SHORT

COMMUNICATIONS

On the Existence of Solutions of the First Boundary Value Problem for Elliptic Equations on Unbounded Domains

A. L. Beklaryan
Department of Mechanics and Mathematics, Moscow State University; E-mail: beklaryan@hotmail.com
Received October 9, 2012

Abstract

The problem mentioned in the title is studied.

DOI 10.1134/S1061920812040115

1. INTRODUCTION

Let Ω be an unbounded open subset of $\mathbb{R}^{n}, n \geqslant 2$. Denote by B_{ρ}^{x} the open ball in \mathbb{R}^{n} of radius $\rho>0$ centered at the point x. If $x=0$, we write B_{ρ} instead of B_{ρ}^{x}. As is customary, by $W_{2, \text { loc }}^{1}(\Omega)$ we mean the set of functions in $\mathcal{D}^{\prime}(\Omega)$ that belong to the spaces $W_{2}^{1}\left(\Omega \cap B_{\rho}\right)$ for any $\rho>0$ [3]. In this case, denote by W_{2}^{i}, loc (Ω) the subset of $W_{2, \text { loc }}^{1}\left(\mathbb{R}^{n}\right)$ which is the closure of $C_{0}^{\infty}(\Omega)$ in the system of seminorms $\|u\|_{W_{2}^{1}\left(\Omega \cap B_{\rho}\right)}, \rho>0$. Further, following [4, Subsec. 1.1], denote by $L_{2}^{1}(\Omega)$ the space of distributions ("generalized functions") whose first derivatives belong to $L_{2}(\Omega)$; in other words,

$$
L_{2}^{1}(\Omega)=\left\{f \in \mathcal{D}^{\prime}(\Omega): \int_{\Omega}|\nabla f|^{2} d x<\infty\right\} .
$$

Let $\omega \subseteq \mathbb{R}^{n}$ be an open set and let $\mathcal{K} \subset \omega$ be a compact set. Denote by $\Phi_{\varphi}(\mathcal{K}, \omega)$ the set of functions $\psi \in C_{0}^{\infty}(\omega)$ such that $\psi=\varphi$ in a neighborhood of \mathcal{K}, or, in other words, $\psi-\varphi \in$ $\stackrel{o}{W_{2, \text { loc }}^{t}}\left(\mathbb{R}^{n} \backslash \mathcal{K}\right)$. Write $\Psi(\mathcal{K}, \omega)=\left\{\psi \in C_{0}^{\infty}(\omega): \psi=1\right.$ in a neighborhood of $\left.\mathcal{K}\right\}$. The quantity $\operatorname{cap}_{\varphi}(\mathcal{K}, \omega)=\inf _{\psi \in \Phi_{\varphi}(\mathcal{K}, \omega)} \int_{\omega}|\nabla \psi|^{2} d x$ is referred to as the capacity of the compact set \mathcal{K} with respect to an open set ω. The capacity of an arbitrary closed subset $E \subset \omega$ of \mathbb{R}^{n} is defined by the $\operatorname{rule}^{\operatorname{cap}}(E, \omega)=\sup _{\mathcal{K}} \operatorname{cap}_{\varphi}(\mathcal{K}, \omega)$, where the supremum on the right-hand side is taken over all compacta $\mathcal{K} \subset E$. If $\omega=\mathbb{R}^{n}$, then we $\operatorname{write~}_{\operatorname{cap}}^{\varphi}(E)$ instead of $\operatorname{cap}_{\varphi}\left(E, \mathbb{R}^{n}\right)$. We also need the following capacity [4, Subsec. 9.1]:

$$
\operatorname{Cap}\left(\mathcal{K}, W_{2}^{1}(\omega)\right)=\inf _{\psi \in \Psi(\mathcal{K}, \omega)}\left(\int_{\omega}|\nabla \psi|^{2} d x+\int_{\omega}|\psi|^{2} d x\right) .
$$

As above, the capacity of an arbitrary set $E \subset \omega$ closed in \mathbb{R}^{n} is given by the rule $\operatorname{Cap}\left(E, W_{2}^{1}(\omega)\right)=$ $\sup _{\mathcal{K}} \operatorname{Cap}\left(\mathcal{K}, W_{2}^{1}(\omega)\right)$, where the supremum on the right-hand side is taken over all compacta $\mathcal{K} \subset E$.

Finally, denote by W_{2}^{-1} the space of continuous linear functionals on W_{2}^{1}. A set $E \subset \mathbb{R}^{n}$ is said to be $(2,1)$-polar if the only element of W_{2}^{-1} supported by E is zero [4, Subsec. 9.2].

The problems treated in the present note were studied earlier in $[1,2]$.

2. STATEMENT OF THE PROBLEM

Here and below, L stands for the divergence operator of the form $L=\sum_{i, j=1}^{n} \partial / \partial x_{i}\left(a_{i j}(x) \partial / \partial x_{j}\right)$ with measurable bounded coefficients satisfying the uniform ellipticity condition

$$
c_{1}|\xi|^{2} \leqslant \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leqslant c_{2}|\xi|^{2}, \quad \xi \in \mathbb{R}^{n}, \quad c_{1}, c_{2}>0
$$

By a solution of the Dirichlet problem

$$
\begin{equation*}
L u=0 \quad \text { on } \quad \Omega,\left.\quad u\right|_{\partial \Omega}=\varphi, \tag{1}
\end{equation*}
$$

where $\varphi \in W_{2, \text { loc }}^{1}\left(\mathbb{R}^{n}\right)$, we mean a function $u \in W_{2, \text { loc }}^{1}(\Omega)$ such that

1. $u-\varphi \in \underset{W_{2, \text { loc }}^{\circ}}{\circ}(\Omega)$, i.e., $(u-\varphi) \eta \in \mathscr{W}_{2}^{\circ}(\Omega)$ for any function $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$;
2. the function u has the bounded Dirichlet integral $\int_{\Omega}|\nabla u|^{2} d x<\infty$;
3. $\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x) \partial u / \partial x_{j} \partial \psi / \partial x_{i} d x=0$ for any function $\psi \in C_{0}^{\infty}(\Omega)$.

3. MAIN RESULTS

Theorem 1. Let $\operatorname{cap}_{\varphi-c}\left(\mathbb{R}^{n} \backslash \Omega\right)<\infty$ for some $c \in \mathbb{R}$. Then problem (1) has a solution.
Theorem 2. Let problem (1) have a solution, and let $\int_{\mathbb{R}^{n} \backslash \Omega}|\nabla \varphi|^{2} d x<\infty$. Then there is a $c \in \mathbb{R}$ such that $\operatorname{cap}_{\varphi-c}\left(\mathbb{R}^{n} \backslash \Omega\right)<\infty$.

Theorem 3. For any function $\psi \in W_{2, \mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$, the condition $\operatorname{cap}_{\psi}\left(\mathbb{R}^{n} \backslash \Omega\right)<\infty$ is equivalent to the inequality $\sum_{k=1}^{\infty} \operatorname{cap}_{\psi}\left(\left(\bar{B}_{r_{k+1}} \backslash B_{r_{k-1}}\right) \operatorname{cap}\left(\mathbb{R}^{n} \backslash \Omega\right), B_{r_{k+2}} \backslash \bar{B}_{r_{k-2}}\right)<\infty$, where $r_{k}=2^{k}$ if $n \geqslant 3$ and $r_{k}=2^{2^{k}}$ if $n=2$.

Let $\omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain, and let μ be a measure on ω such that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n}, \rho>0} \rho^{1-n} \mu\left(B_{\rho}^{x} \cap \omega\right)<\infty . \tag{2}
\end{equation*}
$$

In this case, for any function $v \in W_{2}^{1}(\omega)$, there is a $c \in \mathbb{R}$ such that

$$
\begin{equation*}
\sigma(\omega, \mu)\|v-c\|_{L_{2}(\omega, \mu)} \leqslant\|\nabla v\|_{L_{2}(\omega)} \tag{3}
\end{equation*}
$$

where the constant $\sigma(\omega, \mu)>0$ does not depend on v [4, Subsec. 1.4.5].
Theorem 4. Let problem (1) have a solution, and let μ_{k} be a family of measures on ω_{k}, where $\omega_{k}, k=1,2, \ldots$, are pairwise disjoint Lipschitz domains in \mathbb{R}^{n} such that

$$
\sup _{x \in \mathbb{R}^{n}, \rho>0} \rho^{1-n} \mu_{k}\left(B_{\rho}^{x} \cap \omega_{k}\right)<\infty, \sum_{k=1}^{\infty} \int_{\omega_{k} \backslash \Omega}|\nabla \varphi|^{2} d x<\infty .
$$

Write $m_{k}(\varphi)=\inf _{c \in \mathbb{R}}\|\varphi-c\|_{L_{2}\left(\omega_{k} \backslash \Omega, \mu_{k}\right)}$. Then $\sum_{k=1}^{\infty} \sigma^{2}\left(\omega_{k}, \mu_{k}\right) m_{k}^{2}(\varphi)<\infty$, where $\sigma\left(\omega_{k}, \mu_{k}\right)$ stands for the coefficient in inequality (2).

Corollary 1. Let $\Omega=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n} \geqslant 0\right\}$ and $\varphi(x)=(1+|x|)^{\alpha}$. In this case, problem (1) has a solution if and only if either $\alpha<-1 / 2$ or $\alpha=0$.

Corollary 2. Let $n \geqslant 3$, let Ω be the complement to the set $\left\{\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}\left|x_{n} \geqslant 1,\left|x^{\prime}\right| \leqslant x_{n}^{\beta}\right\}\right.$, where $\beta<0$, and let $\varphi(x)=(1+|x|)^{\alpha}$. In this case, problem (1) has a solution if and only if either $\alpha<-(1+\beta(n-3)) / 2$ or $\alpha=0$.

The author expresses his gratitude to Professor A. A. Kon'kov for setting the problem and for the interest shown in the process of its solution.

REFERENCES

1. V. A. Kondrat'ev, "The Solvability of the First Boundary Value Problem for Strongly Elliptic Equations," Tr. Mosk. Mat. Obs. 16, 209-292 (1967) [in Russian].
2. A. A. Kon'kov, "On the Dimension of the Solution Space of Elliptic Systems in Unbounded Domains," Mat. Sb. 184 (12), 23-52 (1993) [Russ. Acad. Sci. Sb. Math. 80 (2), 411-434 (1995)].
3. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations (Nauka, Moscow, 1964; Academic Press, New York-London, 1968).
4. V. G. Maz'ya, Sobolev Spaces (Leningrad. Univ., Leningrad, 1985; Springer-Verlag, Berlin-New York, 1985).
