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a b s t r a c t

We discuss Poisson structures on Lie groups and propose an explicit construction of
integrable models on their appropriate Poisson submanifolds. The integrals of motion for
the SL(N)-series are computed in cluster variables via the Lax map. This construction,
when generalised to co-extended loop groups, not only gives rise to several alternative
descriptions of relativistic Toda systems but also allows to formulate in general terms some
new class of integrable models. We discuss the subtleties of this Lax map in relation to
the ambiguity in projection to the trivial co-extension and propose a way to write the
spectral curve equation, which fixes this ambiguity, for the periodic Toda chain and its
generalisations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The relation between integrable systems and Lie groups [1] hasmanydifferent faces. According to [2], an integrablemodel
can be directly constructed on a Poisson submanifold in a Lie group. Integrability in this case follows from the existence of
the Ad-invariant functions on a group manifold. Furthermore, this construction can be extended to affine Lie groups [3]
and gives rise to a nontrivial wide class of integrable models [4]. It was alternatively discovered that the same class of
integrable systems arises from the dimer models on bipartite graphs on a torus [5]. These results partly overlap with and
are complementary to the results of [6–9] and closely related studies have also been published [10–12].

For the canonical Poisson structure on a simple Lie group G, we immediately obtain rankGmutually Poisson-commuting
functions. Restricting these to a symplectic leaf of dimension 2 · rank G, we obtain a completely integrable system that is in
fact equivalent [2] to a relativistic non-periodic Toda chain [13]. An effective way of constructing the corresponding Poisson
submanifold is based on using the cluster coordinates on Lie groups [14–17]. In particular, this allows to compute explicitly
the integrals of motion for the SL(N)-series. The cluster language also suggests a way to generalise a previous proposal [2]
to the case of loop groups and periodic Toda systems, which requires co-extension of the corresponding loop group [3]. This
also provides an opportunity to go far beyond this simple relation between Lie groups and the integrable system we start
with and to develop a new class of integrable models on the cluster varieties [4], which is important from the point of view
of relations with geometry and physics.

In the affine case a nontrivial co-extension is essential, since only the co-extended version of the loop group admits cluster
description. However, for construction of an integrable system the total co-extensionmust be trivial [3,4]. The spectral curve
equation in this case is defined ambiguously, sowe propose away to overcome this ambiguity inwhich the projection on the
trivial co-extension is localised to each edge of the exchange graph describing the Poisson submanifold in the loop group.
This localisation can only be performed using special coordinates and we discuss their choice for several examples.
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In Section 2we describe the Poisson submanifolds in Lie groups in terms of the cluster variables. In Section 3we construct
explicitly the integrable system – a relativistic Toda chain – for both simple and co-extended loop groups. The least trivial
part of the construction is formulated in Section 3.3 using a localisation procedure for the co-extended loop group. In
Section 4 the construction of a relativistic Toda chain is generalised to a wider class of integrable models.

2. Poisson brackets and r-matrices

Let g be the Lie algebra of a simple group G, r ∈ g ⊗ g, the standard solution to the (modified) Yang–Baxter equation,
that defines a Poisson bracket on the group G according to

{g ⊗
,
g} = −

1
2
[r, g ⊗ g], (2.1)

which is compatible with the group structure (see Appendices A and B for notation and some extra formulas concerning
r-matrices for the SL(N)-series).

The Poisson bracket (2.1) is degenerate on the whole group, but can be restricted on any symplectic leaf of G. A Lie group
G can be decomposed into the set of Poisson submanifolds Gu

⊂ G [17–19] labeled by u ∈ W ×W , where W is the Weyl
group of G. The dimension of submanifold Gu is l(u) + rank G, where l(u) is the length of the word u, which consists of the
generators of the Weyl groupW (identified by the set Π of the positive simple roots of G) and the generators of the second
copy of W (identified by the set of negative simple roots Π̄ ). For our purposes it is more convenient to consider a similar
decomposition of the factorG/AdH over the Cartan subgroupH ⊂ G; the dimensions of the corresponding symplectic leaves
in the factor are just the lengths l(u) themselves.

We can construct a parameterisation of Gu/AdH such that the Poisson bracket (2.1) becomes logarithmically
constant [17]: for any reduced decomposition u = αi1 . . . αil consider the Lax map

z1, . . . , zl → Ei1Hi1(z1) . . . EilHil(zl). (2.2)

For the group SL(N) on the right-hand side, we can substitute the matrices (i ∈ Π = {1, . . . ,N − 1})

Hi(z) =



z 0 · · · 0

0
. . . 0

z
... 1

. . . 0
0 · · · 0 1


, Ei =



1 0 · · · 0

0
. . . 0

1 1
... 1

. . . 0
0 · · · 0 1


, (2.3)

where the last line in diagonal Hi(z) with z ≠ 1 and the only line in Ei containing an off-diagonal value of unity have
number i. For negative i the corresponding matrix is transposed to the matrix of the positive root, that is, Eī = E−i = Etr

i .
More precisely, each matrix Hi(z) ∈ PGL(N) should be normalised for the SL(N) group Hi(z) → Zi = Hi(z)/(detHi(z))1/N
and therefore will always depend on the fractional powers zk/N of the variable z.

The Poisson bracket (2.1) on the parameter zI is logarithmically constant, that is,

{zI , zJ} = εIJzIzJ , (2.4)

where εIJ is a skew-symmetric matrix that takes integral or half-integral values and acts as the exchange matrix (if group
G is simply laced, e.g. SL(N)) for the corresponding cluster variety [14–16]. All formulas for symplectic leaves in G/AdH can
be read from a graph with oriented edges (Appendix C). For the Poisson submanifolds in G/AdH we just need consider the
graphs on a cylinder instead of a plane. As already pointed out, of particular interest among all Gu are cells corresponding to
the Coxeter elements ofW ×W with l(u) = 2 · rank G.

For the loop groupsG one obtains infinitelymany Ad-invariant functions, but they still posses finite-dimensional Poisson
submanifolds and thus provide a general method for construction of wider classes of integrable models [3]. However, since
the Cartan matrices for affine groups (e.g. (A.10)) are non-invertible, for the cluster construction we have to use the co-
extended version of loop group G♯ [20] instead.

The co-extended affine SL(N)♯ can be identified [3,4] with the group

A1(λ)Tz1 · A2(λ)Tz2 = A1(λ)A2(z1λ)Tz1z2 (2.5)

of expressions A(λ)Tz , where

Tz = exp

log z

∂

∂ log λ


= zλ∂/∂λ (2.6)
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and A(λ) is a Laurent polynomial with values in N × N matrices. The generators of the co-extended group (labeled now by
i ∈ ZN ) have the form

Hi(z) = Hi(z)Tz, Ei = Ei, Eī = Etr
i (2.7)

for i ≠ 0; that is, each corresponding root generator coincides with (2.3), while each Cartan generator is multiplied by the
shift operator. For i = 0 we also have

H0(z) = Tz, E0 =

1 · · · 0
...

. . .
...

λ · · · 1

 , E0̄ =

1 · · · λ−1

...
. . .

...
0 · · · 1

 . (2.8)

It is also useful to introduce the element Λ ∈ SL(N) (as usual, up to normalisation):

Λ =


0 1 · · · λ−1

...
. . .

. . .
...

0 · · · 0 1
0 · · · 0 0

 (2.9)

with the property

ΛEiΛ
−1
= Ei+1, ΛHi(z)Λ−1 = Hi+1(z), i ∈ ZN . (2.10)

This operator acts as a unit shift along the Dynkin diagram. It can also be interpreted as a coextension of the affine Weyl
group W ♯ [4].

We can now consider arbitrarily long words corresponding to the Poisson submanifolds in SL(N)♯ of arbitrary large
dimensions. However, the space of Ad-invariant functions is infinite only for SL(N), and not for the co-extended group.
Therefore, to obtain sufficiently many independent Ad-invariant functions, we have to consider similarly to (2.2) the Lax
maps

z1, . . . , zl → Ej1Hj1(z1) . . . EjlHjl(zl) (2.11)

into the co-extended loop group, where the parameter zI must satisfy
j

zj = 1,

j

Tzj = T
j
zj = Id, (2.12)

that is, the total co-extension is trivial. This means that we finally have to project SL(N)♯ → SL(N). The details of this
projection are discussed below.

It is easy to understand that exchange graphs for symplectic leaves in SL(N) and Poisson submanifolds in loop groups
SL(N) can be constructed by gluing the rhombi (Fig. 1, Appendix C) on a cylinder for the simple group and on a torus for the
loop group case. The graphs for SL(N) have N − 1 vertical levels (the corresponding upper and lower rhombi are cut into
triangles) and are glued in the horizontal direction, while the graphs for the Poisson submanifolds of the same dimension in
SL(N) have one extra level (for the same N) and are periodic in the vertical direction as well. This construction is illustrated
by explicit examples in the next section.

3. Integrable system

It is easy to see directly from (2.1) that any two Ad-invariant functions on G Poisson-commute with each other. For
example, in the simply laced case, when the r-matrix is

r =


α∈∆+

eα ∧ eᾱ =


α∈∆+

(eα ⊗ eᾱ − eᾱ ⊗ eα) (3.1)

(the sum is taken over the set of all positive roots ∆+ of Lie group G), the Poisson bracket is given by

{H1, H2} = −
1
2


α∈∆+


Leα H1Leᾱ H2 − Reα H1Reᾱ H2


, (3.2)

where Lv (Rv) denotes the corresponding left (right) vector field for any v ∈ g. Any Ad-invariant function H satisfies
LvH = −RvH and thus the bracket (3.2) of two such functions vanishes. The bracket (3.2) obviously vanishes even if
the functions are defined not on the whole G, but on any Poisson Ad-invariant subvariety of G.
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Fig. 1. Graphs depicting the Poisson submanifolds in SL(N) generated by the positive simple roots Ei and negative roots Eī, 1 < i < N − 1, or the
submanifolds in SL(N) for i ∈ ZN . Gluing of two such graphs yields an element of the two-dimensional square lattice.

On a simple group there exists rank G independent Ad-invariant functions. A possible basis of these functions is the set
{Hi} for i ∈ Π (the set of positive simple roots Π ⊂ ∆+):

Hi = Tr πµi(g), (3.3)

whereπµi is the ith fundamental representation ofGwith the highest weight (µi, αj) = δij dual toαi, i ∈ Π . These functions
then define an integrable system on a symplectic leaf of dimension 2 · rank G. It has been shown [2] that they form the set
of integrals of motion for the open relativistic Toda chain [13], with the canonical Hamiltonian for the SL(N)-series

H = H1 +HN−1 = Tr

g + g−1


=

N
i=1

(exp(pi)+ exp(−pi))

1+ exp(qi − qi+1)


1+ exp(qi−1 − qi). (3.4)

The more well-known canonical (non-relativistic) Toda system is recovered in the limit from the Lie group to Lie algebra
(Appendix D).

3.1. Simple group: examples

SL(2). On a symplectic leaf of a two-particle relativistic Toda, corresponding to the word u = α1α1̄, we can choose the
following parameterisation:

g(x, y) ≃ Y 1/2EXĒY 1/2
≃ YEXĒ ≃ EXĒY =

1
√
xy


xy+ y 1

y 1


, (3.5)

where

Y = H(y)/ detH(y)1/2 =

y1/2 0
0 y−1/2


,

X = H(x)/ detH(x)1/2 =

x1/2 0
0 x−1/2


E =


1 1
0 1


, Ē =


1 0
1 1


.

(3.6)

Expansion (3.5) (refinement of the Gauss decomposition) corresponds to the graph y→ x← ywith three vertices and two
edges. Identification of the ends leads to y⇒ x, inducing the Poisson structure

{y, x} = 2yx. (3.7)

The cluster variables are related to the Darboux coordinates by

x = e−q, y =
e2p

1+ x
(3.8)

while the Hamiltonian (only in this example) is

H = Tr g(x, y) =
√
xy+


y
x
+

1
√
xy
=

ep + e−p

√
1+ eq, (3.9)

the canonical Hamiltonian (3.4) for the two-particle open system.
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Fig. 2. Construction of a graph for the word 11̄22̄ in SL(3). The triangles are just cut rhombi from Fig. 1 (see also Fig. 11). Gluing of these triangles and the
left and right ends for SL(3)/AdH yields the plot on the right with the exchange matrix constructed from the Cartan matrix (3.14).

SL(3). For the group SL(3), formula (2.2) gives

g(x, y) = E1X1E1̄Y1  
g1

· E2X2E2̄Y2  
g2

, (3.10)

where

E1 = Etr
1̄ =

1 1 0
0 1 0
0 0 1


, E2 = Etr

1̄ =

1 1 0
0 1 0
0 0 1


(3.11)

and the normalised Cartan elements are

Yi = Hi(yi)/ detHi(yi)1/3, Xi = Hi(xi)/ detHi(xi)1/3, i = 1, 2

H1(z) =

z 0 0
0 1 0
0 0 1


, H2(z) =

z 0 0
0 z 0
0 0 1


.

(3.12)

The variables x and y correspond to the vertices of the graph x1
y2↓
⇐

⇒
↑

y1
x2 , constructed from glued cut-rhombus triangles

(Fig. 2) and satisfy the following Poisson bracket relations:

{yi, xj} = Cijyixj, i, j = 1, 2 (3.13)

with the Cartan matrix of g = sl3

∥Cij∥ =


2 −1
−1 2


, ∥C−1ij ∥ =


2/3 1/3
1/3 2/3


. (3.14)

To obtain the integrals of motion, consider the characteristic polynomial for (3.10):

det (µ+ g(x, y)) = µ3
+H2(x, y)µ2

+H1(x, y)µ+ 1, (3.15)

where (with C−1jk the inverse Cartan matrix from (3.14))

H1(x, y) = Tr g−1 =

k

(xkyk)−C
−1
1k · (1+ y1 + y1x1 + y1x1y2 + y1x1y2x2)

H2(x, y) = Tr g =

k

(xkyk)−C
−1
2k · (1+ y2 + y2x2 + y2x2y1 + y2x2y1x1)

(3.16)

become two integrals of motion {H1, H2} = 0 for the Poisson bracket (3.13).

3.2. Cluster variables and the SL(N) chain

Explicit formulas can easily be written for generic G = SL(N). The product (2.2) becomes

g(x, y) = E1X1E1̄Y1  
g1

· E2X2E2̄Y2  
g2

· . . . · EN−1XN−1EN−1YN−1  
gN−1

Yi = Hi(yi)/ detHi(yi)1/N , Xi = Hi(xi)/ detHi(xi)1/N , i = 1, . . . ,N − 1

(3.17)

with notation according to (2.3). The corresponding graph y1
x1⇓
←

→
⇑

x2→
y2←⇓

y3←
x3→ . . .→

←
⇓

yN−1
xN−1 induces the Poisson bracket

{yi, xj} = Cijyixj, i, j = 1, . . . ,N − 1 (3.18)

with the g = slN Cartan matrix (A.1). Computing the product in (3.17) yields the Lax operator, and its characteristic
polynomial

det (µ+ g(x, y)) =
N
j=0

µjHj(x, y) (3.19)
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generates rank SL(N) = N − 1 nontrivial (H0 = HN = 1 in the accepted normalisation, and H1 = Tr g−1, HN−1 = Tr g)
Poisson-commuting (w.r.t. the bracket (3.18)) integrals of motion {Hi, Hj} = 0, i, j = 1, . . . ,N − 1, which are

Hj(x, y) =

k

(xkyk)
−C−1jk · Zj(x, y). (3.20)

The Lax map (2.2) allows us to compute explicitly the polynomials

Zj(x, y) =
mj≥mj±1≥mj±2≥...
0≤mi≤max(i,N−1−i)


mi−1≤ni≤mi


i

ymi
i xnii , (3.21)

which all have unit coefficients.
The Darboux coordinates are related to the cluster variables by

xi = exp(−(αi · q)), yi = exp((αi · P)+ (αi · q)), i = 1, . . . ,N − 1 (3.22)

with the ‘‘long momentum’’ (cf. the canonical transformation used in [21])

P = p−
1
2

N−1
k=1

αk log (1+ exp(αk · q)) = p+
∂

∂q


1
2

N−1
k=1

Li2 (− exp(αk · q))


, (3.23)

where the (N−1)-vectors q and p denote the canonical coordinate andmomentum in the center-of-mass frame. Substituting
(3.22) into the expression H = H1 + HN−1 yields the canonical Toda Hamiltonian (3.4), where (in the open case, in
contrast to the periodic chain considered below) we have to drop off the square roots with α0 and αN , that is, replace√
1+ exp(q0 − q1) and

√
1+ exp(qN − qN+1) by unities.

3.3. Loop group SL(N) and the N-periodic chain

The proposed approach does not only work for finite-dimensional Lie groups [3]. It is almost obvious that to obtain the
periodic Toda chain we should consider decomposition (2.11) for loop groups containing an extra affine simple root, that
is, u = α0ᾱ0α1ᾱ1 . . . αN−1ᾱN−1 ∈ Ŵ × Ŵ . At the level of Lie algebras (Appendix D) this obviously gives rise to the well-
known spectral-parameter-dependent Laxmatrix (D.4) in the evaluation representation of the corresponding affine algebra.
For relativistic Toda, instead of using the cluster formulation of the co-extended loop group SL(N)♯, we construct a Poisson
submanifold in SL(N)/AdH , but fixing the spectral parameter now becomes a nontrivial issue. It depends on a particular way
of locating the shift operators in (2.11): the total co-extension must be trivial because of (2.12), and all shift operators can
be ‘‘annihilated’’, say, by moving them all to the right.

Note that when moving the shift operator (2.6) through a spectral-parameter-dependent matrix corresponding to
the affine root, we multiply the spectral parameter by the dynamical variable. This results in nontrivial multiplicative
renormalisation of the coefficients of the spectral curve equation. In particular, it means that the coefficients themselves
are defined ambiguously and only their invariant combinations can be the Poisson-commuting quantities [3,4]. However,
we propose here a localising prescription that completely overcomes this ambiguity (Section 4.1).

For the group SL(N)♯ the (normalised to unit determinant) product (2.2) for the word u =


j∈ZN
αjᾱj can be written as

g(λ|x, y) =

j∈ZN

EjHj(xj)Ej̄Hj(yj) =

j∈ZN

EjXjTxjEj̄YjTyj

=


j∈ZN

EjXjTxνj T
−1
xνj+1

Ej̄YjTyνj T
−1
yνj+1

. (3.24)

The new variables zνj , j ∈ ZN , are introduced by zj = zνj/zνj+1 (see definition (A.4)). Instead of moving all the shift operators
to the right, we choose the following prescription:

g(λ|x, y) ≃

j∈ZN

T−1yνj
EjXjTxνj T

−1
xνj+1

Ej̄YjTyνj ≃

j∈ZN

T−1xνj
T−1yνj

EjXjTxνjE
′

j̄YjTyνj , (3.25)

where≃ denotes an equality modulo cyclic permutation, and clearly

E′j̄ = Ej̄ = Ej̄, E′0̄ = E0̄(λ/xνj+1)

Yj = Hj(yj)/ detHj(yj)1/N , Xj = Hj(xj)/ detHj(xj)1/N , j = 1, . . . ,N − 1.
(3.26)

All factors under the product on the right-hand side of (3.25) do not in fact contain shift operators, since

T−1xνj
T−1yνj

EjXjTxνj Ej̄YjTyνj = EjXjEj̄Yj, j = 1, . . . ,N − 1 (3.27)



Author's personal copy

22 A. Marshakov / Journal of Geometry and Physics 67 (2013) 16–36

Fig. 3. Newton polygon for the N-periodic Toda equation (3.33). The marked boundary points correspond to the Casimir functions, which are unity in the
normalised Eq. (3.33), while the internal points on the horizontal axis correspond to the integrals of motion.

and

T−1xν0
T−1yν0

E0Txν0E
′

0̄Tyν0 = E0


λ

xν0yν0


E0̄


λ

yν0xν1


= E0


λxµN−1yµN−1


E0̄


λyµN−1

xµ1


≡ g0(λ). (3.28)

That is, on the right-hand side of (3.25) we obtain a product of matrices in the evaluation representation of SL(N). Hence,
starting initially with the co-extended loop group SL(N)♯, which has a cluster description, we have found a way to construct
explicitly the Poisson submanifold in SL(N)/AdH in terms of the product of SL(N)-valued factors only. To do this we actually
have to change the coordinates. The weight variables in (3.28) can be explicitly defined as

xµj =


k

x
C−1jk
k , yµj =


k

y
C−1jk
k , j = 1, . . . ,N − 1, (3.29)

where C−1jk is the inverse Cartan matrix for g = slN (Appendix A). Finally, we obtain the Lax map

g(λ|x, y) ≃ g0(λ) · gN(x, y), (3.30)

where the matrix gN(x, y) is constructed in (3.17) for the open chain.
By the standard rules, the Poisson brackets coming from the graph on the torus

{yi, xj} = Ĉijyixj, i, j ∈ ZN (3.31)

are defined by (degenerate) Cartan matrix (A.10) of the affine g =slN , with the Casimir function

C =

j∈ZN

xj =

j∈ZN

y−1j . (3.32)

Fixing the value of the Casimir (3.32), one gets a description of the corresponding Poisson submanifold (of dimension
2(N − 1)) in terms of the non-degenerate Poisson structure (3.18) of the open chain.

Vanishing of the characteristic polynomial for (3.24) (Fig. 3),

det (µ+ g(λ|x, y)) =
N
j=0

µjHj(x, y)+ µN−1λ+
µ

λ
, (3.33)

can be rewritten in the standard form of the relativistic Toda spectral curve equation [22–24]:

w +
1
w
= PN(z) = z−N/2

N
j=0

z j(−)N−jHj(x, y)

z = −µ, w = λzN/2−1

(3.34)

with the two meromorphic differentials dz
z and dw

w
having all fixed periods on the curve (3.34). Formulas (3.33) and (3.34)

define (in addition to the constant CasimirsH0 = HN−1 = 1) the set of independent Poisson-commuting integrals ofmotion

{Hj, Hk} = 0, j, k = 1, . . . ,N − 1 (3.35)

with respect to the bracket (3.18). The canonical Hamiltonian of the integrable system is still given by (3.4), where the terms
with α0 = αN are no longer dropped.

The Darboux coordinates are introduced again by the transformation

xi = exp(−(αi · q)), yi = exp(αi · (P + q)), i ∈ ZN , (3.36)
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Fig. 4. Example of a graph for the word 00̄11̄ for SL(2)/AdH . In contrast to Fig. 2, the arrows connecting two levels, two simple roots of SL(2), are solid
lines. After gluing, the image on the right shows the structure of the degenerate Cartan matrix of g = sl2 .
which is valid for the extended set of roots. Now, instead of (3.23) we obtain

P = p+
1
2

N−1
k=1

αk log
1+ exp(αN · q)
1+ exp(αk · q)

= p+
∂

∂q


1
2

N
k=1

Li2 (− exp(αk · q))


, (3.37)

where the canonical transformation is again generated by di-logarithm functions.

Example of SL(2). We simply take themap (2.11) of the word 00̄11̄ into SL(2)/AdH . According to Fig. 4, the parameterisation
can be read from the graph ⇓x⇐ y

y0⇒ x0 ⇑with four variables in the vertices satisfying

{y, x} = 2yx (3.38)
as in the ‘‘open’’ SL(2) case, completed now by

{y0, x} = −2y0x, {y, x0} = −2yx0, {y, y0} = {x, x0} = 0. (3.39)
The structure of the Poisson brackets (3.38) and (3.39) is encoded in the degenerate Cartan matrix (A.10) of g =sl2 and the
product C = xx0 = 1

yy0
is the Casimir function. The only nontrivial integral of motion in this example,

H =
1+ y+ xy+ C−1x

√
xy

=

ep + e−p


1+ exp(q)


1+ C−1 exp(−q), (3.40)

is the Hamiltonian of the periodic two-particle chain (3.4) on

x = exp(−q), y = exp(2p+ q)
1+ C−1e−q

1+ eq
. (3.41)

Example of SL(3). In this case the characteristic polynomial (3.33) or the spectral curve equation (3.34) gives two nontrivial
integrals of motion,

H1 =

k

(xkyk)−C
−1
1k ·


1+ y1 + y1x1 + y1x1y2 + y1x1y2x2 + C−1x1x2


H2 =


k

(xkyk)−C
−1
2k ·


1+ y2 + y2x2 + y2x2y1 + y2x2y1x1 + C−1x1x2


,

(3.42)

expressed in terms of the independent variables using the Casimir relation C = x0x1x2 = 1
y0y1y2

. Only the last terms on the
right-hand sides of (3.42) differ from the Hamiltonians of non-periodic chain (3.16).

3.4. Mutations and discrete flows

The discrete transformations that leave the Toda integrals of motion invariant are constructed as a sequence of mutations
(see (C.6)) of the corresponding graphs. For (3.20) and (3.21) these are

ỹ−1i = yi

j


1+ x

sgn(Cij)
j

−Cij
, x̃i = x−1i


j


1+ ỹ

−sgn(Cij)
j

Cij
(3.43)

from mutations of the graph y1
x1⇓
←

→
⇑

x2→
y2←⇓

y3←
x3→ . . .→

←
⇓

yN−1
xN−1 . For example, the Hamiltonians (3.16) are invariant under the

transformations1

ỹ1 =
1
y1

(1+ x1)−2

1+

1
x2


, ỹ2 =

1
y2

(1+ x2)−2

1+

1
x1


x̃1 =

1
x1


1+

1
ỹ1

2 
1+ ỹ2

−1
, x̃2 =

1
x2


1+

1
ỹ2

2 
1+ ỹ1

−1
,

(3.45)

1 In the dual variables xj =


k b
Cjk
k and yj =


k a
−Cjk
k they acquire the form of the discrete bilinear Hirota equations

aiãi = b2i + bi+1bi−1

bib̃i = ã2i + ãi+1ãi−1
(3.44)

with b0 = b3 = a0 = a3 = 2 for SL(3), for example.
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leaving invariant the graph x1
y2↓
⇐

⇒
↑

y1
x2 . The affine Toda Hamiltonians (3.33) and (3.34) are correspondingly preserved by

ỹ−1i = yi

j


1+ x

sgn(Ĉij)
j

−Ĉij
, x̃i = x−1i


j


1+ ỹ

−sgn(Ĉij)
j

Ĉij
(3.46)

from similar mutations of the graph with the exchange matrix constructed from Ĉij (A.10).
These transformations can be considered as discrete flows in the spirit of Hoffman et al. [19]. For example, in the

decomposition (3.5) into the product of upper-triangular and lower-triangular matrices we change the order, that is,

g(x, y) ≃ g+(x, y) · g−(x, y) ≃ H(y)EH(x)F
= H(y)H(1+ x)FH(x−1)EH(1+ x) ≃ H


y(1+ x)2


FH

x−1

E

≃ g̃−

x̃, ỹ

· g̃+


x̃, ỹ


(3.47)

whereweuse commutation relations previously described [17]. The decomposition on the right-hand side in ‘‘reverse order’’
corresponds to changing coordinates by the sequence of mutations

ỹ, x̃

= µy(1+x)2


y(1+ x)2, x−1


◦ µx(y, x) =


y−1(1+ x)−2, x−1(1+ y(1+ x)2)2


(3.48)

for the graph x ⇐ y. Note that as usual we consider the product in (3.47) for modulo cyclic permutations and conjugation
by a Cartan element, since only the Ad-invariant functions are essential for our purposes. The same is certainly true for the
‘‘reflected composition’’, when we first make mutation in y- and then in x-vertices of the exchange graph.

4. Towards a new class of integrable models

We have already pointed out that loop groups allow us to construct a much wider class of integrable systems [3,4].
We demonstrate this here using just a few examples, starting from the well-known ‘‘dual’’ representation for the Toda
chains [25].

4.1. 2× 2 formulation for the relativistic N-particle Toda

The same graph ⇓x⇐ y
y0 ⇒x0 ⇑ for the SL(2) Toda system (when rotated clockwise, i.e. ⇓y0 ⇐ x

x0 ⇒ y ⇑= x0↓
←

→
↑

x
y↑
→

←
↓

y0 ) can be
associated with another decomposition,

H0(x0)E0E1̄H0(y)H1(x)E0̄E1H1(y0) ≃ H0(x0)E0ωE0̄H1(y) · H0(x)E0ωE0̄H1(y0) ≡

≡ Ξ(x0, y) · Ξ(x, y0), (4.1)

where≃ denotes equality modulo cyclic permutation. Here

Ξ(x, y) = H0(x)E0ωE0̄H1(y)

= Tx ·

1 0
λ 1


0 λ−1/2

λ1/2 0


1 1/λ
0 1


y1/2 0
0 y−1/2


· Ty

= Tx · Φ(λ) · YTy (4.2)

with

Φ(λ) = E0ωF0 =


0 1/
√

λ
√

λ
√

λ+ 1/
√

λ


ω =
√

λΛ =


0 1/

√
λ

√
λ 0


, ω2

= 1.
(4.3)

For the SL(3) system, corresponding to the graph ⇓y0 ← x1
x0 → y1⇑

→ y2
← x2⇓

←x0
→ y0 (i.e. glued with a vertical twist), instead of (4.1)

we have to consider the three-product Ξ(x0, y1)Ξ(x1, y2)Ξ(x2, y0), which is just a particular case of the generic SL(N)
expression

Ξ(x0, y1)Ξ(x1, y2) . . . Ξ(xN−1, yN). (4.4)

It is more convenient to rewrite (4.4) in new variables

xi =
ξi

ξi+1
, yi =

ηi

ηi+1
, i = 1, . . . ,N − 1

ξN = ξ0, ηN = η0

(4.5)
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Fig. 5. Diagrammatic representation of the product of Ξ-operators in (4.4).

Fig. 6. The product of Ξ-operators becomes the product of L-matrices in (4.8) after a change in the variables.

so that the Poisson brackets (3.18) are now induced by
{ηi, ξj} = δijηiξj, i, j = 1, . . . ,N (4.6)

and no restriction is immediately imposed on the products
N

j=1 ξj and
N

j=1 ηj (corresponding to the GL(N) instead of the
SL(N) group, relating dynamic variables to the basis vectors ofN-dimensional space; see the notation in Appendix A). Similar
to (3.36), the coordinates and momenta {qi, pj} = δij for (4.6) are introduced by

ξi = exp(−qi), ηi = exp(Pi + qi), i = 1, . . . ,N

Pi = pi +
∂

∂qi


1
2

N
k=1

Li2 (− exp(qk − qk+1))


.

(4.7)

The product of Ξ-operators in (4.4) (see Fig. 5), again up to cyclic permutation, can be rewritten as

Ξ(x0, y1)Ξ(x1, y2) . . . Ξ(xN−1, yN) ≃

N
j=1

L(ηj, ξj; λ) = TN(λ) (4.8)

since (Fig. 6)

. . . Ξ(xi−1, yi) . . . = . . . Txi−1Φ(λ)


y1/2i 0
0 y−1/2i


Tyi . . .

=
(4.5)

. . . Tξi−1T
−1
ξi

Φ(λ)


η
1/2
i 0
0 η

−1/2
i


η
−1/2
i+1 0
0 η

1/2
i+1


TηiT

−1
ηi+1

. . .

= . . .


η
−1/2
i 0
0 η

1/2
i


T−1ηi

T−1ξi
Φ(λ)


η
1/2
i 0
0 η

−1/2
i


TηiTξi . . . , (4.9)

where the right-hand side has only the factors corresponding to the ith instance. This is another example of localisation of
the projection to the loop group with trivial co-extension, and we construct here a Poisson submanifold in SL(2)♯ → SL(2),
making this projection using the GL(N) variables in (4.5).

It is clear from (4.9) that on the right-hand side of (4.8) we obtain the product of the matrices (cf. with [25,26])

Lj(λ) =

H1(ηj)H0(ξj)

−1
· Φ(λ) · H1(ηj)H0(ξj)

=


0


ξj

ληj
ληj

ξj


λ

ηjξj
+


ηjξj

λ

 =
 0

e−Pj/2−qj
√

λ
√

λePj/2+qj
√

λe−Pj/2 +
ePj/2
√

λ

 j = 1, . . . ,N. (4.10)
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Fig. 7. Representation of the L-matrix from (4.10), which is a Cartan conjugation of (4.3) in the form of a twisted oriented plaquette.

Fig. 8. Left: Contraction of an infinite square lattice by imposing a 2-periodicity constraint in the vertical direction, resulting in the graph · · ·→
←

⇓
y0 ← x1
x0 → y1⇑

→ y2
← x2 ⇓ · · · ⇓

←xN
→ yN⇑

→

←
· · ·. Right: Contraction of an infinite square lattice by imposing a 3-periodicity constraint in the vertical direction, together

with an extra horizontal 1-step shift.

The dependence on dynamic variables arises from Cartan conjugation of the matrices (4.3) in the evaluation representation
of SL(2) (Fig. 7) and these L-matrices now obey the r-matrix Poisson relations

Li(λ)⊗
,
Lj(λ′)


= −

1
2
δij


rtrig


λ, λ′


, Li(λ)⊗

,
Lj(λ′)


(4.11)

with the trigonometric classical r-matrix (B.9) (Appendix B). The same commutation relation obviously holds for the
monodromy matrices (4.8),

TN(λ)⊗
,

TN(λ′)


= −

1
2


rtrig


λ, λ′


, TN(λ)⊗

,
TN(λ′)


. (4.12)

Therefore, their traces TN(λ) = Tr TN(λ), or the coefficients of the characteristic polynomial for the monodromy matrix

det(TN(λ)+ µ) = µ2
+ TN(λ)µ+ 1. (4.13)

Poisson-commute {TN(λ), TN(λ′)} = 0 with respect to (4.6) and generate λN/2TN(λ) =
N

j=0 λjR̃j(ξ, η), the family of N
independent integrals of motion:

R̃0(ξ, η) =

N
k=1


ηkξk =

1

R̃N(ξ, η)

R̃j(ξ, η) = R̃0(ξ, η)1−
2j
N Hj(x, y), j = 1, . . . ,N − 1,

(4.14)

where the right-hand side has the Hamiltonians (3.34) as functions of the cluster variables (4.5).

4.2. n⊗ N models from a square lattice

The formalism for a relativistic Toda in the previous section is based on construction of a Poisson submanifold in SL(2),
corresponding to a word of length 2N . This has an obvious n⊗ N generalisation (more strictly, (n× n)⊗N ; thus, (2× 2)⊗N
was considered in Section 4.1) to other co-extended loop groups.

A subclass of these systems can be constructed by gluing of the infinite-dimensional square lattice (Fig. 8) (V.V. Fock,
unpublished data). For example, applying a 2-shift to the horizontal lines in such a lattice yields a graph consisting of two
horizontal sets of vertices connected by vertical double edges (Fig. 8 left). After imposing an extra N-periodicity in the
horizontal direction (for N ≥ 2, with an extra twist for the odd N) we recover a construction of themonodromymatrix (4.8)
for an affine Toda chain. The Poisson structure (3.31) is then induced by the Poisson structure on the lattice, determined by
single arrows between neighbouring (black and white) vertices, drawn so that they follow the orientation of each plaquette
of the lattice.
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Some generalisations of the Toda models naturally arise for different gluings of the same lattice. For example, consider a
3-periodicity (instead of 2-periodicity) in the vertical direction, with an extra 1-step horizontal shift to be consistent with
the orientation of the arrows (Fig. 8 right). Such a 3-reduced lattice can be further used for construction of the monodromy
matrix in terms of the co-extended SL(3)♯ loop group. We present this construction in the next section (of course, this is
easily generalised to the loop groups SL(n)♯ for any n ≥ 2).

The Poisson structure given by the gluing shown on the right of Fig. 8 can be written as

{yj, xi} = yjxi if j = i or j = i+ 3,
{yj, xi} = −yjxi if j = i+ 1 or j = i+ 2

(4.15)

for some labelling with y values as the white vertices and x values as the black ones, while all the other brackets vanish.
Another useful representation [28] for the same Poisson structure

{Yk, Yk±1} = ∓YkYk±1

{Xk, Xk±1} = ±XkXk±1
(4.16)

comes after the substitution

xi = YiXi+1, yi = (Xi−1Yi−1)
−1. (4.17)

The variables in (4.15) and (4.16) were already introduced in the context of an integrable system related to the pentagram
map [6,7,27]. We now demonstrate that this is a generalised Toda system in the sense of our approach [3,4].

4.3. Integrable system for n = 3

For n = 3, similarly to (4.2), we start with the product (V.V. Fock, unpublished data)

Ξ(y, x) = H0(y)E0ΛE0̄H2(x) (4.18)

of the elements of SL(3)♯, where we use the notations in (2.7)–(2.9). These generators are labeled modulo 3 (e.g. H−1(z) =
H2(z), etc.), while the coordinates are considered further as N-periodic, that is, xi+N = xi, yi+N = yi, for an arbitrary N ≥ 3.

The product Ξ(yi, xi) · · ·Ξ(yj, xj) can be transformed by taking all the automorphisms Λ to the right:

Ξ(yi, xi) . . . Ξ(yj, xj) = H0(yi)E0ΛE0̄H−1(xi) . . .H0(yj)E0ΛE0̄H−1(xj)

= H0(yi)E0E1̄H0(xi)H1(yi+1)E1E2̄H1(xi+1) . . .Hj−i−1(yj)Ej−i−1Ej−iHj−i−1(xj)Λj−i+1. (4.19)

Therefore, up to the power of Λ at the end, this expression is for a particular case of the map (2.2) [17]. It corresponds to the
word u = α0ᾱ1α1ᾱ2 . . . ᾱj−i, and the corresponding exchange graph is equivalent to Fig. 8 (right), giving rise to the Poisson
bracket (4.15).

Consider now a generic factor in the product (4.18) using coordinates (4.17)

. . . Ξ(yk, xk; λ) . . . = . . .H0(yk)E0ΛF0H2(xk) . . .

=
(4.17)

. . .H2(Yk−1Xk)TYk−1XkT
−1
Xk−1Yk−1

Φ(λ)H2(YkXk+1)TYkXk+1T
−1
XkYk

. . . , (4.20)

where

Φ(λ) = E0ΛF0 =

0 0 λ−1

1 0 λ−1

0 1 1

 (4.21)

and on the right-hand side or (4.20) we explicitly present all operators depending on the variables {Yk, Xk} at the kth site.
This can be further rewritten as

. . . H2(Xk)TXkΦ(λ)T−1Xk
H2(Yk)  

k

H2(Xk+1) . . .  
k+1

. . .

= . . . H2(Xk)Φ(λXk)H2(Yk)  
k

H2(Xk+1) . . .  
k+1

. . . , (4.22)

that is, as a product of the matrices (instead of the original operators (4.18) from PGL(3)♯)

Lk(λ) = L(λ; Xk, Yk) = H2(Xk)Φ(λXk)H2(Yk) =

 0 0 1/λ
XkYk 0 1/λ
0 Yk 1


, (4.23)
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Fig. 9. Newton polygon for the curve (4.25), which leads to the genus formula (4.27).

each corresponding to a particular kth site. Using (4.20) and (4.22), the initial formula (4.19), up to cyclic permutations, is
equivalent to the product

Ξ(y0, x0) . . . Ξ(yN−1, xN−1) ≃ TN(λ) = L0(λ) . . . LN−1(λ). (4.24)

Note that on the right-hand side we again have the localised product of the matrices from PGL(3), all with trivial co-
extension, achieved here using the coordinates (4.16).

The characteristic polynomial for (4.24),

λN det (TN(λ)+ µ) = µ3λN
+ µ2C2(λ)+ µC1(λ)+ 1, (4.25)

gives the spectral curve equation. The determinant of (4.24),

λN det TN(λ) = λN
N
j=0

det Lj(λ) =

N
j=0

Xj


N
j=0

Yj

2

= 1, (4.26)

is proportional to a Casimir function for (4.16) and is fixed to unity in (4.25). The coefficients of the polynomials Ci(λ), i =
1, 2, in (4.25) are integrals ofmotion (and some of them are Casimirs in the even n cases), which Poisson-commute according
to our general reasoning in Section 2. The genus of the curve (4.25) is always

g = 2


N + 1
2


− 1


=


2

N
2


, N odd

2


N
2


− 1


, N even,

(4.27)

which can easily be seen from the corresponding Newton polygon in Fig. 9.

Example. For N = 3,

C2(λ) = λ3
+ λ2H2, C1(λ) = −1+ λH1 (4.28)

with the Poisson-commuting Hamiltonians (X0X1X2 = 1, Y0Y1Y2 = 1)

H1 = X1 + X2 + X1X2Y1 +
Y2

X1
+

1
X1X2

+
1

X2Y1Y2

H2 = Y1 + Y2 + X2Y1Y2 +
X1

Y2
+

1
Y1Y2
+

1
X1X2Y1

(4.29)

with respect to

{log X1, log X2} = 1 = {log Y2, log Y1}. (4.30)

In symmetric form, (4.25) can be rewritten as

w +
1
w
= z−3/2P3(z), w = (−µ)1/2λ3/2, z = −µλ

P3(z) = z3 −H2z2 +H1z − 1
(4.31)

and acquires the form of spectral curve (3.34) for the relativistic SL(3) Toda chain.2

2 To avoid misunderstanding, note that for N = 3 the spectral variables in (3.33) and (4.25) are related by λ ↔ λ, but µ ↔ µ · λ. This transformation
maps the Newton polygons in Figs. 3 and 9 to each other.
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Rewriting (4.29) in the cluster coordinates yi+3 = yi and xi+3 = xi, using

X1 = y1

k=1,2

(ykxk)−C
−1
1k , X2 = y1x1y2


k=1,2

(ykxk)−C
−1
1k

Y1 = x1x2

k=1,2

(ykxk)−C
−1
2k , Y2 = y1y2x2


k=1,2

(ykxk)−C
−1
2k ,

(4.32)

we return to (3.42). For N = 4 we obtain from (4.25)

C2(λ) = λ4
+ λ3H2 + λ2K2(Y)

C1(λ) = 1− λH1 + λ2K2(X)
(4.33)

with K2(X) = X1X3 +
1

X1X3
and the same for K2(Y), while

H1 = X1 + X2 + X3 + X2X1Y1 + X3X2Y2 +
Y3

X1X2
+

1
Y1Y2Y3X2X3

+
1

X1X2X3

= X1 +
1
X1
+ X2 +

1
X2
+ X1X2Y1 +

1
X1X2Y1

+
X2Y2

X1
+

X1

Y2X2

H2 = Y1 + Y2 + Y3 + Y1Y2X2 + Y2Y3X3 +
X1

Y2Y3
+

1
X1X2X3Y1Y2

+
1

Y1Y2Y3

= Y1 +
1
Y1
+ Y2 +

1
Y2
+ Y1Y2X2 +

1
Y1Y2X2

+
Y2

X1Y1
+

X1Y1

Y2
,

(4.34)

where the right-hand sides are obtained by fixing K2(X) = K2(Y) = 2. These Hamiltonians Poisson-commute with respect
to the same bracket (4.30) as in the N = 3 case. The spectral curve (4.26) becomes

µ3λ4
+ µ2(λ4

+ λ3H2 + 2λ2)+ µ(1− λH1 + 2λ2)+ 1 = 0. (4.35)

For N ≥ 5 these formulas give rise to an integrable system related to the pentagrammap [6,7]. In fact, (4.18) is the spectral-
parameter-dependent Laxmatrix for this system proposed by V.V. Fock (unpublished data) by relating it to the co-extended
loop group (another Lax representation has been found in [10] and [9]).

5. Conclusion

We have demonstrated that relativistic Toda systems [13] arise naturally on the Poisson submanifolds in Lie groups.
Extension of the construction fromsimple Lie groups to co-extended loop groupsnot only gives rise to their periodic versions,
but also allowsus to consider amuchwider class of integrablemodels [3].Wediscussed just a fewparticular exampleswhose
phase spaces can be identified with Poissonmanifolds obtained by regular gluing of a two-dimensional square lattice; more
examples and a general formulation are available in the literature [3,4].

The proposed construction of the Poisson submanifolds in loop groups gives rise to their spectral curve equations and
explicit formulas for the coefficients, the integrals of motion (corresponding usually to the internal points of their Newton
polygons) in cluster variables. These formulas have a similar structure to partition functions of the dimer models, and this
is not a coincidence. There is indeed a direct relation between the class of integrable systems arising from the dimer models
on bipartite graphs on a torus [5] and those constructed from affine Lie groups. For any convex Newton polygon we can
construct a wiring diagram on a torus and, after cutting the torus, an element from the co-extended double Weyl group [4].
On one hand this gives a Poisson submanifold in a loop group and an integrable system by the Lax map described above; on
the other hand, each wiring diagram gives a bipartite graph on a torus, so that the face dimer partition function produces
the same integrals of motion as the coefficients of the spectral curve equation.

We have also left for further research the quantum versions of our integrable models, which are beyond the scope of this
paper. It has already been noted [2] that quantisation of the Toda chain can easily be done using the proposed approach by
passing from classical to quantum groups, since the problem is identical to deformation of the algebra of functions Fun(G) on
group G [29–32]. Note that in cluster language the quantisation appears to be especially simple, since the Poisson brackets
(2.4) are always logarithmically constant.

Finally, we point out that representatives of the family of integrable systemswe consider here havemany applications in
mathematical physics; in particular, they are responsible for the Seiberg–Witten exact solutions to theories with explicitly
present compact extra dimensions [22–24]. We expect a nontrivial relation between the cluster formulation of these
integrable models and recently discussed cluster mutations, arising as generating transformations for the BPS spectra and
being related to the wall-crossing phenomenon [33–35]. We are going to return to these issues elsewhere.
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Appendix A. Roots, weights, and Cartan matrices

For g = slN Lie algebras the Cartan matrix is

Cij =
slN

(αi · αj) = 2δij − δi+1,j − δi,j+1 (A.1)

for the positive simple roots αi ∈ Π, i, j = 1, . . . , rank G = N − 1. The dual vectors

(µi · αj) = δij (A.2)

are the highest weights of the fundamental representations πµi . Clearly,

αi =

j∈Π

Cijµj, µi =

j∈Π

C−1ij αj. (A.3)

It is convenient to use the weight vectors of the first fundamental representation

νi = µi − µi−1, i = 1, . . . ,N, (A.4)

for which µ0 = µN = 0 is implied (i.e. ν1 = µ1 and νN = −µN−1), with the scalar products

(νi · νj) = δij −
1
N

, i, j = 1, . . . ,N. (A.5)

Vectors (A.4) are easily presented as a projection of the Cartesian basis vectors in N-dimensional vector space to a hyper-
plane, orthogonal to the vector 1

N

N
j=1 ej:

νi = ei −
1
N

N
j=1

ej, i = 1, . . . ,N. (A.6)

Comparing (A.3) and (A.4) and using (A.6), we find that

αi = νi − νi+1 = ei − ei+1, i = 1, . . . ,N − 1. (A.7)

Recall that given a Cartan matrix Cij, the Lie algebra g is generated by {hi|i ∈ Π} and {ei|i ∈ Π ∪ Π̄} subject to the relations3

[hi, hj] = 0, [hi, ej] = sign(j)Cijej, [ei, e−i] = sign(i)hi,

(Ad ei)1−Cijej = 0 for i+ j ≠ 0.
(A.8)

We can also replace the set {hi} by the dual set {hi
} by hi =


j∈Π Cijhj, so that

[hi, hj
] = 0, [hi, ej] = sign(j)δj

iej, [ei, e−i] = sign(i)Cijhj,

(Ad ei)1−Cijej = 0 for i+ j ≠ 0.
(A.9)

For any i ∈ Π ∪ Π̄ we can introduce the group element Ei = exp(ei) and a one-parameter subgroup Hi(z) = exp(log z · hi).
In the case of the affine Lie algebra g =slN , the set of simple roots is extended to αi ∈ Π = ZN in a cyclically symmetric

way and the Cartan matrix

Ĉij =slN 2δij − δi+1,j − δi,j+1, i, j ∈ ZN (A.10)

is degenerate.

3 To simplify them we extend h and C to negative index values, assuming that hi = h−i and that C−i,−j = Cij and Cij = 0 if i and j have different signs,
and using the notation e−i = eī for i > 0.
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Appendix B. r-Matrices and Yang–Baxter equations

The classical limit of the Yang–Baxter equation

R̂12R̂13R̂23 = R̂23R̂13R̂12 (B.1)

for R̂ij = exp

h̄ r̂ij


at h̄→ 0 has the form

r̂12, r̂13

+

r̂12, r̂23


+

r̂13, r̂23


= 0. (B.2)

This can be solved, for example, by

r̂ = r+ =


α∈∆+

(eα ⊗ eᾱ + h⊗ h) =
sl2

e⊗ ē+
1
4
h⊗ h, (B.3)

where (in the fundamental representation of sl2)

e =

0 1
0 0


, ē =


0 0
1 0


, h =


1 0
0 −1


(B.4)

and by

r̂ = r− =


α∈∆+

(eᾱ ⊗ eα + h⊗ h) =
sl2

ē⊗ e+
1
4
h⊗ h (B.5)

obtained from (B.3) by the involution eα ↔ eᾱ for α ∈ ∆+ and h ↔ −h, preserving the commutation relations. The anti-
symmetric r-matrix

r = e⊗ ē− ē⊗ e =

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 = r+ − r− (B.6)

satisfies the modified classical Yang–Baxter equation; for example, explicit calculation for (B.6) gives

[r12, r13]+ [r12, r23]+ [r23, r13] = h ∧ e ∧ ē, (B.7)

which is enough to guarantee the Jacobi identity for the Poisson bracket (2.1).
In the case of loop algebras the corresponding r̂-matrices acquire spectral parameter dependence corresponding to the

evaluation representations of the corresponding current algebras [36]. Direct application of the anti-symmetric formula
(3.1) for g =sl2 gives rise to

α∈∆+

eα ∧ eᾱ =


n≥0

en ∧ ē−n +

n≥1


ēn ∧ e−n +

1
2
hn ∧ h−n


= −

λ+ λ′

λ− λ′


e⊗ ē+ ē⊗ e+

1
2
h⊗ h


+ e⊗ ē− ē⊗ e

= −
λ+ λ′

λ− λ′



1
2

0 0 0

0 −
1
2

1 0

0 1 −
1
2

0

0 0 0
1
2


+

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0



=


0 0 0 0

0
λ+ λ′

λ− λ′
−

2λ′

λ− λ′
0

0 −
2λ

λ− λ′

λ+ λ′

λ− λ′
0

0 0 0 0

− 1
2

λ+ λ′

λ− λ′
1⊗ 1. (B.8)
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The expression on the right-hand side up to the part proportional to the unity operator, which does not contribute to any
commutators, acquires the form

rtrig(λ, λ′) =


0 0 0 0

0
λ+ λ′

λ− λ′
−

2λ′

λ− λ′
0

0 −
2λ

λ− λ′

λ+ λ′

λ− λ′
0

0 0 0 0

 (B.9)

in the Poisson bracket relations (4.11) in the context of 2×2 formalism. In the rational limit, with λ = i exp(ζ/2) and small
ζ , we obtain from (B.9)

rtrig

ieζ/2, ieζ ′/2


=

ζ ,ζ ′→0

2
ζ − ζ ′

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

+ · · · . (B.10)

Adding to the right-hand side the ‘‘unit’’ term− 2
ζ−ζ ′

1⊗ 1, we obtain in this limit rtrig

ieζ/2, ieζ ′/2


=

ζ ,ζ ′→0
− 2rrat(ζ , ζ ′),

where

rrat(ζ , ζ ′) =
1

ζ − ζ ′

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = 1
ζ − ζ ′


1
2

(1⊗ 1+ h⊗ h)+ e⊗ ē+ ē⊗ e


(B.11)

is the rational r-matrix proportional to the permutation operator in the tensor product C2
⊗ C2.

Appendix C. Poisson structure on group manifolds

C.1. Graphs and Poisson brackets

Consider a graph (or a quiver) Γ comprising a set of |Γ | vertices connected by an arbitrary number of oriented edges.
Assign to each vertex I ∈ Γ a (complex or real) variable zI , I = 1, . . . , |Γ |, to be thought of as coordinates on a chart in
some manifold, mapped onto


C×
|Γ |. On such an open chart we can define the Poisson bracket (2.4) as [17]

{zI , zJ} = εIJzIzJ , I, J = 1, . . . , |Γ |, (C.1)

where εIJ for the exchange matrix is

εIJ = #arrows (I → J)− #arrows (J → I). (C.2)

Obviously, εIJ = −εJI and the Jacobi identity is satisfied for (C.1) automatically. Moreover, exchange matrix (C.2) can even
be non-integer-valued (e.g. half-integer).

The Poisson manifolds thus defined (see [17] and references therein for details) allow several operations that preserve
the Poisson structure:

• For any subset Γ ′ ⊂ Γ we can set

εIJ ′ = 0 ∀ I ∈ Γ , ∀ J ′ ∈ Γ ′, (C.3)

which corresponds to ‘‘forgetting’’ all vertices of Γ with the variables {zJ ′}, J ′ ∈ Γ ′.
• Gluing: for two graphs Γ1 and Γ2 identify their subsets Γ ′1 = Γ ′2 = Γ ′, getting a graph

Γ = Γ1 ∪ Γ2 = Γ1�Γ ′1 ∪ Γ ′ ∪ Γ2�Γ ′2 (C.4)

with the variables zI1 = z(1)
I1

in all vertices I1 ∈ Γ1�Γ ′1, zI2 = z(2)
I2

for I2 ∈ Γ2�Γ ′2 , and zI ′ = z(1)
I ′ z(2)

I ′ for the coinciding
I ′ ∈ Γ ′. One gets then for the exchange matrix of (C.4)

εIkJ = ε
(k)
IkJ

, J ∈ Γ , Ik ∈ Γk�Γ ′k , k = 1, 2

εI ′J ′ = ε
(1)
I ′J ′ + ε

(2)
I ′J ′ , I ′, J ′ ∈ Γ ′.

(C.5)
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• The Poisson structure (C.1) (for the integer-valued εIJ ) is preserved by mutations of the graph and corresponding
transformation of the z-variables according to

µJ : zJ →
1
zJ

, zI → zI

1+ z

sgn(εIJ )

J

εIJ
, I ≠ J. (C.6)

This allows us to extend the bracket from an open chart to some globally defined cluster variety [14–16].

For certain graphs the Poisson structure (C.1) becomes equivalent to the r-matrix Poisson structure (2.1) on Lie groups,
since it becomes possible to define the group-theoretical multiplication on certain graphs [17]. We illustrate this for a few
particular examples.

C.2. Graphs and groups

1. The simplest graph y→ x corresponds to the subgroup of upper-triangular matrices in SL(2) or PGL(2) (sometimes it
is easier to forget about the determinant). More strictly, consider this as shorthand notation for

y−→
E

x = YEX =

y 0
0 1


1 1
0 1


x 0
0 1


=


yx y
0 1


(C.7)

with the matrix on the right-hand side considered as an element of PGL(2). Consider a multiplication (y → x) · (w →
z) = y → xw → z according to the gluing rule. After mutation at the intermediate point, the variables according to (C.6)
transform to

xw→
1
xw

, y→ y(1+ xw) = ỹ, z → z

1+

1
xw

−1
= z̃, (C.8)

which corresponds to the second graph in Fig. 10, with the extra arrow between ỹ and z̃ reflecting that

{ỹ, z̃} =


y(1+ xw), z


1+

1
xw

−1

= (1+ xw)z


y,

1+

1
xw

−1
+ y


1+

1
xw

−1
{(1+ xw), z}

= yxwz = ỹz̃. (C.9)

Forgetting the intermediate vertex, as in Fig. 10, we obtain the original graph ỹ → z̃ but with the new variables at the
vertices. The rule for obtaining them exactly is

y−→
E

x

·


w−→

E
z

=


yx y
0 1


wz w
0 1


=


yxwz y(1+ xw)
0 1


=


ỹz̃ ỹ
0 1


= Ỹ EZ̃ = ỹ −→

E
z̃, (C.10)

corresponding to multiplication of the upper-triangular matrices. Normalising (C.7) to be an element of SL(2) according to

y−→
E

x = YEX =


√
yx


y
x

0
1
√
yx

 ∈ SL(2), (C.11)

we find that the Poisson bracket {y, x} = yx exactly coincides with the restriction of the SL(2) r-matrix Poisson bracket (2.1)
to the triangular subgroup generated by the only positive root E = exp(e).
2. Consider now (C.7) as an upper-triangular subgroup of SL(3) generated by any of the simple roots Ei = exp(ei) and the
Cartan elements Hi(z) = exp(log z · hi), i = 1, 2. Using (3.1) we can easily compute the corresponding Poisson brackets;
for example, for the matrix elements of

H1(y)E1H1(x)H2(z) =

y2/3 0 0
0 y−1/3 0
0 0 y−1/3

 · 1 1 0
0 1 0
0 0 1

x2/3 0 0
0 x−1/3 0
0 0 x−1/3

z1/3 0 0
0 z1/3 0
0 0 z−2/3


=

y2/3x2/3z1/3 y2/3z1/3x−1/3 0
0 z1/3y−1/3x−1/3 0
0 0 y−1/3x−1/3z−2/3

 (C.12)
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Fig. 10. Simplest graph and Lie group. Gluing, mutation at the middle point and forgetting this vertex after mutation give rise to the group multiplication
law for the upper-triangular subgroup of SL(2).

Fig. 11. Exchange graphs corresponding to the subgroups of SL(3) generated by positive simple roots 1 (left) and 2 (right). The variables at vertices at the
upper and lower levels parameterise the Cartan subgroups H1 and H2 , respectively.

Fig. 12. Graphs depicting the subgroups of SL(N) generated by the simple positive root Ei and negative root Eī, 1 < i < N − 1. The variables at the
vertices on each level correspond to the Cartan generators Hi and Hi±1 . Gluing of two such graphs yields an element of the two-dimensional square lattice
corresponding to a Poisson submanifold in SL(N).

we obtain the Poisson relations

{y, x} = yx, {x, z} =
1
2
xz, {z, y} =

1
2
zy, (C.13)

which can be represented by the left-hand graph in Fig. 11, with the dashed arrows connecting z to y and x.
Similarly, for the subgroup generated by the second root

H2(y′)E2H2(x′)H1(z ′) = H1(z ′)H2(y′)E2H2(x′) (C.14)

we obtain the right-hand graph in Fig. 11, producing the same Poisson relations (C.13) for the prime variables. Almost
the same triangles correspond to the subgroups generated by the negative roots E1̄ and E2̄; we only have to change the
orientation of all the arrows in the plots.

The same arguments show that for simple roots of SL(N) the corresponding subgroups are generated by rhombi instead
of triangles (Fig. 12). The half-arrows on these rhombi are of the same nature as in Fig. 11, coming from the half-integer
coefficients in (2.1). Gluing of two such rhombi at the ith level yields an element of the square lattice (Fig. 12). The symplectic
leaves in SL(N) can be constructed by further gluing of the elements from Fig. 12 (Fig. 1). In this way we obtain some
particular gluing of the two-dimensional square lattice, among which is the Toda symplectic leaf in SL(N) of dimension
2 · rank SL(N) = 2(N − 1).

Appendix D. Toda theory from Lie algebra

In the case of Lie algebra instead of (2.1) we have the linear Poisson bracket
L⊗

,
L


= −

1
2
[r, (L⊗ 1+ 1⊗L)] (D.1)
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with the same constant r-matrix (3.1). For GL(2) or SL(2) it has only two non-vanishing entries (B.6), giving the following
Poisson bracket relations for L =


a b
c d


∈ gl2:

{a, a} = 0, {a, b} = −
1
2
b, {a, c} = −

1
2
c, {a, d} = 0

{b, c} = 0, {b, d} = −
1
2
b, {c, d} = −

1
2
c,

(D.2)

which reflect the structure of the dual Lie algebra (TrL = a + d is now the Casimir function, the total momentum). The
Darboux variables are introduced via

L =


a b
c d


=


p eq/2

eq/2 −p


∈ sl2, {q, p} = 1 (D.3)

and the canonical Hamiltonian is given by H = H2 =
1
2Tr L2

= p2 + eq.
In general, a Lie-algebraic-valued matrix of the form

L = (p · h)+

i∈Π


ei + eī


exp(αi · q) (D.4)

satisfies (D.1) and produces Hamiltonians of the Toda system in a standard manner by computing invariant functions of
(D.4). If the sum in (D.4) is taken over the set Π ⊂ ∆+ of positive simple roots for the finite-dimensional Lie algebra, we
obtain the open Toda chain, whereas for the affine Lie algebra with ei and eī values taken in the evaluation representation,
we obtain the spectral-parameter-dependent Lax operator for the periodic Toda chain.

In the context of alternative 2× 2 formalism, in the algebraic limit (roughly, linear in momenta, exponential coordinates
and ζ , if λ = i exp(ζ/2)) then the Lax matrix (4.10) becomes

1
i

 0
e−Pj/2−qj
√

λ
√

λePj/2+qj
√

λe−Pj/2 +
ePj/2
√

λ

→ Lj(ζ ) =


0 − exp


−qj/2


exp


qj/2


ζ − pj


j = 1, . . . ,N, (D.5)

which satisfies the Poisson bracket [25]
Li(ζ )⊗

,
Lj(ζ ′)


= δij


rrat

ζ , ζ ′


, Li(ζ )⊗

,
Lj(ζ ′)


(D.6)

with the rational r-matrix (B.11).

References

[1] M. Olshanetsky, A. Perelomov, Invent. Math. 37 (1976) 93.
[2] V.V. Fock, A. Marshakov, A note on quantum groups and relativistic Toda theory, Nuclear Phys. B 56 (Suppl.) (1997) 208–214.
[3] V.V. Fock, A. Marshakov, Lie groups, Toda chains and cluster variables, Report ITEP/TH-12/11, FIAN/TD-03/11, 2011.
[4] V.V. Fock, A. Marshakov, Integrable systems, cluster variables and dimers (in preparation).
[5] A. Goncharov, R. Kenyon, Dimers and cluster integrable systems, Preprint. arXiv:1107.5588.
[6] V. Ovsienko, R. Schwartz, S. Tabachnikov, The pentagram map: a discrete integrable system, Comm. Math. Phys. 299 (2010) 409–446.
[7] V. Ovsienko, R. Schwartz, S. Tabachnikov, Liouville–Arnold integrability of the pentagram map on closed polygons, Preprint. arXiv:1107.3633.
[8] M. Gekhtman, M. Shapiro, A. Vainshtein, Generalized Backlund–Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective,

Acta Math. 206 (2011) 245–310.
[9] M. Gekhtman, M. Shapiro, S. Tabachnikov, A. Vainshtein, Higher pentagram maps, weighted directed networks, and cluster dynamics, Prepint.

arXiv:1110.0472.
[10] F. Soloviev, Integrability of the pentagram map, Preprint. arXiv:1106.3950.
[11] R. Eager, S. Franco, K. Schaeffer, Dimer models and integrable Systems, J. High Energy Phys. 1206 (2012) 106.
[12] H. Williams, Double Bruhat cells in Kac–Moody groups and integrable systems, Lett. Math. Phys. (in press). http://dx.doi.org/10.1007/s11005-012-

0604-3.
[13] S. Ruijsenaars, Comm. Math. Phys. 133 (1990) 217.
[14] S. Fomin, A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002) 497–529.
[15] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III: upper bounds and double Bruhat cells, Duke Math. J. 126 (2005) 1–52.
[16] V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmuller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211.
[17] V.V. Fock, A.B. Goncharov, Cluster X-varieties, amalgamation and Poisson–Lie groups, Progr. Math. 253 (2006) 27–68.
[18] T. Hodges, T. Levasseur, Primitive ideals of Cq[SL(3)], Comm. Math. Phys. 156 (1993) 561.
[19] T. Hoffman, J. Kellendonk, N. Kuntz, N. Reshetikhin, Factorization dynamics and Coxeter–Toda lattices, Comm. Math. Phys. 212 (2000) 297.
[20] V. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press.
[21] L. Faddeev, A. Volkov, Discrete evolution for the zero-modes of the quantum Liouville model, J. Phys. A 41 (2008) 194008.
[22] N. Nekrasov, Five-dimensional Gauge theories and relativistic integrable systems, Nuclear Phys. B 531 (1998) 323–344.
[23] A. Marshakov, A. Mironov, 5D and 6D supersymmetric Gauge theories: prepotentials from integrable systems, Nuclear Phys. B 518 (1998) 59.
[24] H.W. Braden, A. Marshakov, A. Mironov, A. Morozov, The Ruijsenaars–Schneider model in the context of Seiberg–Witten theory, Nuclear Phys. B 558

(1999) 371.
[25] L. Faddeev, L. Takhtadjan, Hamiltonian Approach to the Theory of Solitons, Nauka, 1986.



Author's personal copy

36 A. Marshakov / Journal of Geometry and Physics 67 (2013) 16–36

[26] Y. Suris, A collection of integrable systems of the Toda type in continuous and discrete time, with 2 × 2 Lax representations, Preprint. arXiv:solv-
int/9703004.

[27] M. Glick, The pentagram map and Y -patterns, Adv. Math. 227 (2011) 1019–1045.
[28] R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl. 3 (2008) 379–409.
[29] V. Drinfeld, Quantum groups, in: Proceedings of the International Congress of Mathematicians, Berkeley, 1986, p. 798.
[30] M. Jimbo, A q-difference analogue of U(g) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985) 63.
[31] N.Y. Reshetikhin, L.A. Takhtadzhyan, L.D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1988) 128–206.
[32] L. Faddeev, N. Reshetikhin, L. Takhtadjan, Quantum groups, in: Braid Group, Knot Theory and Statistical Mechanics, World Scientific, 1989, p. 97.
[33] M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, Preprint. arXiv:0811.2435.
[34] D. Gaiotto, G.W. Moore, A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013) 239–403.
[35] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi, C. Vafa, N = 2 quantum field theories and their BPS quivers, Preprint. arXiv:1112.3984.
[36] G. Arutyunov, Construction of trigonometric Toda r-matrices via Hamiltonian reduction of the cotangent bundle over loop groups, Theoret. Math.

Phys. 113 (1997) 1209–1216.


