SHORT COMMUNICATIONS =

On the Existence of Solutions of the First Boundary Value Problem for Elliptic Equations on Unbounded Domains

A. L. Beklaryan

Department of Mechanics and Mathematics, Moscow State University; E-mail: beklaryan@hotmail.com Received October 9, 2012

Received October 9, 2012

Abstract. The problem mentioned in the title is studied.

DOI 10.1134/S1061920812040115

1. INTRODUCTION

Let Ω be an unbounded open subset of \mathbb{R}^n , $n \ge 2$. Denote by B^x_ρ the open ball in \mathbb{R}^n of radius $\rho > 0$ centered at the point x. If x = 0, we write B_ρ instead of B^x_ρ . As is customary, by $W^1_{2,\text{loc}}(\Omega)$ we mean the set of functions in $\mathcal{D}'(\Omega)$ that belong to the spaces $W^1_2(\Omega \cap B_\rho)$ for any $\rho > 0$ [3]. In this case, denote by $\mathring{W}^{\dagger}_{2,\text{loc}}(\Omega)$ the subset of $W^1_{2,\text{loc}}(\mathbb{R}^n)$ which is the closure of $C_0^{\infty}(\Omega)$ in the system of seminorms $\|u\|_{W^1_2(\Omega \cap B_\rho)}$, $\rho > 0$. Further, following [4, Subsec. 1.1], denote by $L^1_2(\Omega)$ the space of distributions ("generalized functions") whose first derivatives belong to $L_2(\Omega)$; in other words,

$$L_{2}^{1}(\Omega) = \Big\{ f \in \mathcal{D}'(\Omega) \colon \int_{\Omega} |\nabla f|^{2} \, dx < \infty \Big\}.$$

Let $\omega \subseteq \mathbb{R}^n$ be an open set and let $\mathcal{K} \subset \omega$ be a compact set. Denote by $\Phi_{\varphi}(\mathcal{K}, \omega)$ the set of functions $\psi \in C_0^{\infty}(\omega)$ such that $\psi = \varphi$ in a neighborhood of \mathcal{K} , or, in other words, $\psi - \varphi \in \overset{\circ}{W_{2,\text{loc}}}(\mathbb{R}^n \setminus \mathcal{K})$. Write $\Psi(\mathcal{K}, \omega) = \{\psi \in C_0^{\infty}(\omega) : \psi = 1 \text{ in a neighborhood of } \mathcal{K}\}$. The quantity $\operatorname{cap}_{\varphi}(\mathcal{K}, \omega) = \inf_{\psi \in \Phi_{\varphi}(\mathcal{K}, \omega)} \int_{\omega} |\nabla \psi|^2 dx$ is referred to as the capacity of the compact set \mathcal{K} with respect to an open set ω . The capacity of an arbitrary closed subset $E \subset \omega$ of \mathbb{R}^n is defined by the rule $\operatorname{cap}_{\varphi}(E, \omega) = \sup_{\mathcal{K}} \operatorname{cap}_{\varphi}(\mathcal{K}, \omega)$, where the supremum on the right-hand side is taken over all compacta $\mathcal{K} \subset E$. If $\omega = \mathbb{R}^n$, then we write $\operatorname{cap}_{\varphi}(E)$ instead of $\operatorname{cap}_{\varphi}(E, \mathbb{R}^n)$. We also need the following capacity [4, Subsec. 9.1]:

$$\operatorname{Cap}(\mathcal{K}, W_2^1(\omega)) = \inf_{\psi \in \Psi(\mathcal{K}, \, \omega)} \left(\int_{\omega} |\nabla \psi|^2 dx + \int_{\omega} |\psi|^2 \, dx \right).$$

As above, the capacity of an arbitrary set $E \subset \omega$ closed in \mathbb{R}^n is given by the rule $\operatorname{Cap}(E, W_2^1(\omega)) = \sup_{\mathcal{K}} \operatorname{Cap}(\mathcal{K}, W_2^1(\omega))$, where the supremum on the right-hand side is taken over all compacta $\mathcal{K} \subset E$.

Finally, denote by W_2^{-1} the space of continuous linear functionals on W_2^1 . A set $E \subset \mathbb{R}^n$ is said to be (2, 1)-polar if the only element of W_2^{-1} supported by E is zero [4, Subsec. 9.2].

The problems treated in the present note were studied earlier in [1, 2].

2. STATEMENT OF THE PROBLEM

Here and below, L stands for the divergence operator of the form $L = \sum_{i,j=1}^{n} \partial/\partial x_i (a_{ij}(x)\partial/\partial x_j)$ with measurable bounded coefficients satisfying the uniform ellipticity condition

$$c_1|\xi|^2 \leqslant \sum_{i,j=1}^n a_{ij}(x)\,\xi_i\,\xi_j \leqslant c_2|\xi|^2, \quad \xi \in \mathbb{R}^n, \quad c_1, c_2 > 0.$$

By a solution of the Dirichlet problem

$$Lu = 0 \quad \text{on} \quad \Omega, \qquad u|_{\partial\Omega} = \varphi,$$
 (1)

where $\varphi \in W_{2, \text{loc}}^1(\mathbb{R}^n)$, we mean a function $u \in W_{2, \text{loc}}^1(\Omega)$ such that 1. $u - \varphi \in \mathring{W}_{2, \text{loc}}^{\dagger}(\Omega)$, i.e., $(u - \varphi)\eta \in \mathring{W}_2^{\dagger}(\Omega)$ for any function $\eta \in C_0^{\infty}(\mathbb{R}^n)$; 2. the function u has the bounded Dirichlet integral $\int_{\Omega} |\nabla u|^2 dx < \infty$; 3. $\int_{\Omega} \sum_{i,j=1}^n a_{ij}(x) \partial u / \partial x_j \, \partial \psi / \partial x_i \, dx = 0$ for any function $\psi \in C_0^{\infty}(\Omega)$.

3. MAIN RESULTS

Theorem 1. Let $\operatorname{cap}_{\varphi-c}(\mathbb{R}^n \setminus \Omega) < \infty$ for some $c \in \mathbb{R}$. Then problem (1) has a solution.

Theorem 2. Let problem (1) have a solution, and let $\int_{\mathbb{R}^n \setminus \Omega} |\nabla \varphi|^2 dx < \infty$. Then there is a $c \in \mathbb{R}$ such that $\operatorname{cap}_{\varphi - c}(\mathbb{R}^n \setminus \Omega) < \infty$.

Theorem 3. For any function $\psi \in W^1_{2,\text{loc}}(\mathbb{R}^n)$, the condition $\operatorname{cap}_{\psi}(\mathbb{R}^n \setminus \Omega) < \infty$ is equivalent to the inequality $\sum_{k=1}^{\infty} \operatorname{cap}_{\psi}((\overline{B}_{r_{k+1}} \setminus B_{r_{k-1}}) \operatorname{cap}(\mathbb{R}^n \setminus \Omega), B_{r_{k+2}} \setminus \overline{B}_{r_{k-2}}) < \infty$, where $r_k = 2^k$ if $n \ge 3$ and $r_k = 2^{2^k}$ if n = 2.

Let $\omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain, and let μ be a measure on ω such that

$$\sup_{x \in \mathbb{R}^n, \, \rho > 0} \rho^{1-n} \mu(B^x_{\rho} \cap \omega) < \infty.$$
⁽²⁾

In this case, for any function $v \in W_2^1(\omega)$, there is a $c \in \mathbb{R}$ such that

$$\sigma(\omega,\mu)\|v-c\|_{L_2(\omega,\mu)} \leqslant \|\nabla v\|_{L_2(\omega)},\tag{3}$$

where the constant $\sigma(\omega, \mu) > 0$ does not depend on v [4, Subsec. 1.4.5].

Theorem 4. Let problem (1) have a solution, and let μ_k be a family of measures on ω_k , where ω_k , k = 1, 2, ..., are pairwise disjoint Lipschitz domains in \mathbb{R}^n such that

$$\sup_{e \in \mathbb{R}^n, \, \rho > 0} \rho^{1-n} \mu_k(B^x_\rho \cap \omega_k) < \infty, \, \sum_{k=1}^\infty \int_{\omega_k \setminus \Omega} |\nabla \varphi|^2 dx < \infty$$

Write $m_k(\varphi) = \inf_{c \in \mathbb{R}} \|\varphi - c\|_{L_2(\omega_k \setminus \Omega, \mu_k)}$. Then $\sum_{k=1}^{\infty} \sigma^2(\omega_k, \mu_k) m_k^2(\varphi) < \infty$, where $\sigma(\omega_k, \mu_k)$ stands for the coefficient in inequality (2).

Corollary 1. Let $\Omega = \{(x', x_n) \in \mathbb{R}^n | x_n \ge 0\}$ and $\varphi(x) = (1 + |x|)^{\alpha}$. In this case, problem (1) has a solution if and only if either $\alpha < -1/2$ or $\alpha = 0$.

Corollary 2. Let $n \ge 3$, let Ω be the complement to the set $\{(x', x_n) \in \mathbb{R}^n | x_n \ge 1, |x'| \le x_n^\beta\}$, where $\beta < 0$, and let $\varphi(x) = (1 + |x|)^{\alpha}$. In this case, problem (1) has a solution if and only if either $\alpha < -(1 + \beta(n-3))/2$ or $\alpha = 0$.

The author expresses his gratitude to Professor A. A. Kon'kov for setting the problem and for the interest shown in the process of its solution.

REFERENCES

- V. A. Kondrat'ev, "The Solvability of the First Boundary Value Problem for Strongly Elliptic Equations," Tr. Mosk. Mat. Obs. 16, 209–292 (1967) [in Russian].
- A. A. Kon'kov, "On the Dimension of the Solution Space of Elliptic Systems in Unbounded Domains," Mat. Sb. 184 (12), 23–52 (1993) [Russ. Acad. Sci. Sb. Math. 80 (2), 411–434 (1995)].
- O. A. Ladyzhenskaya and N. N. Ural'tseva, *Linear and Quasilinear Elliptic Equations* (Nauka, Moscow, 1964; Academic Press, New York–London, 1968).
- V. G. Maz'ya, Sobolev Spaces (Leningrad. Univ., Leningrad, 1985; Springer-Verlag, Berlin–New York, 1985).