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1. INTRODUCTION

Let Ω be an unbounded open subset of Rn, n � 2. Denote by Bx
ρ the open ball in R

n of radius

ρ > 0 centered at the point x. If x = 0, we write Bρ instead of Bx
ρ . As is customary, by W 1

2,loc(Ω)

we mean the set of functions in D′(Ω) that belong to the spaces W 1
2 (Ω ∩ Bρ) for any ρ > 0 [3]. In

this case, denote by
o

W1
2, loc(Ω) the subset of W

1
2,loc(R

n) which is the closure of C∞
0 (Ω) in the system

of seminorms ‖u‖W 1
2 (Ω∩Bρ), ρ > 0. Further, following [4, Subsec. 1.1], denote by L1

2(Ω) the space of

distributions (“generalized functions”) whose first derivatives belong to L2(Ω); in other words,

L1
2(Ω) =

{
f ∈ D′

(Ω):

∫

Ω

|∇f |2 dx < ∞
}
.

Let ω ⊆ R
n be an open set and let K ⊂ ω be a compact set. Denote by Φϕ(K, ω) the set

of functions ψ ∈ C∞
0 (ω) such that ψ = ϕ in a neighborhood of K, or, in other words, ψ − ϕ ∈

o

W1
2,loc(R

n \ K). Write Ψ(K, ω) = {ψ ∈ C∞
0 (ω) : ψ = 1 in a neighborhood of K}. The quantity

capϕ(K, ω) = infψ∈Φϕ(K, ω)

∫
ω
|∇ψ| 2 dx is referred to as the capacity of the compact set K with

respect to an open set ω. The capacity of an arbitrary closed subset E ⊂ ω of Rn is defined by the
rule capϕ(E,ω) = supK capϕ(K, ω), where the supremum on the right-hand side is taken over all
compacta K ⊂ E. If ω = R

n, then we write capϕ(E) instead of capϕ(E,Rn). We also need the
following capacity [4, Subsec. 9.1]:

Cap(K,W 1
2 (ω)) = inf

ψ∈Ψ(K, ω)

(∫

ω

|∇ψ| 2dx+

∫

ω

|ψ|2 dx
)
.

As above, the capacity of an arbitrary set E ⊂ ω closed in R
n is given by the rule Cap(E,W 1

2 (ω)) =
supK Cap(K,W 1

2 (ω)), where the supremum on the right-hand side is taken over all compacta K ⊂ E.

Finally, denote by W−1
2 the space of continuous linear functionals on W 1

2 . A set E ⊂ R
n is said

to be (2, 1)-polar if the only element of W−1
2 supported by E is zero [4, Subsec. 9.2].

The problems treated in the present note were studied earlier in [1, 2].

2. STATEMENT OF THE PROBLEM

Here and below, L stands for the divergence operator of the form L =
∑n

i,j=1 ∂/∂xi

(
aij(x)∂/∂xj

)
with measurable bounded coefficients satisfying the uniform ellipticity condition

c1|ξ|2 �
n∑

i,j=1

aij(x) ξi ξj � c2|ξ|2, ξ ∈ R
n, c1, c2 > 0.
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By a solution of the Dirichlet problem

Lu = 0 on Ω, u|∂Ω = ϕ, (1)

where ϕ ∈ W 1
2, loc(R

n), we mean a function u ∈ W 1
2,loc(Ω) such that

1. u− ϕ ∈
o

W1
2,loc(Ω), i.e., (u− ϕ)η ∈

o

W1
2(Ω) for any function η ∈ C∞

0 (Rn);

2. the function u has the bounded Dirichlet integral
∫
Ω
|∇u|2dx < ∞ ;

3.
∫
Ω

∑n
i,j=1 aij(x)∂u/∂xj ∂ψ/∂xi dx = 0 for any function ψ ∈ C∞

0 (Ω).

3. MAIN RESULTS

Theorem 1. Let capϕ− c(R
n \ Ω) < ∞ for some c ∈ R. Then problem (1) has a solution.

Theorem 2. Let problem (1) have a solution, and let
∫
Rn\Ω |∇ϕ|2dx < ∞ . Then there is a

c ∈ R such that capϕ− c(R
n \Ω) < ∞.

Theorem 3. For any function ψ ∈ W 1
2,loc(R

n), the condition capψ(R
n \ Ω) < ∞ is equivalent

to the inequality
∑∞

k=1 capψ((Brk+1
\ Brk−1

) cap(Rn \ Ω), Brk+2
\ Brk−2

) < ∞ , where rk = 2k if

n � 3 and rk = 22
k

if n = 2.

Let ω ⊂ R
n be a bounded Lipschitz domain, and let μ be a measure on ω such that

sup
x∈Rn, ρ>0

ρ1−nμ(Bx
ρ ∩ ω) < ∞. (2)

In this case, for any function v ∈ W 1
2 (ω), there is a c ∈ R such that

σ(ω, μ)‖v − c‖L2(ω,μ) � ‖∇v‖L2(ω), (3)

where the constant σ(ω, μ) > 0 does not depend on v [4, Subsec. 1.4.5].

Theorem 4. Let problem (1) have a solution, and let μk be a family of measures on ωk, where
ωk, k = 1, 2, . . . , are pairwise disjoint Lipschitz domains in R

n such that

sup
x∈Rn, ρ>0

ρ1−nμk(B
x
ρ ∩ ωk) < ∞,

∞∑
k=1

∫

ωk\Ω
|∇ϕ|2dx < ∞.

Write mk(ϕ) = infc∈R ‖ϕ − c‖L2(ωk\Ω,μk). Then
∑∞

k=1 σ
2(ωk, μk)m

2
k(ϕ) < ∞, where σ(ωk, μk)

stands for the coefficient in inequality (2).

Corollary 1. Let Ω = {(x′, xn) ∈ R
n|xn � 0} and ϕ(x) = (1 + |x|)α. In this case, problem (1)

has a solution if and only if either α < −1/2 or α = 0.

Corollary 2. Let n � 3, let Ω be the complement to the set {(x′, xn) ∈ R
n|xn � 1, |x′| � xβ

n},
where β < 0, and let ϕ(x) = (1+ |x|)α. In this case, problem (1) has a solution if and only if either
α < −(1 + β(n − 3))/2 or α = 0.

The author expresses his gratitude to Professor A. A. Kon’kov for setting the problem and for
the interest shown in the process of its solution.
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