L) = Hn0+2(L) =
⎧
⎨

⎩
Z =
⎛

⎝
ω

Z

τ

⎞

⎠
∣∣∣∣ τ, ω ∈ H1, Z ∈ L ⊗ C, (ImZ, ImZ)1 > 0

⎫
⎬

⎭

where

(ImZ, ImZ)1 = 2 Im(ω) Im(τ ) − (Im(Z), Im(Z)
)
> 0.

We fix the isomorphism [pr] : H(L) → D(L2) defined by the 1-dimensional cusp F fixed
above

Z =
⎛

⎝
ω

Z

τ

⎞

⎠ �→ pr(Z) =

⎛

⎜⎜⎜⎜
⎝

− 1
2 (Z,Z)1

ω

Z

τ

1

⎞

⎟⎟⎟⎟
⎠

�→ [pr(Z)
]
. (7)

The map pr gives us the embedding of H(L) into the affine cone D•(L2) over D(L2). Using
the map [pr], we can define a linear-fractional action of M ∈ O+(L2 ⊗R) on the tube domain

M · pr(Z) = J (M,Z) · pr
(
M〈Z〉)

where the automorphic factor J (M,Z) is the last (non-zero) element of the column vector
M · pr(Z) ∈ D•(L2). In particular, for the standard elements of the Jacobi group, we have
the following action

{A}〈Z〉 = t

(
ω − c(Z,Z)

2(cτ + d)
,

tZ

cτ + d
,

aτ + b

cτ + d

)
, A =

(
a b

c d

)
∈ SL2(R);

[x, y; r]〈Z〉 = t

(
ω + 1

2
(x, x)τ + (x,Z) + 1

2
(x, y) + r, t (Z + xτ + y), τ

)

x, y ∈ L ⊗ R and r ∈ R. We note that J ({A},Z) = cτ + d and J ([x, y; r],Z) = 1. For a
function ψ : H(L) → C, we define as usual

(ψ |kM)(Z) := J (M,Z)−kψ
(
M〈Z〉), M ∈ O+(L2 ⊗ R).

In the next definition, Jacobi forms are considered as modular forms with respect to the
parabolic subgroup Γ J (L) of O+(L2).

Definition 2.2 Let χ be a character (or a multiplier system) of finite order of Γ J (L), k

be integral or half-integral and t be a (positive) rational number. A holomorphic function
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ϕ : H1 × (L ⊗ C) → C is called a holomorphic Jacobi form of weight k and index t with a
character (or a multiplier system) χ if the function

ϕ̃(Z) = ϕ(τ,Z)e2iπtω, Z =
⎛

⎝
ω

Z

τ

⎞

⎠ ∈ H(L)

satisfies the functional equation

ϕ̃|kM = χ(M)ϕ̃ for any M ∈ Γ J (L) (8)

and is holomorphic at “infinity” (see the condition (11) below).

Remarks (1) We show below that for any non zero Jacobi form of rational index t we have
t · s(L) ∈ Z where s(L) is the scale of the lattice (see Proposition 2.1).

(2) One can reduce this definition to the only two cases t = 1 and t = 1
2 (see Proposition

2.3).
(3) One can give another definition of Jacobi forms in more intrinsic terms (see (9), (10)

and Definition 2.2′).

In order to precise the condition “to be holomorphic at infinity”, we analyze the character
χ , the functional equation and the Fourier expansion of Jacobi forms. We decompose the
character into two parts

χ = χ |SL2(Z) × χ |H(L) = χ1 × ν, where χ1 = vD
η

(see (5)) and ν satisfies the condition of Proposition 2.1. For a central element [0,0; (x, y)] ∈
Hs(L) (x, y ∈ L), the Eq. (8) gives ν([0,0; (x, y)]) = e2πit (x,y) = 1. Therefore

t · s(L) ∈ Z if ϕ is not identically zero

and

ν
([x, y; r])= eπit ((x,x)+(y,y)−(x,y)+2r), [x, y; r] ∈ H(L)

as in Proposition 2.1.
The formulae above for the action of the generators of the Jacobi group on the tube

domain define also an action, denoted by M〈τ,Z〉, of the real Jacobi group Γ J (L⊗R) on the
domain H1 × (L ⊗ C). We can always add to any (τ,Z) ∈ H1 × (L ⊗ C) a complex number

ω ∈ H1 such that Z =
( ω

Z

τ

)
belongs to H(L). If we denote the first component of M〈Z〉 (that

is the component along the vector e1 of our basis) by ω{M〈Z〉} for M ∈ Γ J (L ⊗ R) then

Jk,t (M; τ,Z) = J (M,Z)ke−2iπtω{M〈Z〉}e2iπtω

defines an automorphic factor of weight k and index t for the Jacobi group. For the genera-
tors of the Jacobi group, we get

Jk,t

({A}; τ,Z)= (cτ + d)keiπt
c(Z,Z)
cτ+d , A =

(
a b

c d

)
∈ SL2(R)

and

Jk,t

([x, y; r]; τ,Z)= e−2iπt ( 1
2 (x,x)τ+(x,Z)+ 1

2 (x,y)+r), x, y ∈ L ⊗ R, r ∈ R.
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We also get an action of the Jacobi group on the space of functions defined on H1 × (L⊗C):

(ϕ|k,tM)(τ,Z) := J−1
k,t (M; τ,Z)ϕ

(
M〈τ,Z〉).

Then the Eq. (8) in the definition of Jacobi forms is equivalent to

(ϕ|k,tM)(τ,Z) = χ(M)ϕ(τ,Z), M ∈ Γ J (L).

For the generators of the Jacobi group we obtain

ϕ

(
aτ + b

cτ + d
,

Z

cτ + d

)
= χ(A)(cτ + d)ke

iπt
c(Z,Z)
(cτ+d) ϕ(τ,Z) (9)

for all A = ( a b

c d

) ∈ SL2(Z) and

ϕ(τ,Z + xτ + y) = χ

([
x, y; 1

2
(x, y)

])
e−iπt ((x,x)τ+2(x,Z))ϕ(τ,Z) (10)

for all x, y ∈ L.
(Note that t (x, y) ∈ Z for any x, y in L if ϕ ≡ 0.) The variables τ and Z are called

modular and abelian variables. To clarify the last condition of Definition 2.2, we consider
the Fourier expansion of a Jacobi form ϕ.

We see that the function ϕ have the following periodic properties

ϕ(τ + 1,Z) = e2πi D
24 ϕ(τ,Z) and ϕ(τ,Z + 2y) = ν

([0,2y;0])ϕ(τ,Z) = ϕ(τ,Z).

The function ϕ is called holomorphic at infinity if it has the Fourier expansion of the follow-
ing type

ϕ(τ,Z) =
∑

n∈Q�0, n≡ D
24 mod Z, l∈ 1

2 L∨
2nt−(l,l)�0

f (n, l)e2iπ(nτ+(l,Z)) (11)

where L∨ is the dual lattice of the even positive definite lattice L. This condition is equiv-
alent to the fact that the function ϕ̃ is holomorphic at the zero-dimensional cusp defined by
the isotropic vector f in the first copy U in the lattice L2 = U ⊕ U1 ⊕ L(−1).

The Definition 2.2 suits well for the applications considered in this paper but we can give
another definition which does not depend on the orthogonal realization of the Jacobi group
Γ J

s (L) � SL2(Z) � Hs(L).

Definition 2.2′ A holomorphic function ϕ : H1 × (L ⊗ C) → C is called a holomorphic
Jacobi form of weight k ∈ 1

2 Z and index t ∈ Q with a character (or a multiplier system) of
finite order χ : Γ J

s (L) → C
∗ if ϕ satisfies the functional equations (9) and (10) and has a

Fourier expansion of type (11).

Remarks (1) The classical Jacobi forms of Eichler and Zagier. Note that for n0 = 1, the
tube domain H(L) is isomorphic to the classical Siegel upper half-space of genus 2. If
L � A1 = 〈2〉 is the lattice Z with quadratic form 2x2 and χ = id then the definition above
is identical to the definition of Jacobi forms of integral weight k and index t given in the
book [8].
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(2) The difference between the Definitions 2.2 and 2.2′ is the character of the center of the
“orthogonal” Heisenberg group H(L). It is more natural to consider a Jacobi forms ϕ(τ,Z)

as a modular form with respect to the minimal Jacobi group Γ J
s (L) and the extended Jacobi

form ϕ̃(Z) = ϕ(τ,Z)e2πitω with respect to Γ J (L).

We denote the vector space of Jacobi forms from Definition 2.2′ by Jk,L;t (χ) where
χ = vD

η × ν is defined by a character (or a multiplier system) vD
η of SL2(Z) and a binary (or

trivial) character ν of Hs(L). The space of Jacobi forms from Definition 2.2 is denoted by
J̃k,L;t (vD

η × ν̃) with evident modification for the central part of ν̃. The character χ of Γ J (L)

and its restriction χ̃ = χ |Γ J
s (L) determine each other uniquely and we denote both of them

by χ , J̃k,L;t (χ) � Jk,L;t (χ) and we will identify these spaces.
A function

ϕ(τ,Z) =
∑

n,l

f (n, l)e2iπ(nτ+(l,Z)) ∈ Jk,L;t (χ)

is called a Jacobi cusp form if f (n, l) = 0 only if the hyperbolic norm of its index is positive:
2nt −(l, l) > 0. We denote this vector space by J

cusp

k,L;t (χ). We define the order of ϕ as follows

Ord(ϕ) = min
f (n,l)=0

(
2nt − (l, l)

)
. (12)

When the character (or the multiplier system) is trivial, we omit it in the notation of these
spaces. If χ = vD

η × id, we omit the trivial part. We see from the definition that ϕ ≡ 0 if t < 0.
If t = 0 then Jk,L;0(χ) = Mk(SL2(Z),χ |SL2). In fact, a Jacobi form corresponds to a vector-
valued modular form of integral or half-integral weight related to the Weil representation of
the lattice L(t) and Jk,L;t (χ) is finite dimensional (see Sect. 3).

The notation L(t) stands for the lattice L equipped with bilinear for t (· , ·). We proved
above that if Jk,L;t (χ) = {0} then the lattice L(t) is integral. Any Jacobi form with trivial
character can be considered as Jacobi form of index 1 (see [11, Lemma 4.6]). In general, we
have the following

Proposition 2.3 1. If L(t) is an even lattice then

Jk,L;t (χ) = Jk,L(t);1(χ).

If this space is non-trivial then the Heisenberg part ν = χ |Hs(L) of the character is trivial.
2. If L(t) is integral odd (non-even) lattice then

Jk,L;t (χ) = Jk,L(2t); 1
2
(χ).

In this case, the character ν = χ |Hs(L) is of order 2.
3. If ϕ(τ,Z) ∈ Jk,L;t (vD

η × ν) then ϕ(τ,2Z) ∈ Jk,L;4t (v
D
η × id).

Remark This proposition shows that we have to distinguish in fact only between index 1
and 1

2 . In what follows, we denote by Jk,L(χ) the space of Jacobi forms of index 1.

Proof If L(t) is even then t (x, x) ∈ 2Z for any x ∈ L. Therefore χ([x,0;0]) = eiπt(x,x) = 1
and the Heisenberg part of χ is trivial. If L(t) is odd then there exists x ∈ L such that t (x, x)

is odd. Therefore the Heisenberg part of χ is non-trivial.
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We prove the proposition about the indexes using a map that we will need in Sect. 2. We
define an application for N ∈ Q>0

πN : H
(
L(N)
)→ H(L), πN :

⎛

⎝
ω

Z

τ

⎞

⎠ �→
⎛

⎝
ω/N

Z

τ

⎞

⎠ . (13)

This map corresponds to the multiplication IN · pr(Z) with Z ∈ H(L(N)) and pr(Z) ∈
D•(U ⊕ U1 ⊕ L(−N)) where IN = diag(N−112,1n0 ,12). We prove the second claim. (The
proof of the first one is similar.)

If ϕ ∈ Jk,L;t (χ) then

ϕ̃1/2(Z) = ϕ(τ,Z)eπiω = ϕ̃ ◦ π2t (Z), Z ∈ H
(
L(2t)
)

is a holomorphic function on H(L(2t)). We add index 2t to {A} and h in order to indicate the
elements of the Jacobi groups Γ J (L(2t)). First, we see that I2t {A}2t I

−1
2t = {A}. Therefore

ϕ̃1/2|k{A}2t (Z) = χ(A)ϕ̃1/2(Z).

Secondly, we have

I2t [x, y; r]2t I
−1
2t =
[
x, y; r

2t

]
=
[
x, y; 1

2
(x, y)

]
·
[

0,0; r − t (x, y)

2t

]
for x, y ∈ L.

Therefore

ϕ̃1/2|k[x, y; r]2t (Z) = ϕ̃|k
([

x, y; 1

2
(x, y)

]
·
[

0,0; r

2t
− 1

2
(x, y)

])(
π2t (Z)
)

= χ

([
x, y; 1

2
(x, y)

])
eπi(r−t (x,y))ϕ̃1/2(Z) where r − t (x, y) ∈ Z.

It means that ϕ̃1/2 is an (extended) Jacobi form of index 1
2 with the same SL2(Z)- and

Heisenberg characters with respect to the even lattice L(2t). �

In the Definitions 2.2 and 2.2′ and in the proof of the last proposition, we used two
interpretations of Jacobi forms as a function on H1 × (L ⊗ C) and on the tube domain
H(L). For any τ = u + iv ∈ H1 and Z ∈ L ⊗ C, we can find ω = u1 + iv1 ∈ H1 such that
2v1v−(Im(Z), Im(Z)) > 0 or, equivalently, such that t (ω, tZ, τ ) ∈ H(L). In the next lemma,
we fix an independent part of this parameter ω.

Lemma 2.4 Let Z = t (ω, tZ, τ ) ∈ H(L). Then the quantity

ṽ(Z) = v1 − (Im(Z), Im(Z))

2v
> 0

is invariant with respect to the action of the real Jacobi group Γ J (L ⊗ R).

Proof For any Z = X + iY ∈ H(L) we consider its image [Z] = [X + iY] = [pr(Z)] =
[t (− 1

2 (Z,Z)1,
tZ,1)] in the projective homogeneous domain D(L2).

For any M ∈ O+(L2 ⊗ R), we have

(MZ,MZ) = (Z, Z) = 2(Y, Y)1 = 2
(
2v1 · v − (Im(Z), Im(Z)

))= 4v · ṽ(Z).
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By the definition of the action of the group O+(L2 ⊗ R) on the tube domain, we have

4v · ṽ(Z) = 2(Y, Y)1 = (MZ,MZ) = J (M, Z) · J (M, Z)
(
M〈Z〉,M〈Z〉)

= 2
∣
∣J (M, Z)

∣
∣2(Y
(
M〈Z〉), Y

(
M〈Z〉))

1
= 4
∣
∣J (M, Z)

∣
∣2v
(
M〈Z〉) · ṽ(M〈Z〉)

= 4v · ṽ(M〈Z〉). �

Remark The quantity ṽ(Z) ∈ R>0 is a free part of the variable Z in the extended Jacobi
form ϕ̃(Z):

(
τ, t

Z
) �→ t

(
x1 + i

(
ṽ + (Im(Z), Im(Z))

2v

)
, t

Z, τ

)
∈ H(L).

The Jacobi forms with respect to a lattice L form a bigraded ring J∗,L;∗ with respect to
weights and indexes. In the next proposition, we define a direct (or tensor) product of two
Jacobi forms. Its proof follows directly from the definition.

Proposition 2.5 Let ϕ1 ∈ Jk1,L1;t (χ1 × ν1) and ϕ2 ∈ Jk2,L2;t (χ2 × ν2) two Jacobi forms of
the same index t . Then

ϕ1 ⊗ ϕ2(τ,Z1,Z2) := ϕ1(τ,Z1) · ϕ2(τ,Z2) ∈ Jk1+k2,L1⊕L2;t (χ1χ2 × ν1ν2)

where ν1ν2 is a character of the group H(L1 ⊕ L2) defined by

(ν1ν2)
([x, y; r])= ν1

([
x1, y1; 1

2
(x1, y1)

])
ν2

([
x2, y2; 1

2
(x2, y2)

])
eiπt((x1,y1)+(x2,y2)+2r)

for [x, y; r] = [x1 ⊕ x2, y1 ⊕ y2; r] ∈ H(L1 ⊕ L2). The tensor product of two Jacobi forms
is a cusp form if at least one of them is a cusp form.

It is known (see [10]) that the space Jk,L;t (χ) is trivial if k <
n0
2 where rankL = n0. The

minimal possible weight k = n0
2 is called singular weight. For any Jacobi form ϕ of singular

weight the hyperbolic norm of the index of a non-zero Fourier coefficient f (n, l) (see (11))
is equal to zero: 2nt − (l, l) = 0, i.e. Ord(ϕ) = 0.

Example 2.6 (The Jacobi theta-series) The Jacobi theta-series of characteristic ( 1
2 , 1

2 )

(see [29]) is defined by

ϑ(τ, z) =
∑

n∈Z

(−4

n

)
q

n2
8 r

n
2 = −q1/8r−1/2

∏

n�1

(
1 − qn−1r

)(
1 − qnr−1

)(
1 − qn
)

(14)

where q = e2πiτ , τ ∈ H1 and r = e2πiz, z ∈ C. This is the simplest example of Jacobi form
of half-integral index. The theta-series ϑ satisfies two functional equations

ϑ(τ, z + xτ + y) = (−1)x+ye−πi(x2τ+2xz)ϑ(τ, z), (x, y) ∈ Z
2

and

ϑ

(
A〈τ 〉, z

cτ + d

)
= v3

η(A)(cτ + d)
1
2 eπi cz2

cτ+d ϑ(τ, z), A =
(

a b

c d

)
∈ SL2(Z)
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where vη is the multiplier system of the Dedekind η-function. Using our notations, A1 = 〈2〉,
we have

ϑ ∈ J 1
2 ,A1; 1

2

(
v3

η × vH

)

where, for short, vH(A1) = vH is defined by:

vH

([x, y; r])= (−1)x+y+xy+r , [x, y; r] ∈ H(A1) = H(Z).

The Jacobi theta-series ϑ is the Jacobi form of singular weight 1
2 with a non-trivial character

of the Heisenberg group. This Jacobi form was not mentioned in [8] but it plays an important
role in the construction of the basic Jacobi forms and reflective modular forms (see [13, 14,
19]). We remind that

divϑ = {h〈z = 0〉 |h ∈ H(Z)
}= {z = xτ + y |x, y ∈ Z}.

The Jacobi theta-series ϑ having the triple product formula (14) will be the first main func-
tion in our construction of Jacobi forms for orthogonal lattices.

Example 2.7 (Jacobi forms of singular weight for mA1) Using the Jacobi theta-series, we
can construct Jacobi forms of singular weight for mA1 = 〈2〉⊕ · · ·⊕ 〈2〉. The tensor product
of m Jacobi theta-series is a Jacobi form of singular weight and index 1

2 for mA1:

ϑmA1(τ, z1, . . . , zm) =
∏

1�j�m

ϑ(τ, zj ) ∈ Jm
2 ,mA1; 1

2

(
v3m

η × v⊗m
H

)
(15)

where

v⊗m
H

([x, y; r])= vH(mA1)

([x, y; r])= (−1)
r+∑m

j=1 xj +yj +xj yj

for any xj , yj and r in Z. For even m, we can construct Jacobi forms of singular weight and
index 1 because

ϑ
(1)

2A1
(τ, z1, z2) = ϑ(τ, z1 + z2) · ϑ(τ, z1 − z2) ∈ J1,2A1

(
v6

η

)
. (16)

Taking different orthogonal decompositions of the lattice 8A1, we obtain 105 Jacobi forms
of weight 4 and index 1 with trivial character.

Example 2.8 (Jacobi forms of singular weight for Dm) We recall the definition of the even
quadratic lattice Dm. (We denote by Am, Dm, Em the lattices generated by the corresponding
root systems.) We use the standard Euclidian basis 〈ei〉mi=1 ((ei, ej ) = δij ) in Z

m. Then

Dm = {(x1, . . . , xm) ∈ Z
m |x1 + · · · + xm ∈ 2Z

}
(m � 1)

is the maximal even sublattice in Z
m. The theta-product (15) is a Jacobi form of index 1 for

Dm with trivial Heisenberg character because the quadratic form x2
1 + · · · + x2

m is even on
Dm

ϑDm(τ,Zm) = ϑ(τ, z1) · · · · · ϑ(τ, zm) ∈ Jm
2 ,Dm

(
v3m

η

)
. (17)

We note that D2
∼= 2A1 and ϑD2 = ϑ

(1)

2A1
. For the lattice D4 we can give two more examples:

ϑ
(2)
D4

(τ,Z4) = ϑ

(
τ,

−z1 + z2 + z3 + z4

2

)
ϑ

(
τ,

z1 − z2 + z3 + z4

2

)
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× ϑ

(
τ,

z1 + z2 − z3 + z4

2

)
ϑ

(
τ,

z1 + z2 + z3 − z4

2

)
∈ J2,D4

(
v12

η

)
(18)

and

ϑ
(3)
D4

(τ,Z4) = ϑ

(
τ,

z1 + z2 + z3 + z4

2

)
ϑ

(
τ,

z1 + z2 − z3 − z4

2

)

× ϑ

(
τ,

z1 − z2 − z3 + z4

2

)
ϑ

(
τ,

z1 − z2 + z3 − z4

2

)
∈ J2,D4

(
v12

η

)
. (19)

Analyzing the divisors of the Jacobi forms, we obtain the relation

ϑD4(τ,Z4) = ϑ
(2)
D4

(τ,Z4) + ϑ
(3)
D4

(τ,Z4).

Jacobi forms and Weil representation The Jacobi forms can be considered as vector-valued
SL2(Z)-modular forms (see [3, 11, 26, 30, 32]) related to the Weil representation. To com-
pare the examples considered above with vector-valued modular forms, we recall the defini-
tions from [11] for Jacobi forms of index one.

Let L an even positive definite lattice of rank n0 and

ϕ(τ,Z) =
∑

n∈Z, l∈L∨
2n−(l,l)�0

f (n, l)e2iπ(nτ+(l,Z)) ∈ Jk,L

a Jacobi form of weight k and index one. By q = q(L) we denote the level of the lattice
L, i.e. the smallest integer such that L∨(q) is an even lattice. Then we have the following
representation (see [11, Lemma 2.3] with m = 1)

ϕ(τ,Z) =
∑

μ∈D(L)

φμ(τ )θL
μ (τ,Z)

where D(L) = L∨/L is the discriminant group of L,

φμ(τ) =
∑

r�0
2r
q ≡−(μ,μ) mod 2Z

fh(r) exp

(
2πi

r

q
τ

)
, fμ(r) = f

(
2r + (μ,μ)

2q
,μ

)

and

θL
μ (τ,Z) =

∑

l∈μ+L

eiπ((l,l)τ+2(l,Z))

is the theta-series with characteristic μ. For any matrix M = (
a b

c d
) ∈ SL2(Z), the theta-vector

ΘL(τ,Z) = (θL
μ (τ,Z))μ∈D(L) has the following transformation property

ΘL

(
aτ + b

cτ + d
,

Z

cτ + d

)
= (cτ + d)

n0
2 U(M) exp

(
πic(Z,Z)

cτ + d

)
ΘL(τ,Z)

where U(M) is a unitary matrix. In particular, for T = ( 1 1
0 1

)
and S = ( 0 −1

1 0

)
we have

U(T ) = diag
(
eiπ(μ,μ)

)
μ∈D(L)

, U(S) = (−i)
n0
2
(√∣∣D(L)

∣∣)− 1
2
(
e−2iπ(μ,ν)

)
μ,ν∈D(L)

.
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Therefore Φ(τ) = (φμ(τ ))μ∈D(L) is a holomorphic vector-valued modular form of weight
k − n0

2 for the conjugated representation U(M) of SL2(Z). In particular, the weight of any
holomorphic Jacobi form is greater or equal to n0

2 (see [10]). We note also that the theta-
series θL

μ are linearly independent and ΘL is invariant with respect to the action of the stable
orthogonal group Õ(L) (see Theorem 3.2 below) and, in particular, with respect to the Weyl
group of the lattice L, W2(L), which is a subgroup of Õ(L) generated by 2-reflections in the
lattice L.

We get the simplest example for an even unimodular lattice N of rank n0 (see [10] and
[11, Lemma 4.1])

ΘN(τ,Z) =
∑

l∈N

eπi(l,l)τ+2πi(l,Z) ∈ Jn0
2 ,N . (20)

Moreover we have that two linear spaces of Jacobi forms are isomorphic

Jk1,L1
∼= J

k1+ n2−n1
2 ,L2

if L1 (rank L1 = n1) and L2 (rank L2 = n2) are two lattices with isomorphic discriminant
forms (see [11, Lemma 2.4]).

Example 2.9 (Weil representation for Dm) Recall that |D∨
m/Dm| = 4 and

D∨
m/Dm = {μi, i mod 4} =

{
0,

1

2
(e1 + · · · + em), e1,

1

2
(e1 + · · · + em−1 − em) mod Dm

}

is the cyclic group of order 4 generated by μ1 = 1
2 (e1 + · · · + em) mod Dm, if m is odd, and

the product of two groups of order 2, if m is even. We have the following matrix of inner
products in the discriminant group of Dm of the non-trivial classes modulo Dm

(
(μi,μj )

)
i,j =0

=
⎛

⎜
⎝

m
4

1
2

m−2
4

1
2 1 1

2
m−2

4
1
2

m
4

⎞

⎟
⎠
(
μi ∈ D∨

m/Dm

)

where the diagonal elements are taken modulo 2Z and the non-diagonal elements are taken
modulo Z. We note that the discriminant group of Dm depends only on m mod 8. This gives
the formulae for U(T ) and U(S).

(1) For m ≡ 4 mod 8, we have

U(T ) = diag(1, −1, −1, −1), U(S) = −1

2

⎛

⎜⎜
⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟⎟
⎠ .

We put θ
Dm

i (τ,Zm) := θDm
μi

(τ,Zm) for i mod 4. The matrices U(T ) and U(S) have the three
common eigenvectors:

θ
Dm

1 − θ
Dm

3 , θ
Dm

1 − θ
Dm

2 , θ
Dm

2 − θ
Dm

3 (m ≡ 4 mod 8).

If m = 4 we get the Jacobi forms ϑD4 , ϑ
(1)
D4

and ϑ
(2)
D4

obtained above as theta-products.
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(2) For m ≡ 0 mod 8, we have

U(T ) = diag(1,1,−1,1), U(S) = 1

2

⎛

⎜
⎜
⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟
⎟
⎠ .

These lattices have again two linearly independent common eigenvectors. The first one is
the theta-product ϑDm = θ

Dm

1 − θ
Dm

3 . The second eigenvector ϑD+
m

= θ
Dm

0 + θ
Dm

1 is equal
to the Jacobi theta-series of the unimodular lattice D+

m = 〈Dm, μ1〉. In particular, D+
8 = E8

and ϑD+
m

= ΘE8 (see (20)). To understand better the role of the Jacobi theta-series ϑ , we
consider one more case.

(3) For m ≡ 1 mod 8, we have

U(T ) = diag
(
1, ei π

4 ,−1, ei π
4
)
, U(S) = 1

2
e−i π

4

⎛

⎜⎜
⎝

1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎞

⎟⎟
⎠

and ϑDm = θ
Dm

1 − θ
Dm

3 is the only Jacobi form of singular weight. Moreover, for m = 1 we
get

ϑD1(τ, z) ∈ J 1
2 ,〈4〉;1
(
v3

η

)= J 1
2 ,A1;2
(
v3

η

)= J 1
2 ,2

(
v3

η

)
.

The last space is the space of classical Jacobi forms of weight 1
2 , index 2 with the multiplier

system v3
η . It is easy to check that ϑD1(τ,0) = ϑD1(τ,

1
2 ) = 0. Therefore

ϑD1 = ϑ(τ,2z).

(4) Analyzing U(T ) and U(S) for all other m modulo 8, we get only one common eigen-
vector corresponding to the theta-product ϑDm = θ

Dm

1 − θ
Dm

3 . Therefore Example 1.8 con-
tains all possible Jacobi forms of singular weight (and index one) for Dm.

Example 2.10 (The lattice E6) Let E∨
6 be the dual lattice of E6 and D(E6) its discriminant

group. We have

D(E6) = E∨
6 /E6 � Z/3Z and qD(E6) = −qD(A2).

The discriminant group has the following system of representatives (see [4], Planche V):
D(E6) = {0,μ,2μ} where μ2 ≡ 4

3 mod 2Z. We have

U(T ) = diag
(
1, ρ2, ρ2

)
, U(S) = i√

3

⎛

⎝
1 1 1
1 ρ2 ρ

1 ρ ρ2

⎞

⎠

with ρ = e
2iπ

3 . We get

θE6(τ,Z6) = (θ1 − θ2)(τ,Z6) ∈ J3,E6

(
v16

η

)
.

This Jacobi form is invariant with respect to the Weyl group W(E6).
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The simple construction of Jacobi forms using products of Jacobi theta-series has a lot
of advantages. First, we get Jacobi forms of singular weight with a very simple divisor. Sec-
ond, we can easily determine the maximal group of symmetries with respect to the abelian
variable. This fact is important in the next section in which we construct modular forms of
singular weight with respect to orthogonal groups.

Example 2.11 (The Jacobi theta-series ϑ3/2) We can get more examples using the second
theta-series of weight 1/2 and index 3/2 with respect to the full modular group SL2(Z).
This function is related to twisted affine Lie algebras and is important in the construction of
basic reflective Siegel modular forms (see [19])

ϑ3/2(τ, z) = η(τ)ϑ(τ,2z)

ϑ(τ, z)
∈ J 1

2 ,A1; 3
2
(vη × vH ) = J 1

2 ,〈6〉; 1
2
(vη × vH ) (21)

which is given by the quintiple product formula

ϑ3/2(τ, z) =
∑

n∈Z

(
12

n

)
q

n2
24 r

n
2

= q
1
24 r− 1

2
∏

n�1

(
1 + qn−1r

)(
1 + qnr−1

)(
1 − q2n−1r2

)(
1 − q2n−1r−2

)(
1 − qn
)
.

We have

ϑmA1(3)(τ, z1, . . . , zm) =
∏

1�j�m

ϑ3/2(τ, zj ) ∈ Jm
2 ,m〈6〉; 1

2

(
vm

η × v⊗m
H

)
(22)

(we recall that m〈6〉 = mA1(3) denotes the orthogonal sum of m copies of the lattice 〈6〉
of rank one). The same theta-product can be considered as a Jacobi form of index 1 for the
lattice Dm(3) and

ϑDm(3)(τ,Zm) = ϑ3/2(τ, z1) · · · · · ϑ3/2(τ, zm) ∈ Jm
2 ,Dm(3)

(
vm

η

)
(23)

where Dm(3) is the lattice Dm renormalized by 3. In this simple way, we construct examples
of Jacobi forms of singular weight with trivial character for even n0 � 8: D8, D7 ⊕ D3(3),
D6 ⊕ D6(3), D5 ⊕ D9(3) and so on (see Proposition 4.6).

3 The lifting of Jacobi forms of half-integral index

The lifting of the Jacobi form ϑD8 (see (17)) is a reflective modular form with respect to the
orthogonal group O+(2U ⊕ D8(−1)) (see [14]) which is equal to the Borcherds–Enriques
automorphic discriminant Φ4 of the moduli space of the Enriques surfaces introduced in [2].
The lifting of the Jacobi form

η9(τ )ϑD5(τ,Z5) ∈ J7,D5

determined the unique canonical differential form on the modular variety of the orthogonal
group S̃O

+
(2U ⊕ D5(−1)) having Kodaira dimension 0. In [14], there were found three

such modular varieties of dimension 4, 6 and 7. The cusp form of the modular variety of
dimension 4 is defined by a Jacobi form of half-integral index with a character of order 2
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(see Example 3.4 below). In this section, we give a variant of the lifting of Jacobi forms of
half-integral index with a character. This theorem is a generalization of Theorem 3.1 in [11]
(the case of Jacobi forms of orthogonal type with trivial character) and Theorem 1.12 in [19]
(the case of Siegel modular forms with respect to a paramodular group of genus 2). All these
constructions are particular cases of Borcherds additive lifting (see [3, Sect. 14]) of vector-
valued modular forms. Nevertheless, our approach related to Jacobi forms gives in a natural
way many new important examples of reflective modular forms for orthogonal groups. The
Theorem 3.2 is a necessary tool for this purpose.

We can define a Hecke operator which multiplies the index of Jacobi forms. This operator
is similar to the operator Vm of [8] or to the ‘minus’-Hecke operator introduced in [11, 12] in
the case of Siegel modular forms of arbitrary genus or for the modular forms for orthogonal
groups. We apply such operators to elements of Jk,L;t (vD

η × ν) where ν is a binary character
of the minimal integral Heisenberg group Hs(L).

Proposition 3.1 Let ϕ ∈ Jk,L;t (vD
η × ν) not identically zero. We assume that k is integral, t

is rational and D is an even divisor of 24. If Q = 24
D

is odd, we assume that the character
of the minimal integral Heisenberg group ν : Hs(L) → {±1} is trivial. Then, for any natural
m coprime to Q, the function

ϕ|k,tT
(Q)
− (m)(τ,Z) =

∑

ad=m, a>0
b mod d

akvD
η (σa)ϕ

(
aτ + bQ

d
, aZ

)
,

where σa ∈ SL2(Z) such that σa ≡ ( a−1 0
0 a

)
mod Q, belongs to Jk,L;mt (v

D
η,m × ν). The new

SL2(Z)-character is defined as follows:

vD
η,m(A) = vD

η (Am) for all A ∈ SL2(Z)

with Am

( 1 0
0 m

)≡ ( 1 0
0 m

)
A mod Q. The character vD

η,m depends only on m mod Q.

Proof It is known that KervD
η contains the principle congruence subgroup Γ (Q) < SL2(Z)

(see [19, Lemma 1.2]). We consider the following subgroup Γ J (Q) � Γ (Q) � Ker(ν) of
the Jacobi group. We identify it with the corresponding parabolic subgroup in the orthogonal
group SO+(2U ⊕ L(−1)). For (m,Q) = 1, let

T (Q)(m) = Γ (Q)
∑

ad=m, a>0
b mod d

σa

(
a bQ

0 d

)

be the usual Hecke operator for Γ (Q). To the element T (Q)(m), we associate the element
T

(Q)
− (m) of the Hecke ring of the parabolic subgroup (see [11] and [19])

T
(Q)
− (m) = Γ J (Q)

∑

ad=m, a>0
b mod d

{σa}Ma,b,d

where Ma,b,d = diag
((

a −bQ

0 d

)
, 1n0 , m−1

(
a bQ

0 d

))
. This is a sum of some double cosets with

respect to Γ J (Q). We consider the extended Jacobi form ϕ̃(Z) = ϕ(τ,Z)e2iπtω with Z =
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t (ω, tZ, τ ) ∈ H(L) which is modular with respect to the parabolic subgroup. Then we have

ψ̃(Z) = (ϕ̃|kT (Q)
− (m)

)
(Z) =

∑

ad=m, a>0
b mod d

(
ϕ̃|k{σa}Ma,b,d

)
(Z).

By definition, we have

(
ϕ̃|k{σa}Ma,b,d

)
(Z) = akvD

η (σa)ϕ

(
aτ + bQ

d
,aZ

)
e2iπmtω.

Therefore, the Hecke operator of the proposition corresponds to the Hecke operator T
(Q)
− (m)

of the parabolic subgroup Γ J (Q) acting on the modular forms with respect to the parabolic
subgroup Γ J (Q). We remark that the new index of the extended function on H(L) is equal
to mt . The case of modular transformations is similar to the theory of usual Hecke operators
(see [31]). If A ∈ SL2(Z), then somewhat lenghty but easy calculations give us

ψ̃ |k{A} =
∑

a′d ′=m, a′>0
b′ mod d ′

(
ϕ̃
∣∣
k
{Am})|k{σa′ }Ma′,b′,d ′ = vD

η (Am)ψ̃.

This is due to the fact that the group Γ (Q) is normal in SL2(Z) and then

Γ J (Q){Am}−1{σa}Ma,b,d{A} = Γ J (Q){Am}−1{σa′ }Ma′,b′,d ′ {A}
for distinct a and a′ prime to Q. Secondly, we consider the abelian transformations. Let
h = [x, y; r] ∈ Hs(L), then

ψ̃ |kh =
∑

ad=m, a>0
b mod d

ν
(
h′

a,b,d

)
ϕ̃|k{σa}Ma,b,d

where h′
a,b,d = {σa}(Ma,b,d · h){σ−1

a } = [x ′, y ′; r ′] and

[
x ′, y ′; r ′]= [(δd + γ bQ)x − aγy,−(βd + αbQ)x + αay;mr

] ∈ H(L)

with σa = ( α β

γ δ

)≡ ( a−1 0
0 a

)
mod Q. We note that

(
x ′, y ′)≡ (m(αδ + βγ ) + 2αγ abQ

)
(x, y) ≡ m(x,y) mod 2s(L).

Therefore, if ν = id then

ν
([

x ′, y ′; r ′])= e2πit (mr− 1
2 m(x,y))

because t · s(L) ∈ Z. This proves the formula for odd Q. If Q is even, we have [x ′, y ′; r ′] =
[mx + Qx̃,y + Qỹ;mr]. Then

[
−Qx̃,−Qỹ;−Q2

2
(̃x, ỹ)

]
· [x ′, y ′; r ′]

=
[
mx,y;mr + Q

2

(−(x̃, y ′)+ m
(
ỹ, x ′)− Q(̃x, ỹ)

)]
.
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As Q is even, we have ν([−Qx̃,−Qỹ;−Q2

2 (̃x, ỹ)]) = 1. But, in this case, m = 2m0 + 1 is
odd so

ν
([

x ′, y ′; r ′])= ν
([mx,y;mr])= ν

([
x, y;mr − m0(x, y)

])= ν
([x, y; r]).

We calculate the Fourier expansion of ϕ|k,t T
(Q)
− (m) in the proof of Theorem 3.2 (see below).

It shows that it is a holomorphic Jacobi form. �

Let L be an even lattice. The stable orthogonal group Õ+(L) is the subgroup of O+(L)

whose elements induce the identity on the discriminant group D(L) = L∨/L

Õ+(L) = {g ∈ O+(L) | ∀ l ∈ L∨ : g(l) − l ∈ L
}
.

Theorem 3.2 Let ϕ ∈ Jk,L;t (vD
η × ν), k be integral, t be rational and D be an even divisor

of 24. If the conductor Q = 24
D

is odd, we assume that ν is trivial. Fix μ ∈ (Z/QZ)∗. Then
the function

Liftμ(ϕ)(Z) = f (0,0)Ek(τ ) +
∑

m≡μ mod Q
m�1

m−1
(
ϕ̃|kT (Q)

− (m)
) ◦ πQt(Z),

is a modular form of weight k with respect to the stable orthogonal group Õ+(2U ⊕L(Qt))

of the even lattice L(Qt) with a character of order Q induced by vD
η,μ, the binary Heisen-

berg character ν of Hs(L(Qt)) and the character e
2iπ

μ
Q of the center of H(L(Qt)). In the

formula above, f (0,0) is the zeroth Fourier coefficient of ϕ, Ek is the Eisenstein series of
weight k with respect to SL2(Z) and the map πQt was defined in (13).

Proof The Eisenstein series Ek . First we note that f (0,0) could be non-zero only for the
trivial character vD

η = id. In this case, ϕ(τ,0) = f (0,0)+· · · is a non-zero modular form of
weight k with respect to SL2(Z). Therefore k � 4 and Ek is well defined. We note that Ek is
a Jacobi form of index 0.

The lattice L(Qt). The lattice L(t) is integral for a non zero Jacobi form ϕ. If Q is
odd then L(t) is even because the character ν is trivial in this case (see Proposition 2.3).
Therefore, for all Q, the lattice L(Qt) is even.

The character of Γ J (L(Qt)). According to Proposition 3.1

ϕm(τ,Z) = (ϕ|k,t T
(Q)
− (m)

)
(τ,Z) ∈ Jk,L;mt

(
vD

η,μ × ν
)
.

We can defined an extended Jacobi form using the map πQt (see (13)). According to Propo-
sition 2.3

ϕm(τ,Z)e
2iπ m

Q
ω ∈ J̃k,L(Qt); m

Q

(
vD

η,μ × ν
)

is a modular form of weight k with respect to the parabolic subgroup Γ J (L(Qt)) of the
orthogonal group S̃O

+
(2U ⊕L(−Qt)). We note that the character ν of the minimal integral

Heisenberg group Hs(L(Qt)) is extended to the center of H(L(Qt)) by the formula

ν
([0,0; r])= e

2πi m
Q

r = e
2πi

μ
Q

r
.
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If f (0,0) = 0 then vD
η = id, i.e. D = 24, Q = 1 and ν = id. Therefore all terms in the

sum defining the lifting Liftμ(ϕ) have the same character with respect to Γ J (L(Qt)) <

S̃O
+
(2U ⊕ L(−Qt)).

Convergence. Let Z = t (ω, tZ, τ ) ∈ H(L(Qt)). The extended Jacobi form ϕ̃(Z) =
ϕ(τ,Z) exp(2πi ω

Q
) of index 1

Q
is holomorphic at “infinity” (Imω → +∞). Therefore |ϕ̃| is

bounded in any neighborhood of infinity (see [5] and [27]). We can rewrite this fact using
the free parameter ṽ = ṽ(Z) > 0 from Lemma 2.4. Then we have

∣∣ϕ(τ,Z)
∣∣ exp

(
−2π

Q

(Im(Z), Im(Z))

2v

)
< C

is bounded for v = Im(τ ) > ε and the exponential term does not depend on the action of
Γ J (L(Qt)). Using the action of SL2(Z) < Γ J (L(Qt)), we obtain that

∣∣ϕ(τ,Z)
∣∣ exp

(
−2π

Q

(Im(Z), Im(Z))

2v

)
< Cv−k

if v � ε (see [5, Sect. 2] for similar considerations). Now we can get an estimation of all
terms in the sum for Liftμ(ϕ) for v > ε. We have

∣∣∣∣a
kϕ

(
aτ + bQ

d
,aZ

)
exp

(
−2π

1

Q

(
(Im(aZ), Im(aZ))

2va/d

))∣∣∣∣< Cdkv−k

if a
d
v � ε. If a

d
v > ε then we have < Cak . In the both cases we see that the term above

depending on (a, b, d) is smaller than Cεm
k . It gives us

∣∣m−1ϕm(τ,Z)e
2iπ m

Q
ω
∣∣< Cεm

kσ0(m) exp

(
−2πm

Q
ṽ

)
< Cεm

k+1 exp

(
−2π

m

Q
ṽ

)

where ṽ(Z) > 0. Therefore the function Liftμ(ϕ) is well defined and it transforms like a

modular form of weight k and character vD
η,μ × ν × e

2πi
μ
Q

r with respect to the parabolic
subgroup Γ J (L(Qt)).

Fourier expansion of Liftμ(ϕ). In the summation of the Fourier expansion of ϕ ∈
Jk,L;t (vD

η × ν), we have n ≡ D
24 mod Z (see (11)). Rewriting n in terms of the conductor

Q = 24
D

, the Fourier expansion of the function ϕ has the following form

ϕ(τ,Z) =
∑

n≡1 mod Q,n�0
l∈ 1

2 L∨
2 nt

Q
−(l,l)�0

f

(
n

Q
, l

)
e

2iπ( n
Q

τ+(l,Z))
.

After the summation over b mod d in the action of the Hecke operator, we get

m−1
(
ϕ̃|kT (Q)

− (m)
) ◦ πQt (Z)

=
∑

ad=m
a>0

ak−1vD
η (σa)

∑

nd≡1 mod Q,n�0
l∈ 1

2 L∨
2 nd

Q
t−(l,l)�0

f

(
nd

Q
, l

)
e

2iπ( na
Q

τ+a(l,Z)+ ad
Q

ω)
.
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So we have

Liftμ(ϕ)(Z) =
∑

m≡μ mod Q
m�1

∑

ad=m
a>0

ak−1vD
η (σa)

×
∑

nd≡1 mod Q

l∈ 1
2 L∨

2 nd
Q

t−(l,l)�0

f

(
nd

Q
, l

)
e

2iπ( na
Q

τ+a(l,Z)+ ad
Q

ω)
.

But nd ≡ 1 mod Q ⇔ an ≡ μ mod Q because for any (μ,24) = 1 we have μ2 ≡ 1 mod 24.
(We note that 24 is the maximal natural number with this property.) Using this property, we
obtain the Fourier expansion of the lifting

Liftμ(ϕ)(Z) =
∑

m,n≡μ mod Q
m,n�1
l∈ 1

2 L∨
2 nm

Q
t−(l,l)�0

( ∑

a|(n,l,m)

ak−1vD
η (σa)f

(
nm

Qa2
,

l

a

))
e

2iπ( n
Q

τ+(al,Z)+ m
Q

ω)
.

We can reformulate the condition on the hyperbolic norm of the index (n, l,m) of the Fourier
coefficient in terms of the lattice L(Qt): 2 nm

Q2 − 1
Qt

(l, l) � 0.
The formula for the Fourier expansion is symmetric with respect to τ and ω. The involu-

tion V which permutes the isotropic vectors e1 and f1 in the second copy of the hyperbolic
plane of the lattice U ⊕ U1 ⊕ L(−Qt) realizes the transformation τ ↔ ω and Z ↔ Z. We
see that V ∈ Õ+(2U ⊕ L(−Qt)), det(V ) = −1, J (V,Z) = 1 and

Liftμ(ϕ)|kV = Liftμ(ϕ).

It is known (see [11, p. 1194] or [22, Proposition 3.4]) that

Õ+(2U ⊕ L(−Qt)
)= 〈Γ J

(
L(Qt)
)
, V
〉
.

Therefore, the function Liftμ(ϕ) is a modular form of weight k with a character of order Q

with respect to Õ+(2U ⊕ L(−Qt)). �

Remark to Theorem 3.2 If μ = 1 then Lift(ϕ) = Lift1(ϕ) ≡ 0 because its first Fourier–Jacobi
coefficient ϕ̃ is not zero. For μ = 1 the function Liftμ(ϕ) might be identically zero. See [19,
Example 1.15] for a non-zero μ-lifting in the case of signature (2,3).

At the end of the section we give the first application of Theorem 3.2.

Example 3.3 (Modular forms of singular weight) The first example of such modular forms
was given in [10]:

Lift(ΘE8) = 1

240
+
∑

n,m≥0, �∈E8
2nm=(�,�)
(n,m)=(0,0)

σ3

(
(n, �,m)

)
e2πi(nτ+(�,Z)+mω) ∈ M4

(
O+(II2,10)

)

where σ3((n, �,m)) is the sum of the cubes of all divisors of the greatest common divisor
of n, m and � ∈ E8. This function is sometimes called the simplest modular form. Using
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the theta-products (15)–(23), we can define modular forms of singular weight on orthogonal
groups with a character induced by vD

η -character for all even divisors of 24. We give some
examples below in order to illustrate different cases:

Lift(ϑD8) ∈ M4

(
Õ+(2U ⊕ D8(−1)

))
, Lift(ϑD8(3)) ∈ M4

(
Õ+(2U ⊕ D8(−9)

)
, χ3

)
,

Lift(ϑ4A1) ∈ M2

(
Õ+(2U ⊕ 4A1(−1)

)
, χ2

)
, Lift(ϑD24(3)) ∈ M12

(
Õ+(2U ⊕ D24(−3)

))
,

Lift(ϑ2A1) ∈ M1

(
Õ+(2U ⊕ 2〈−4〉), χ4

)
, Lift(ϑD2(3)) ∈ M1

(
Õ+(2U ⊕ 2〈−36〉), χ12

)

where χn denotes a character of order n = 24
D

of the corresponding orthogonal group.
We note that in many cases the maximal modular group of the lifting is larger than the

stable orthogonal group Õ+(2U ⊕ L(−1)). For example, the maximal modular group of
Lift(ηdϑDm) for any d and m such that d + 3m ≡ 0 mod 24 is the full orthogonal group
O+(2U ⊕ Dm(−1)) if m = 4. The form Lift(ηdϑDm) is anti-invariant with respect to the
involution of the Dynkin diagram (the reflection with respect to a vector with square 4). If
m = 4 then

O+(2U ⊕ D4(−1)
)
/ Õ+(2U ⊕ D4(−1)

)∼= S3.

The liftings of ϑD4 , ϑ
(2)
D4

, ϑ
(3)
D4

(see Example 1.8) are modular with respect to three different
subgroups of order 3 in O+(2U ⊕ D4(−1)).

The lifting of any theta-products vanishes along the divisors of the corresponding Jacobi
forms. In particular Lift(ϑ4A1) vanishes with order one along zi = 0. It is known that the full
divisor of this modular form is equal to the union of all modular transformations of zi = 0,
i.e. this is a singular reflective modular form with the simplest possible divisor (see [14]).
The same is true for Lift(ϑD8). The Fourier expansion of Lift(ϑ4A1) (or Lift(ϑD8)) written
in a fixed Weyl chamber of the corresponding orthogonal group will define generators and
relations of Lorentzian Kac–Moody algebras (see [17–19] and a forthcoming paper of Grit-
senko and Nikulin about reflective groups of rank � 4). Here we consider the formula for
4A1 which was given without proof in [14].

Example 3.4 (Jacobi lifting, the modular tower 4A1 and modular forms of “Calabi–Yau
type”) We consider the following theta-product as a Jacobi form of index 1

2

ϑ4A1(τ,Z4) = ϑ(τ, z1) . . . ϑ(τ, z4) ∈ J2,4A1; 1
2

(
v12

η × v⊗4
H

)
.

According to Theorem 3.2, we get

Φ2(Z) := Lift(ϑ4A1)(τ,Z4,ω) ∈ M2
(
O+(2U ⊕ 4A1(−1)

)
, χ2
)

where χ2 is a character of order 2 of the full orthogonal group. The modular form Φ2 is
reflective with the simplest possible divisor (see [14]). The Fourier expansion of this funda-
mental reflective form of singular weight is the following

Φ2(Z) =
∑

�=(l1,...,l4), li≡ 1
2 mod Z

×
∑

n,m∈Z>0
n≡m≡1 mod Z
nm−(�,�)=0

σ1

(
(n, �,m)

)(−4

2l1

)
. . .

(−4

2l4

)
eπi(nτ+(�,Z4)+mω)
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where σ1(n) =∑d|n d . The quasi-pullbacks (see [21]) of Φ2 along the divisors are again
reflective (see [14]). In this way we obtain the 4A1-tower of reflective modular forms in six,
five, four and three variables with respect to O+(2U ⊕ nA1(−1)) for n = 4, 3, 2 and 1:

Φ2 = Lift(ϑ4A1), Lift
(
η3ϑ3A1

)
,

K4(τ, z1, z2,ω) := Lift
(
η6(τ )ϑ(τ, z1)ϑ(τ, z2)

)
, Δ5 = Lift

(
η9(τ )ϑ(τ, z)

)

where Δ5 ∈ S5(Sp2(Z),χ2) is the Igusa modular form (a square root of the first Siegel
cusp form of weight 10). The modular form Δ5 determines one of the most fundamental
Lorentzian Kac–Moody algebras related to the second quantized elliptic genus of K3 sur-
faces (see [7, 17] and [13]). The modular form

K4 ∈ S4

(
S̃O

+(
2U ⊕ 2A1(−1)

)
, χ2

)

is the second member of the modular 4A1-tower based on Δ5. This form defines an (elliptic)
Lorentzian Kac–Moody algebra of signature (1,3) (see a forthcoming paper of Gritsenko
and Nikulin). Moreover K4(Z)dZ is the only canonical differential form on the orthogonal
modular variety

Mχ2(2A1) = Γχ2 \ D
(
2U ⊕ 2A1(−1)

)

of complex dimension 4 and of Kodaira dimension 0 where Γχ2 = ker(χ2) (see [14]). The
first example of cusp forms of this type was considered in [16] where it was shown that the
modular form

Δ1 = Lift
(
η(τ)ϑ(τ, z)

) ∈ S1
(
Õ+(2U ⊕ 〈−6〉), χ6

)

determines the unique, up to a constant, canonical differential form Δ3
1(Z)dZ on the Barth-

Nieto modular Calabi–Yau three-fold. The second example of Siegel cusp forms of canoni-
cal weight with the simplest possible divisor was constructed in [5]:

∇3 = Lift
(
η(τ)η(2τ)4ϑ(τ, z)

) ∈ S3

(
Γ

(2)

0 (2),χ2

)

where Γ
(2)

0 (2) < Sp2(Z) and χ2 is its character of order 2. A Calabi-Yau model of the Siegel
modular three-fold Γ

(2)

0 (2)χ2 \ H2 was found in [9]. The modular form in four variables K4

is the next example of a cusp form of “Calabi–Yau type” similar to the Siegel modular forms
Δ3

1 and ∇3.

Question 3.5 We can ask a question about the existence of a compact model of Calabi–Yau
type of the modular variety Mχ2(2A1) of dimension 4 defined above.

4 Modular forms of singular and critical weights

The minimal possible weight (singular weight) of holomorphic Jacobi form for L is n0
2

where n0 = rankL. The first weight for which Jacobi cusp forms might appear is equal to
n0+1

2 . This weight is called critical. In the case of classical modular forms in one variable,
the critical weight is equal to 1. The simplest possible example of modular forms of critical
weight in our context is the cusp form Δ1 = Lift(η ϑ) of weight 1 with a character of order
6 for the lattice 2U ⊕ 〈−6〉 of signature (2,3). We mentioned in Example 3.4 that this
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function determines one of the basic Lorentzian Kac–Moody algebras in the Gritsenko–
Nikulin classification (see [18, 19]) and it induces the unique canonical differential form
on a special Calabi–Yau three-folds, the Barth–Nieto quintic. We can construct a simple
example of modular form of critical weight with trivial character using Theorem 3.2. This is

Lift(η ϑD23(3)) ∈ M12
(
Õ+(2U ⊕ D23(−3)

))

which is a modular form with trivial character with respect to the orthogonal group of sig-
nature (2,25). In this section, we construct examples of Jacobi cusp forms of critical weight
for all even ranks. For this aim, we use the pullback of Jacobi forms of singular weight such
that its Fourier coefficient f (0,0) = 0. This is exactly the case of ϑDm .

Let M < L be an even sublattice of L. We can consider the Heisenberg group of M as a
subgroup of H(L). Therefore if rank(M) = rank(L) then the Jacobi forms with respect to
L can be considered as Jacobi forms with respect to M . In the next proposition, we consider
the operation of pullback.

Proposition 4.1 Let M < L be a sublattice of L and rank(M) < rank(L)

M ⊕ M⊥ < L, Z = Zm ⊕ Z⊥ ∈ L ⊗ C = (M ⊕ M⊥)⊗ C.

For any ϕ(τ,Z) ∈ Jk,L;t (χ × ν) its pullback is also a Jacobi form

ϕ|M := φ(τ,Zm) = ϕ(τ,Z)|(Z⊥=0) ∈ Jk,M;t (χ × ν|Γ J (M)).

The pullback of a Jacobi cusp form is a cusp form or 0.

Proof We note that the pullback of Jacobi form might be the zero-function. What is more
interesting is that the pullback might be a cusp form although the original function is not.

The functional equations (9)–(10) are evidently true for ϕ|M . To calculate its Fourier
expansion, we consider the embedding of the lattices

M ⊕ M⊥ < L < L∨ < M∨ ⊕ (M⊥)∨.

We have to analyze the M-projection of any vector l in 1
2L∨ = L(2)∨ in the Fourier ex-

pansion (11). If the character ν of the minimal Heisenberg group is trivial then we do not
need the coefficient 1

2 before the lattices dual to L and M in the calculation below. For any
l ∈ 1

2L∨ = L(2)∨, we have the following decomposition

l = lm ⊕ l⊥ = prM(2)∨(l) ⊕ pr(M(2)⊥)∨(l) ∈ M(2)∨ ⊕ (M(2)⊥)∨.

In the coordinates Z = Zm ⊕ Z⊥, we have

ϕ(τ,Z) =
∑

n�0, l=lm⊕ l⊥
f (n, l)e2πi(nτ+(lm,Zm)+(l⊥,Z⊥)).

Therefore

ϕ|M(τ,Zm) =
∑

n�0, lm∈M(2)∨

( ∑

l⊥∈(M(2)⊥)∨
lm⊕ l⊥∈L(2)∨

f (n, lm ⊕ l⊥)

)
e2πi(nτ+(lm,Zm)).

We note that 2nt − (lm, lm) � (l⊥, l⊥) � 0. The last inequality is strict if ϕ is a cusp form. �



Modular forms of orthogonal type and Jacobi theta-series 211

Using the operation of pullback, we can construct Jacobi cusp forms of critical weight
starting from Jacobi forms of singular weight if the constant term f (0,0) of the last one is
equal to zero. The estimation on 2nt − (lm, lm) at the end of the proof of the last proposition
gives us the following estimation of the order at infinity (see (12)) of the pullback.

Corollary 4.2 In the conditions of Proposition 4.1 we have

Ord
(
ϕ|M(τ,Zm)

)
� min
{
(l⊥, l⊥) | l⊥ = pr(M⊥)∨(l) such that f (n, l) = 0

}
.

In particular, if pr(M⊥)∨(l) = 0 for all f (n, l) = 0 then the pullback ϕ|M is a cusp form or
the zero-function.

Using the last corollary, we can construct new important examples of Jacobi forms of
singular and critical weights. We recall that by Jk,L we denote the space of Jacobi forms of
index one.

We define the root lattice Am as a sublattice of Dm+1

Am = {(x1, . . . , xm+1) ∈ Z
m+1 |x1 + · · · + xm+1 = 0

}
< Dm+1.

We note that A1
∼= 〈2〉, A1 ⊕ A1

∼= D2 and A3
∼= D3.

Proposition 4.3 (1) Let v = 2(b1, . . . , bm) ∈ Z
m be an element in Dm with at least two

non-zero coordinates bi such that (b1 + · · · + bm) ≡ 1 mod 2 and g.c.d. (b1, . . . , bm) = 1.
Then

ϑDm |v⊥ ∈ J
cusp
m
2 ,v⊥

Dm

(
v3m

η

)
and ϑDm(3)|v⊥ ∈ J

cusp
m
2 ,v⊥

Dm(3)

(
vm

η

)

is a non-zero Jacobi cusp form of critical weight such that

Ord(ϑDm |v⊥) = 1

(v, v)
> 0 and Ord(ϑDm(3)|v⊥) = 1

3(v, v)
> 0.

(2) The theta-product

ϑAm(τ, z1, . . . , zm) = ϑ(τ, z1) · · · · · ϑ(τ, zm) · ϑ(τ, z1 + · · · + zm) ∈ Jm+1
2 ,Am

(
v3m+3

η

)

is a Jacobi form of critical weight. If m is even then ϑAm is a Jacobi cusp form and

Ord(ϑAm) = 1

4(m + 1)
> 0.

(3) For the renormalized lattice Am(3), the Jacobi form

ϑAm(3)(τ, z1, . . . , zm) = ϑ3/2(τ, z1) · · · · · ϑ3/2(τ, zm) · ϑ3/2(τ, z1 + · · · + zm)

belongs to Jm+1
2 ,Am(3)(v

m+1
η ). For even m,

Ord(ϑAm(3)) = 1

12(m + 1)
> 0.
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Proof (1) If in v only one bi = 0 then ϑDm |v⊥ ≡ 0. To prove the lemma, we calculate the
Fourier expansion of the pullback function. The discriminant group of Dm was given in
Example 2.9. The Fourier expansion of ϑDm has the following form

ϑDm(τ,Zm) =
∑

n∈Q>0, l∈ 1
2 Z

m

2n−(l,l)=0

f (n, l) e2πi(nτ+(l,Zm))

where

f (n, l) =
(−4

2l

)
=
(−4

2l1

)
· · · · ·
(−4

2lm

)

is the product of the generalized Kronecker symbols modulo 4. In particular, all coordinates
2li are odd. If v is a vector which satisfies the condition of the proposition then (l, v) =
2(l1b1 + · · · + lmbm) ≡ 1 mod 2. The lattice 〈v〉∨ is generated by v

(v,v)
. We get that

l⊥ = pr〈v〉∨(l) = (l, v)
v

(v, v)
= 0

is always non trivial. Moreover, there exists a vector 2l = (2li ) with odd coordinates such
that (l, v) = 1. According to Corollary 4.2

Ord(ϑDm |v⊥) =
∣∣∣∣

(
v

(v, v)
,

v

(v, v)

)∣∣∣∣=
1

|(v, v)| > 0

and ϑDm |v⊥ is a Jacobi cusp form. The proof for Dm(3) is quite similar.
(2) We have Am = v⊥

Dm+1
where v = 2(1, . . . ,1) ∈ Dm+1. In particular zm+1 = −(z1 +

· · · + zm) and ϑAm = −ϑDm+1 |v⊥ . If m is even then v satisfies the condition in (1) and
Ord(ϑAm) = 1

4(m+1)
. The proof of (3) is similar. �

Example Since A3
∼= D3, there exist a Jacobi form of singular and two Jacobi forms (cusp

and non-cusp) of critical weight for this lattice

ϑD3 ∈ J 3
2 ,D3

(
v9

η

)
, η ϑD3 ∈ J

cusp

2,D3

(
v10

η

)
, ϑA3 ∈ J2,A3

(
v12

η

)
.

We can construct many Jacobi forms of singular, critical and other small weights using
the equalities of the previous proposition. For any ϕ ∈ Jk,L;t (χ), we denote by ϕ[n] the direct
(tensor) product of n-copies of ϕ, i.e. the Jacobi form for the lattice nL

ϕ[n](τ, (Z1, . . . ,Zn)
)= ϕ(τ,Z1) · · · · · ϕ(τ,Zn) ∈ Jnk,nL;t

(
χn
)
.

The next example is very important.

Corollary 4.4 There exists a Jacobi form of singular weight for A2

σA2(τ, z1, z2) = ϑ(τ, z1)ϑ(τ, z2)ϑ(τ, z1 + z2)

η(τ )
∈ J1,A2

(
v8

η

)
. (24)

In particular, the Jacobi form of singular weight σ3A2 = σ
[3]
A2

∈ J3,3A2 has trivial character.
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Proof We note that η(τ)−1 = q−1/24(1 + q(. . . )). Therefore

Ord

(
ϕ(τ,Z)

η(τ )

)
= Ord
(
ϕ(τ,Z)

)− 1

12
.

Thus σA2 is holomorphic Jacobi form of singular weight for A2. �

Remarks (1) The Jacobi form σA2 is equal to the denominator function of the affine Lie
algebra A2 (see [26] and [6]). We consider the Jacobi forms related to the denominator
functions of all affine Kac–Moody Lie algebras in a forthcoming paper of V. Gritsenko and
K.-I. Iohara.

(2) The lifting of σ3A2 is a reflective modular form of singular weight. The lifting of
η8σ2A2 determined the unique canonical differential form on a modular variety of Kodaira
dimension 0 (see [14]).

(3) The form σA2 is the first example of Jacobi form obtained as theta/eta-quotients.
Using such Jacobi form, we can produce important classical Jacobi forms in one variable
called theta-blocks, see Corollary 4.9 and [23].

Using the same principle, we obtain

Corollary 4.5 The Jacobi forms given below are cusp forms of critical weight.

κ2A4 = ϑA4 ⊗ ϑA4

η
∈ J

cusp
9
2 ,2A4

(
v5

η

)
, κA4⊕A6 = ϑA4 ⊗ ϑA6

η
∈ J

cusp
11
2 ,A4⊕A6

(
v11

η

)
.

Let v5 = 2(2,1,0, . . . ,0) ∈ Dm (m � 2) and v7 = 2(2,1,1,1,0, . . . ,0) ∈ Dn (n � 4). Then

ϑDm |v⊥
5

⊗ ϑDn |v⊥
a

η
∈ J

cusp
m+n−1

2 ,Dm|
v⊥
5

⊕Dn|
v⊥
a

(
v3(n+m)−1

η

)

where a = 5 or 7.

Proof According to Proposition 4.3

Ord(κ2A4) = 1

60
, Ord(κA4⊕A6) = 1

420
, Ord(ϑDm |v⊥

5
) = 1

20
,

Ord(ϑDm |v⊥
7
) = 1

28
. �

Remark In the same way, we get non-cusp Jacobi forms of weight n0
2 + 1 (singular weight

+1):

ϑ
[5]
A4

η3
∈ J11,5A4 ,

ϑ
[7]
A6

η3
∈ J23,7A6 ,

ϑ
[3]
A8

η
∈ J13,3A8

(
v8

η

)
.

The first two functions have trivial character. It might be that these functions are interesting
Eisenstein series. We can also mention the non-cusp form

ϑ
[3]
A2(3)/η ∈ J4,3A2(3)

(
v8

η

)
.

Proposition 4.6 Theta-products give examples of Jacobi forms of singular weight with triv-
ial character for some lattices of all even ranks � 6.
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Proof The corresponding Jacobi forms are tensor products of the following Jacobi theta-
products

σA2 with character v8
η, ϑDm with character v3m

η ,

ϑ
(i)
D4

with character v3m
η (i = 2,3), ϑ

(1)

2A1
with character v6

η,

ϑDm(3) with character vm
η .

See (24), (17), (18), (19), (16) and (23). Below, we give a list of lattices of rank smaller or
equal to 24 since for larger ranks one can use the periodicity of the characters:

n = 6, 3A2; n = 8, D8, 2D4, 8A1; n = 10, D7 ⊕ D3(3), A2 ⊕ D4 ⊕ D4(3);
n = 12, D6 ⊕ D6(3), 2A2 ⊕ D8(3), 6A2; n = 14, D5 ⊕ D9(3);
n = 16, D16, D4 ⊕ D12(3); n = 18, D3 ⊕ D15(3); n = 20, D2 ⊕ D20(3);
n = 22, D1 ⊕ D21(3); n = 24, D24, 12A2, D24(3).

We note that we consider 8A1 as 4(A1 ⊕ A1). The corresponding Jacobi form is the product
of four functions of type ϑ

(1)

2A1
. Moreover, instead of any Dm in this list, we can put a direct

sum Dm1 ⊕ · · · ⊕ Dmk
with m1 + · · · + mk = m. �

Jacobi forms of singular weight with respect to the full Jacobi group of a lattice L have
a SL2(Z)-character of type v2m

η if the rank of L is even (the singular weight is integral)
or a multiplier system of type v2m+1

η if the rank is odd (the singular weight is half-integral).
Analyzing the examples of theta-products given above, we get the following table of possible
characters vm

η

rank n d : character of type vd
η

1 1,3

2 2,4,6,8

3 3,5,7,9,11

4 4,6,8,10,12,14,16

5 5,7,9,11,13,15,17,19

6 6,8,10,12,14,16,18,20,22,24

7 7,9,11,13,15,17,19,21,23,1,3

8 8,10,12,14,16,18,20,22,24,2,4,6.

As corollary, we obtain

Proposition 4.7 If n � 8 is even (respectively, n � 9 is odd) and d ≡ n mod 2 then there
exists a lattice L of rank n such that the space of Jacobi forms of singular weight Jn

2 ,L(vd
η )

is not empty.

Remark For some n, we can prove that this table contains all possible characters. We are
planning to come to this question in another publication.
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Now we would like to analyze Jacobi forms of critical weight. First, note that the multi-
plication by η gives us the simplest such Jacobi form

ηϑD23(3) ∈ J12,D23(3). (25)

The tensor product of a Jacobi form of singular weight and Jacobi form of critical weight
has critical weight for the corresponding lattice. In particular, there exist two simple series
of Jacobi cusp forms with trivial character for the lattices Am ⊕ Dn where m is even and
m + n ≡ 7 mod 8

ϑAm⊕Dn = ϑAm(τ,Zm) ⊗ ϑDn(τ,Zn) ∈ J
cusp

(m+n+1)/2,Am⊕Dn
, (26)

ϑAm⊕D3n(3) = ϑAm(τ,Zm) ⊗ ϑD3n(3)(τ,Z3n) ∈ J
cusp

(m+3n+1)/2,Am⊕D3n(3). (27)

In particular, we get examples of Jacobi cusp forms of weight one with character in one
abelian variable. The simplest examples of such forms can be found in [18] (see also [15]
where many different cusp theta-products of small weights were considered):

η(τ)ϑ3/2(τ,2z) ∈ J1,D1(3)

(
v2

η

)
, η(τ )ϑ(τ,2z) ∈ J1,D1

(
v4

η

)
.

To get more interesting examples, we take the pullback of σA2 . We consider A2 as the
sublattice v⊥

D3
where v = 2(1,1,1). Let u = 2(u1, u2, u3) ∈ D3 and ua be the projection

of u on A∨
2 , i.e. u = ua + uv where ua ∈ 〈v⊥〉∨ = A∨

2 and uv ∈ 〈v∨〉 = 〈 v
12 〉. We set

σA2 |u := σA2 |(ua)⊥
A2

.

Proposition 4.8 Let u = 2(u1, u2, u3) ∈ D3 such that ui = uj and u1 + u2 + u3 ≡ 0 mod 3.
Then σA2 |u is a Jacobi cusp form of critical weight 1 with character v8

η .

Proof We note first that if ui = uj then the pullback σA2 |u is not identically zero. According
to the proof of Proposition 4.1 and Corollary 4.4, the Fourier expansion of the Jacobi form
σA2 of singular weight 1 has the following form

σA2(τ,Z2) =
∑

n>0, la∈A∨
2

2n−(la ,la )=0
la±v∨∈ 1

2 Z
3

f (n, la) e2πi(nτ+(la ,Z2)).

More exactly, in the last summation, we have l∨ = la ± v
12 = 1

2 (l1, l2, l3) with odd li because
the division by η does not change the Z2-part of ϑA2 . Let ua be the projection of u on A∨

2 ,
i.e. u = ua + uv where ua ∈ 〈v⊥〉∨ = A∨

2 and uv ∈ 〈v∨〉 = 〈 v
12 〉. We have to analyze the

Fourier expansion of σA2 |u. As in the proof of Proposition 4.1, we set la = lu ⊕ l⊥ where
(lu, ua) = 0. If the hyperbolic norm of the index of a Fourier coefficient fu(n, lu) of σA2 |u is
equal to zero then l⊥ = 0. Therefore (lu, ua) = (la, ua) = (la, u) = 0 and

(
l∨, u
)= ± (u, v)

12
= ±u1 + u2 + u3

3
∈ Z.

The last inclusion is not possible. Thus the pullback σA2 |u is a cusp form. �

We note that the Jacobi form in Proposition 3.8 is a classical Jacobi form of type [8]. We
give its more explicit form in the next corollary
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Corollary 4.9 Let a, b ∈ Z>0. The following function, called theta-quark,

θa,b(τ, z) = ϑ(τ, az)ϑ(τ, bz)ϑ(τ, (a + b)z)

η(τ )
∈ J1,A1;a2+ab+b2

(
v8

η

)

is holomorphic Jacobi form of Eichler–Zagier type of weight 1, index (a2 + ab + b2) and
character v8

η . This is a Jacobi cusp form if a ≡ b mod 3.

Proof We can assume that a and b are coprime. We obtain this function as σA2 |u for u =
2(b,−a,0). �

Remark The Jacobi form θa,b was proposed by the second author many years ago in his
talks on canonical differential forms on Siegel modular three-folds. The Jacobi forms of
similar types, called theta-blocks, are studied in the paper [23] where the Fourier expansion
of theta-quark θa,b is found explicitly. The method of the proof of Proposition 4.8 can be
used for other Jacobi forms when one takes a pullback on a sublattice of co-rank 2.

Propositions 4.3 and 4.8 give a method to pass from Jacobi forms of singular weight to
Jacobi forms of critical weight. We have noticed that the tensor product of Jacobi forms of
singular and critical weights is a form of critical weight. In some cases, we can divide some
products of two forms of critical weight by η (see Corollary 4.5). We can control that the
obtained Jacobi form is a cusp (or non-cusp) form. Analyzing the table of characters before
Proposition 4.7, we obtain

Proposition 4.10 If n � 7 is odd (respectively, n � 8 is even) and d ≡ n + 1 mod 2 then
there exists a lattice L of rank n such that the space of Jacobi forms of critical weight
J

(cusp)
n+1

2 ,L
(vd

η ) is not empty.

The analogue of Proposition 4.6 is the following

Proposition 4.11 Theta-products give examples of Jacobi cusp forms of critical weight with
trivial character for some lattices of all odd ranks � 5.

Proof The corresponding Jacobi forms of critical weight are pullbacks (see Proposition 4.3)
of Jacobi forms of singular weight of Proposition 4.6. One can also use ϑAm(3) instead of
ϑAm in theta-products. �
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