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Abstract Let μ = e−V dx be a probability measure and T = ∇� be the optimal trans-
portation mapping pushing forward μ onto a log-concave compactly supported measure
ν = e−W dx . In this paper, we introduce a new approach to the regularity problem for the
corresponding Monge–Ampère equation e−V = det D2� · e−W (∇�) in the Besov spaces
W γ,1

loc . We prove that D2� ∈ W γ,1
loc provided e−V belongs to a proper Besov class and W

is convex. In particular, D2� ∈ L p
loc for some p > 1. Our proof does not rely on the

previously known regularity results.

Mathematics Subject Classification (2000) Primary 35J60, 35B65 · Secondary 46E35

1 Introduction

We consider probability measures μ = e−V dx , ν = e−W dx on R
d and the optimal

transportation mapping T pushing forward μ onto ν and minimizing the Monge–Kantorovich
functional ∫

‖x − T (x)‖2 dμ.
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1188 A. V. Kolesnikov, S. Yu. Tikhonov

It is known (see, e.g., [5,26]) that T has the form T = ∇�, where � is a convex function.
If � is smooth, it satisfies the following change of variables formula

e−V = e−W (∇�) det D2�. (1)

This relation can be considered as a non-linear second order PDE with unknown �, the
so-called Monge–Ampère equation.

The regularity problem for the Monge–Ampère equation has a rather long history. The
pioneering results have been obtained by Alexandrov, Bakelman, Pogorelov, Calabi, Yau. The
classical theory can be found in [3,12,21]. See also an interesting survey [18] on non-linear
PDE’s.

Despite the long history, the sharpest Hölder regularity results of classical type have been
obtained only in the 90’s by Caffarelli [8] (see also [9,13,26]). In particular, Caffarelli proved
that D2� is Hölder if V and W are Hölder on bounded sets A and B, where A and B are
supports of μ and ν respectively. In addition, B is supposed to be convex. It seems that the
latter assumption cannot be dropped as demonstrated by famous counterexamples. A nice
exposition with new simplified proofs and historical overview can be found in [25].

Another result from [8] establishes sufficient conditions for � to belong to the second
Sobolev class W 2,p

loc with p > 1. More precisely, Caffarelli considered solution of the Monge–
Ampére equation

det D2� = f

on a convex set � with �|∂� = 0. Assume that � is normalized: B1 ⊂ � ⊂ Bd (an arbitrary
convex set � can be normalized using an affine transformation). It is shown in [8] that for
every p > 0 there exists ε(p) > 0 such that if | f − 1| < ε(p) then ‖�‖W 2,p(B1/2) ≤ C(ε).

Wang [28] proved that for a fixed ε in | f − 1| < ε the value of p in the inclusion � ∈ W 2,p
loc

cannot be chosen arbitrary large.
This Sobolev regularity result has been extended and generalized in different ways in the

recent papers [10,11,22,24]. See also [14] for some results on the mean oscillation of D2�.
It was shown in [11] that every � satisfying det D2� = f on a normalized convex set �

with �|∂� = 0 belongs to W 2,1+ε(�′), where �′ = {
x : �(x) ≤ − 1

2‖�‖L∞
}

provided
0 < λ < f < 	.

The main purpose of this paper is to develop an alternative approach to the regularity
problem of the Monge–Ampère equation. We prove that � belongs to a Besov’s space under
the assumption that e−V is Besov and W is convex. We give a short proof which does
not use previously known regularity results. Our estimates rely on a generalization of the
so-called above-tangent formalism which has been widely used in the applications of the
optimal transport theory in probability and PDE’s (see [2,5,26,27]). We also apply a result
of McCann on the change of variables formula and some classical results on equivalence of
functional norms.

Some estimates of the type considered in this paper have been previously obtained in
[15] in the case of the Sobolev spaces. Applications to the infinite-dimensional analysis and
convex geometry can be found in [4] and [16] respectively.

Hereafter Br denotes the ball of radius r centered at 0. We use notation D2� for the
Hessian matrix of � and ‖ · ‖ for the standard operator norm. We will assume that the
measures μ and ν satisfy the following assumptions:
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Regularity of the Monge–Ampère equation in Besov’s spaces 1189

Assumption A The potential V : R
d → R has the representation

V = V0 + V1,

where |V0| is globally bounded, V1 admits local Sobolev derivatives, and |∇V1| ∈ L1(μ).

Assumption B The support of ν is a compact convex set B ⊂ BR .

Definition. Besov’s space (Fractional Sobolev’s space). The space W s,p(Q), where Q is a
cube in R

d , consists of functions with the finite norm

‖u‖W s,p(Q) = ‖u‖L p(Q) +
⎛
⎜⎝

∫

Q

∫

Q

|u(x) − u(y)|p

|x − y|d+sp
dx dy

⎞
⎟⎠

1
p

.

The space W s,p
0 (Rd) is the completion of C∞

0 (Rd) with the norm

‖u‖W s,p
0 (Rd ) =

⎛
⎜⎝

∫

Rd

∫

Rd

|u(x) − u(y)|p

|x − y|d+sp
dx dy

⎞
⎟⎠

1
p

.

Definition. Log-concave measure. A probability measure ν is called log-concave if it satisfies
the following inequality for all compact sets A, B:

ν(αA + (1 − α)B) ≥ να(A)ν(B)1−α

and any 0 ≤ α ≤ 1. If ν has a density ν = e−W dx , then W must be convex (we assume that
W = +∞ outside of supp(ν)). This is a classical result of Borell [6].

Remark 1 We note that the second derivative of the convex function � can be understood in
different ways. In the generalized (weak) sense this is a measure with absolutely continuous
part D2

a� dx and singular part D2
s �. Throughout the paper we use the following agreement:

the statement “D2� belongs to a certain Besov or Sobolev class” means that the measure
D2� has no singular component and the corresponding Sobolev derivative D2� = D2

a�

belongs to this class.

Theorem 2 Let Assumptions A and B be fulfilled and, moreover,

(1) there exist p ≥ 1 and 0 < γ < 1 such that for every r > 0
∫

Br

‖(δy V )+‖L p(μ)

|y|d+ 1
p +γ

dy < ∞,

where δy V = V (x + y) + V (x − y) − 2V (x) and (δy V )+ is the non-negative part of
δy V ;

(2) e−V is locally bounded from below;
(3) ν is a compactly supported log-concave measure.

Then

‖D2�‖W ε,1(Q) < ∞
for every cube Q ⊂ R

d and 0 < ε <
γ
2 .
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1190 A. V. Kolesnikov, S. Yu. Tikhonov

Remark 3 Theorem 2 can be also formulated in its local version, i.e., when supp(μ) �= R
d ,

which corresponds to the case of V = +∞ outside some closed set. Although the proof
follows the same lines as that for Theorem 2, it is not straightforward and requires some
additional assumptions. The detailed proof will appear elsewhere. We would like to thank an
anonymous referee for bringing our attention to this issue.

Taking p = +∞ in Theorem 2, we obtain the following result.

Corollary 4 Let Assumptions A, B and conditions (2)–(3) be fulfilled. Assume, in addition,
that (δy V )+ ≤ ω(|y|) for some ω : R

+ → R
+ and

r∫

0

ω(s)

s1+γ
ds < ∞

for some γ > 0 and every r > 0. Then ‖D2�‖W ε,1(Q) < ∞ with 0 < ε <
γ
2 .

In particular, applying the fractional Sobolev embedding theorem (see, e.g., [1, Ch. V])
we get

Corollary 5 Under assumptions of Theorem 2, for every ε > 0,

‖D2�‖ ∈ L

d
d− γ

2 +ε

loc .

Remark 6 Note that in Corollary 5 we do not assume that V is bounded from below.

2 Auxiliary results

Below we will use the following function space (see, e.g., [23]). Let 	
p,q
α , 0 < α < 2, be

the space of functions with the finite norm

‖ f ‖	
p,q
α

= ‖ f ‖p +
⎡
⎢⎣

∫

Rd

(‖ f (x + t) + f (x − t) − 2 f (x)‖p
)q

|t |d+αq
dt

⎤
⎥⎦

1
q

,

where ‖·‖p is the L p-norm with respect to the Lebesgue measure. We will apply the following
equivalence result from [23, Ch.5, Sec. 5, Propos. 8′].

Lemma 7 For α > 1 the norm ‖ f ‖	
p,q
α

is equivalent to

‖ f ‖p +
⎡
⎢⎣

∫

Rd

(‖∇ f (x + t) − ∇ f (x)‖p)
q

|t |d+(α−1)q
dt

⎤
⎥⎦

1
q

.

In particular, if α > 1 and ‖ f ‖	
p,q
α

< ∞, then f admits the Sobolev derivatives.

Let us recall that every convex function � on R
d admits the following two types of second

derivatives.

123

Author's personal copy



Regularity of the Monge–Ampère equation in Besov’s spaces 1191

Definition. We say that the measure μev is the distributional derivative of a convex function
� along unit vectors e, v if the following integration by parts formula holds for any test
function ξ :

∫
ξ dμev = −

∫
∂eξ ∂v� dx .

We set

∂ev� := μev.

Definition. The absolutely continuous part (∂ev�)a of ∂ev� is called the second Alexandrov
derivative of � along e, v. Clearly,

∂ee� ≥ (∂ee�)a ≥ 0

in the sense of measures.

Let us denote by D2
a� the matrix consisting on these absolutely continuous parts. We will

apply the following result of McCann from [19].

Theorem 8 For μ-almost all x the following change of variables formula holds

e−V (x) = det D2
a�(x) · e−W (∇�(x)).

We will need the following lemma from [15]. In fact, this is a generalization of the well-
known above-tangent lemma which has numerous applications in probability and gradient
flows of measures with respect to the Kantorovich metric (see [2,5,26,27]). The proof follows
directly from the change of variables and integration by parts.

Lemma 9 Assume that W is twice continuously differentiable and

D2W ≥ K · Id

for some K ∈ R, p ≥ 0. Then
∫

δy V (δy�)pdμ ≥ K

2

∫
|∇�(x + y) − ∇�(x)|2(δy�)p dμ

+ K

2

∫
|∇�(x − y) − ∇�(x)|2(δy�)p dμ

+p
∫ 〈∇δy�, (D2

a�)−1∇δy�
〉
(δy�)p−1 dμ,

where δy V = V (x + y) + V (x − y) − 2V (x).

Corollary 10 It follows easily from Lemma 9 that inequality
∫

δy V (δy�)pdμ ≥ p
∫ 〈∇δy�, (D2

a�)−1∇δy�
〉
(δy�)p−1 dμ

holds for any log-concave measure ν. In particular, this holds for the restriction of Lebesgue
measure 1

λ(A)
λ|A on a convex subset A. In this case W is a constant on A and W (x) = +∞

if x /∈ A.
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1192 A. V. Kolesnikov, S. Yu. Tikhonov

Remark 11 Let us assume that V is twice differentiable and y = te for some unit vector e.
Dividing by t2p+2 and passing to the limit we obtain∫

Vee�
p
ee dμ ≥ K

∫
‖D2� · e‖2�

p
ee dμ (2)

+p
∫

〈(D2�)−1∇�ee,∇�ee〉�p−1
ee dμ.

Now it is easy to get some of the results of [15] from (2). In particular, applying integration
by parts for the left-hand side and Hölder inequalities, one can easily obtain that

K‖�2
ee‖L p(μ) ≤ p + 1

2
‖V 2

e ‖L p(μ).

It is worth mentioning that (2) gives, in fact, an a priori estimate for derivatives of � up
to the third order (due to the term p

∫ 〈(D2�)−1∇�ee,∇�ee〉�p−1
ee dμ).

We denote by �a� the absolutely continuous part of the distributional Laplacian of �.

Lemma 12 Under Assumptions A and B, there exists C such that

∫
�a�(x + y) dμ ≤

d∑
i=1

∫
e−V (x) d

[
∂xi xi �(x + y)

] ≤ C

uniformly in y ∈ R
d .

Proof The inequality
∫

�a�(x + y) dμ ≤ ∑d
i=1

∫
e−V (x) d

[
∂xi xi �(x + y)

]
is clear in

view of the fact that the singular part of ∂xi xi � is nonnegative. Moreover, we get

d∑
i=1

∫
e−V (x) d

[
∂xi xi �(x + y)

] ≤ c1

d∑
i=1

∫
e−V1(x) d

[
∂xi xi �(x + y)

]

= c1

∫
〈∇�(x + y),∇V1(x)〉e−V1(x) dx ≤ c1 R

∫
|∇V1(x)|e−V1(x) dx

≤ c2

∫
|∇V1(x)| dμ.

��
Finally, we will use the fractional Sobolev embedding theorem (see [1, Ch. V]). We

formulate it in the following form given in [20] (see also [7,17]).

Theorem 13 Let p > 1, 0 < s < 1 and sp < d. Then for every u ∈ W s,p
0 (Rd) one has

‖u‖p
Lq (Rd )

≤ c(d, p)
s(1 − s)

(d − sp)p−1 ‖u‖p
W s,p

0 (Rd )
,

where q = dp/(d − sp).

3 Proof of Theorem 2

Let us apply Lemma 9 with p = 1. We have∫

Rd

δy V · δy� dμ ≥
∫

Rd

〈∇δy�, (D2
a�)−1∇δy�

〉
dμ.
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Regularity of the Monge–Ampère equation in Besov’s spaces 1193

Taking into account Lemma 12, we obtain
∫

Rd ‖D2
a�‖ dμ < ∞. Then Cauchy inequality

yields

∫

Rd

‖D2
a�‖ dμ ·

∫

Rd

δy V · δy� dμ ≥
⎛
⎜⎝

∫

Rd

|∇δy�|dμ

⎞
⎟⎠

2

.

By the Hölder inequality, for every p, q ≥ 1, 1
p + 1

q = 1, we have

∫

Rd

δy V · δy� dμ ≤
∫

Rd

(δy V )+ · δy� dμ ≤ ‖(δy V )+‖L p(μ) · ‖δy�‖Lq (μ)

Let us now estimate ‖δy�‖Lq (μ). Note that |∇�| ≤ R, and hence δy� ≤ 2R|y|.
Let us also mention that t → �(x + t y) is a one-dimensional convex function for a fixed

x . Therefore, my = ∂2
t t�(x + t y) is a non-negative measure on R

1. Moreover,

δy� =
1∫

0

〈∇�(x + sy) − ∇�(x − sy), y〉 ds

=
1∫

0

s∫

−s

dmy ds.

Therefore, we have

‖δy�‖q
Lq (μ) =

∫
(δy�)q dμ ≤ (2R|y|)q−1

∫
δy� dμ

= (2R|y|)q−1

1∫

0

s∫

−s

∫
e−V (x)d

[
∂2

t t�(x + t y)
]

dt ds.

It follows from Lemma 12 that

‖δy�‖q
Lq (μ) ≤ C |y|1+q .

Hence,

⎛
⎜⎝

∫

Rd

|∇δy�|dμ

⎞
⎟⎠

2

≤
∫

Rd

δy V · δy� dμ ≤ C‖(δy V )+‖L p(μ)|y|1+ 1
q .

Now we divide this inequality by |y|d+2+γ and integrate it over a bounded subset Q ⊂ R
d .

By condition (1), we get

∫

Q

1

|y|d+2+γ

⎛
⎜⎝

∫

Rd

|∇�(x + y) + ∇�(x − y) − 2∇�(x)| dμ

⎞
⎟⎠

2

dy < ∞. (3)

123

Author's personal copy



1194 A. V. Kolesnikov, S. Yu. Tikhonov

Let us take a smooth compactly supported function ξ ≥ 0. We will show that

∫

Rd

1

|y|d+2+γ

⎛
⎜⎝

∫

Rd

|ξ(x + y)∇�(x + y) + ξ(x − y)∇�(x − y) − 2ξ(x)∇�(x)| dx

⎞
⎟⎠

2

dy < ∞. (4)

Let us split this integral in two parts:
∫

Rd

· · · dx =
∫

B1

· · · dx +
∫

Bc
1

· · · dx = I1 + I2.

To estimate the second part, we note that
∫

Rd

|ξ(x + y)∇�(x + y) + ξ(x − y)∇�(x − y) − 2ξ(x)∇�(x)| dx ≤ 4R
∫

Rd

|ξ(x)| dx .

Thus, I2 < ∞.
Let us estimate I1. It follows from estimate (3) and condition (3) of the theorem that

∫

B1

1

|y|d+2+γ

⎛
⎜⎝

∫

Rd

|∇�(x + y) + ∇�(x − y) − 2∇�(x)|ξ(x) dx

⎞
⎟⎠

2

dy < ∞.

Therefore, it is enough to show that

I3 =
∫

B1

1

|y|d+2+γ

⎛
⎜⎝

∫

Rd

|∇�(x + y) (ξ(x + y) − ξ(x))

+∇�(x − y) (ξ(x − y) − ξ(x)) | dx

⎞
⎠

2

dy < ∞.

Since |y| ≤ 1 and ξ is compactly supported, there exists R0 > 0 such that

I3 ≤
∫

BR0

1

|y|d+2+γ

⎛
⎜⎝

∫

BR0

|∇�(x + y)(ξ(x + y) − ξ(x))

+∇�(x − y)
(
ξ(x − y) − ξ(x)

)∣∣ dx

⎞
⎠

2

dy < ∞.

Using smoothness conditions on ξ , we obtain

|∇�(x + y) (ξ(x + y) − ξ(x)) + ∇�(x − y) (ξ(x − y) − ξ(x))|
= |(∇�(x + y) − ∇�(x − y)) (ξ(x + y) − ξ(x))

+∇�(x − y) (ξ(x + y) + ξ(x − y) − 2ξ(x))|
≤ C

(
R0|y|2 + |y||∇�(x + y) − ∇�(x − y)|) .
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Regularity of the Monge–Ampère equation in Besov’s spaces 1195

Thus, it is sufficient to show that

∫

BR

1

|y|d+γ

⎛
⎜⎝

∫

BR

|∇�(x + y) − ∇�(x − y)| dx

⎞
⎟⎠

2

dy < ∞. (5)

To prove (5), we use the representation

∫

BR

|∇�(x + y) − ∇�(x − y)| dx =
∫

BR

∣∣∣∣∣∣
1∫

−1

d∑
i=1

d
[
∂s�ei (x + sy)

]
(s) · yi

∣∣∣∣∣∣ dx .

The latter is bounded by C |y| ∫B2R
��. This immediately implies that I3 < ∞ and

therefore (4) is proved.
This means that |ξ · ∇�|

	
1,2
1+γ /2

< ∞ for every smooth compactly supported ξ . Using

smoothness conditions on ξ and boundedness of ∇�, we get from Lemma 7 that D2� has
no singular parts and

∫

Br

1

|y|d+γ

⎛
⎜⎝

∫

Br

|D2�(x + y) − D2�(x)| dx

⎞
⎟⎠

2

dy < ∞ (6)

for any Br .
Finally, applying the Cauchy–Schwarz inequality, we obtain for every δ > 0

⎛
⎜⎝

∫

Br

1

|y|d+γ /2−δ/2

∫

Br

|D2�(x + y) − D2�(x)| dx dy

⎞
⎟⎠

2

≤
∫

Br

1

|y|d+γ

⎛
⎜⎝

∫

Br

|D2�(x + y) − D2�(x)| dx

⎞
⎟⎠

2

dy ·
∫

Br

|y|δ
|y|d dy < ∞, ∀Br .

Changing variables implies
∫

Q

∫

Q

|D2�(z) − D2�(x)|
|z − x |d+ε

dx dz < ∞

for every 0 < ε <
γ
2 and bounded Q. The proof is now complete. ��

4 Remarks on improved integrability

By applying Theorem 2 we get a better (local) integrability of ‖D2�‖ (L
d

d− γ
2 +ε instead of

L1); see Corollary 5. This can be used to improve the estimates obtained in Theorem 2.
We assume for simplicity that we transport measures with periodical densities by a peri-

odical optimal mapping

T (x) = x + ∇ϕ(x),
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1196 A. V. Kolesnikov, S. Yu. Tikhonov

where ϕ is periodical. Equivalently, one can consider optimal transportation of probability
measures on the flat torus T. Then one can repeat the above arguments and obtain the same
estimates which become global.

In general, it can be shown that the assumption ‖D2ϕ‖ ∈ Lr (T) implies

∫

T

∫

T

|D2ϕ(x + y) − D2ϕ(x)| 2r
r+1

|y|d+ r
r+1 (γ+ r−1

q )−ε
dx dy < ∞

for every ε and ‖D2ϕ‖ ∈ Lr ′
(T) with any r ′ satisfying

r ′ <

2dr
r+1

d − r
r+1 (γ + r−1

q )
.

Starting with r0 = 1 and iterating this process one can obtain a sequence rn such that
‖D2ϕ‖ ∈ Lrn−ε for every rn and ε > 0

r0 = 1, rn+1 =
2drn
rn+1

d − rn
rn+1 (γ + rn−1

q )
.

One has ‖D2ϕ‖ ∈ Lr−ε , where r = limn rn solves the equation

x2 + x(q(γ − d) − 1) + qd = 0

with r > 1.
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