
Software Engineering 2012, 2(4): 165-173
DOI: 10.5923/j.se.20120204.10

Mobile Applications Testing Processes Metrics and
Optimization Criteria

V. A. Filippov1,*, E. E. Khatko2

1Moscow Institute of Electronics and Mathematics of National Research University a higher School of Economy, Moscow, Russian
Federation

2Moscow Institute of Physics and Technology, State University, Moscow, Russian Federation

Abstract Because of rapid mobile technologies expansion, there is a gap between the complexity of mobile applications
and the complexity of employed testing techniques. This paper is aimed at reducing the gap from the theoretical point of view.
The paper comprises an analysis of mobile applications testing processes, mobile applications testing metrics, along with the
full test coverage criterion. It also contains an integral criterion of the testing processes optimization which is based on the
idea of summing the corresponding sub-processes times. The presented criterion leads to an assumption of the tests
generation approach efficiency. Therefore a partial criterion of the tests generation process is proposed. The mathematical
model of this partial criterion is based on the properties of different algebraic expressions. The numerical results section
includes processes comparison and some estimates.

Keywords Mobile applications, Testing, Tests automation, Tests generation

1. Introduction
In the last few years, mobile technologies have been

rapidly expanding in everyday life. Almost every person on
earth has a mobile telephone. Mobile devices are becoming
more and more complex as new types of devices such as
Smart phones, Communicators, Tablets, etc., have appeared.
Such devices hardware has configurations similar to
yesterday’s desktops’, and thus they should be treated as
complex hardware and software systems controlled by
operating systems. In the era of conventional phones, testing
processes were simple as well. Manual testing processes
predominated. However, accelerated evolution of mobile
devices leads to formation of a technology gap between the
complexity of mobile applications and the complexity of the
corresponding testing methods. Manual testing is no longer
enough these days. A new complex approach with special
test automation tools should come in its place. Therefore the
problem of testing methods optimization is very important
from the exploratory point of view and urgent from the
practical point of view.

An analysis of existing testing approaches of mobile
applications is presented in the first section of this paper. An
iterative scheme is proposed as the most common for mobile
applications (MA) development. MA development and
testing approaches are formalized based on the iterative

* Corresponding author:
filbob@infoline.su (V. A. Filippov)
Published online at http://journal.sapub.org/se
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

scheme.
MA testing metrics and the corresponding full test

coverage criterion is presented in the second section.
Using different algebraic expressions, the third section

comprises the mathematical model of the iterative
development scheme. A similar model is proposed in (1), but
in testing processes are described apart from the
development processes.

An integral criterion of development and testing processes
optimization based on the provided mathematical model is
presented in the fourth section. An assumption of test
generation techniques efficiency is made based on the
presented criterion. This assumption can also be stated from
the (2) research which also describes testing processes
optimization techniques. But it’s worth mentioning that
techniques in (2)are presented in a common way, without
providing any mathematical model.

The partial criterion of tests generation process efficiency
is developed onwards. The test generation problem is
presented in (3) and (4). But (3) is circuits domain specific,
therefore some specificity of circuits was used, while
providing the optimization proposals.(4)provides some basic
formal generation approaches with no concern to their
optimization.

2. An Analysis of Development and
Testing Processes of Mobile
Applications

2.1. Analysis of Development Processes

166 V. A. Filippov et al.: Mobile Applications Testing Processes Metrics and Optimization Criteria

The process of mobile applications (MA)development is
usually performed iteratively (5).This scheme is appropriate
for small-scale projects of MA. The peculiarity of this
process is in accelerated progress to a released product with
several iterations of the full development cycle. The detailed
iterative scheme is provided in Figure 2.

The cycle of iterations begins after functional
requirements are determined. The iterations include the build
process, the system testing of new functionality and
regression testing. One of the iterations always ends with a
decision that the next iteration would be inappropriate. This
leads to a new beta version release. In the iterative scheme
MA meets testing on a system stage, bypassing the module

and integration testing stages. Therefore the MA testing
process is usually run on the application UI level.

Recently, the MVC (6)architecture has been greatly
expanding because of its scalability and simplicity. The
following are the definitions of the MVC components in the
context of MA testing.

Models – data base program inter faces. Models provide
the means of data management for the application. To test
the application data management processes, one should
divide all data accepted by the application into equivalence
classes (7)and check the application responses with each
class.

Figure 1. Different equivalence classes

Figure 2. Detailed iterative process scheme

 Software Engineering 2012, 2(4): 165-173 167

Controllers – components that encapsulate the application
logic. Controllers are responsible for the application logic;
therefore they control the global UI structure of the
application as well.

Views – graphical representations of the application states
characterized by the UI elements sets.

The following is a common user-application interaction
algorithm:

1. A User discovers a view with UI elements (buttons, edit
fields, etc.). These elements can be treated as holders of the
application controllers’ methods. Each holder initiates a
request to a controller.

2. The User’s request pulls a controller’s method; then the
controller processes the request data and requests the
database through the model if necessary.

3. Having processed the request the controller chooses the
next view to “show” to the user as a response to his request.

The reviewed architecture allows testing internal modules
of an application on the UI level. The main feature here is to
divide all accepted data into equivalence classes.

2.2. Analysis of Testing Processes

The following is the detailed iterative process scheme:
Figure 2.

This figure represents the formal model of the iterative
development scheme. Basic development milestones with
activities needed for moving between them are presented.

In this scheme it’s possible to choose a transition between
each process state. The overall application development time
depends on the path from the 1st state to the 7thone and on the
number of cycles. There are different paths that guide the
process from 1 to 7, and each of them defines the
corresponding testing method. Let’s consider the most
common of these methods.

2.2.1. Manual Documentation, Manual Testing

1. Requirements elicitation
2. Sketches development
3. Functional specification manual development
4. Test cases manual development
5. Manual testing
This method is very flexible; it allows achieving any test

coverage. But it’s very time consuming. This method will be
referred to as the MM method.

2.2.2. Formal modal based Development

1. Requirements elicitation
2. Formal model development
3. Specification generation based on the formal model
4. Test cases generation based on the formal model
5. Automated testing
This method is simple to automate, but it’s not very

flexible in the MA context, because for mal models are not
suitable for describing user inter faces. Therefore one can’t
reach required testing coverage with tests derived from a
formal model. This method won’t be referred toin this paper

anymore.

2.2.3. Manual documentation, Automated testing

1. Requirements elicitation
2. Sketches development
3. Functional specification manual development
4. Test cases manual development
5. Tests automation
6. Automated and manual testing
Tests automation requires textual description fall the

actions being automated. Basically, all tests have to be
manually developed (as in the MM method) before the
automation begins. This method requires a lot of time for
tests development at first, but saves time during regression
testing later. Therefore this approach is effective when a lot
of iterations take place. This method will be referred to as the
MA method.

2.2.4. Generated documentation, Manual and Automated
Testing

1. Requirements elicitation
2. Prototype development
3. Specification generation based on the prototype
4. Test cases generation based on the prototype
5. Automated and manual testing
Proto type sallow describing an application use rinter

faces quickly and precisely. Therefore it allows achieving
the desired testing coverage. This method also allows
generating different types of test cases, if applying special
rules for prototype creation. This brings in extra flexibility to
the testing process. This method will be referred to as the PR
method.

2.3. Analysis of Tests Automation Methods

There are different tests automation tools; in particular
some of them are reviewed in (1)and (8).

In general, there are two main approaches to tests
automation:

The program matic automation approach is based on a
programming language use, particularly its special libraries.
Tests automation is then reduced to programming special
modules, classes, and testing scripts. This is a flexible
approach, in the sense, that it does not require creating new
scripts in case of functionality changes.

The playback tools automation approach is based on so
called “playback” tools. This approach does not require
software engineering skills. Tests auto mation is reduced to
running a test on a DUT, but proxy-ing the steps to an
appropriate recorder. Recorded tests can be replayed later
on a DUT. With this approach, creating a test is basically its
execution. The main drawback of this method is that any
application change requires recording the test again.

3. Testing metrics of Mobile
Applications

168 V. A. Filippov et al.: Mobile Applications Testing Processes Metrics and Optimization Criteria

Figure 3. Testing process ending point

The goal of MA testing in the context of the rapid MA
development process is not to find all the errors of the
application, but to find the errors that are likely to occur
during user-application interactions. Thus only some of
equivalence classes are considered during the testing process.
Such testing goal does not exclude all the errors; however,
it’s unlikely that the end user will ever find any of the
remaining errors. The following figure represents the
moment of the test process completion.

This figure contains the dependence of the number of
application errors from the time of application arrival to the
end user.

This way it’s possible to formulate the following
statements which define mobile applications testing metrics
and a full testing coverage criterion:

• The testing goal is to find the errors that occur during
user-application interactions. Appropriate equivalence
classes reduction should be done when developing tests.

• All the remaining equivalence classes should be taken
into consideration when testing

• Full testing coverage can be achieved with UI-level
testing

These statements lead to the following definitions of MA
testing metrics and the test coverage criterion:

Mobile applications testing metrics – the number of
checked application responses to UI elements impact from
an end user (assuming that the user impact is based on
common application use cases).

Full test coverage criterion is to check the responses to the
requests handled by all UI elements with appropriate

equivalence classes based on the application use cases.

4. Integral Criterion of Testing Process
Efficiency

Let’s denote the path from state 1 to state 7 in Figure 2as

12 23 34 ... ([12,23,34,36,46,56,67])ijp p p p ij− − − = ∈

. Let ()ijT p be the time and ()ijN p - the coverage,

corresponding to N - checked responses. Thereat, time and
coverage testing process optimization can be represented as:

() max

() min
ij

ij

N p
T p

→
 →

,

([12,23,34,36,46,56,67])ij ∈ .
Since N is an integer, the expression above can be

expressed as:

 (1)

Where ijt is time spent on the corresponding transition that

depends on the applied testing method. N - overall
coverage of checked responses.

This expression defines an integral criterion of the
testing process efficiency and can be used to compare
different testing approaches in terms of time and test
coverage.

[12,23,34,36,46,56,67] min
ij

ij
t

T
N

∈= →
∑

 Software Engineering 2012, 2(4): 165-173 169

Let’s review each summand in the fraction numerator. Let
t be abstract time corresponding to a time period of the
manual requirement creation that describes functionality
corresponding to one UI element. Apparently, all summands
from the (1) expression except 56t depend linearly on t .

46 0t ≈ , because it’s the time period of transfer ring the

application to a test house (can be neglected). So far as 56t
operation should be run once, it can be neglected as well.
Let’s consider the following factors that represent summands
dependencies on t :

mdC - the model or prototype development factor.
Represents relative model or prototype development time

per one UI element

sdC - the specification development factor. Represents
relative specification development time per one UI element

impC - the implement ation factor. Represents relative
implementation time per one UI element

tdC - the tests development factor. Represents relative
tests development time per one UI element

testC - the testing process factor. Represent relative time
required to check all use cases correspondent to one UI
element

Let K be the number of iterations in the iterative scheme. Let (1..)iN i K∂ = be the number of extra responses (the result
of built up functional requirements) to check. Let’s sum all of the (1) summands, factoring out the time t , then (1)reduces
to:

[12,23,34,36,46,56,67]

1..

()()

ij
ij

i
md i sd i imp td i test

md sd imp td test

i K i

t
T

N
Nt C N C N C C N C Nt C N C N C C N C N N

N N

∈

=

= =

∂
∂ + ∂ + + ∂ ++ + + +

= +
∂

∑

∑

 (1.1)

It’s worth mentioning that during the i -th iteration:

1. Implementation time of added function ality is
i

N
N∂

 times less than implementation time of all functionality (on

average).
2. Regression testing is always applied to all of the functions, and not only to new ones.

Let N∂ be the average number of added responses to check during K cycles; then let’s convert (1.1), having

1..

i

i
i

i K
i

t N Kt NC C
N N N N=

∂ ∂
=

+ ∂ + ∂∑ to:

1..

()()

() ()

i
md i sd i imp td i test

sd imp td test

i K i

imp imp
md sd td test md sd td tes

m

t

d

Nt C N C N C C N C Nt C N C N C C N C N NT
N N N

tC CKt N Nt C C C C C C C KtC
N NN N N N

=

∂
∂ + ∂ + + ∂ ++ + + +

= +
+ ∂

∂
 = + + + + + + + + +

+ ∂ ∂ +

∑

The average number of added responses is negligible compared to all the responses: 0N
N

∂
≈ , compared to N then:

2

() ()

() ()

()(1) (1)

imp imp
md sd td test md sd td test

imp imp
md sd td test md sd td test

md sp td test imp

tC CKt N NT t C C C C C C C KtC
N NN N N N

tC CKt Nt C C C C C C C KtC
N N N

K N N K Nt C C C C K C
N N

∂
= + + + + + + + + +

+ ∂ ∂ +
∂

 = + + + + + + + + +

 ∂ + ∂
 = + + + + + + 

 

So the optimization problem can be represented as:

170 V. A. Filippov et al.: Mobile Applications Testing Processes Metrics and Optimization Criteria

2(1) ()(1) mintest md sd td imp
K N N K NT t C K C C C C

N N
 ∂ + ∂

= + + + + + + → 
 

 (2)

After reviewing each summand of the expression (2), it can be stated that the testC factor and the appropriate process
should be optimized in the first place, because it’s next to the (1)K + factor, and the sum of

.()р мод п спец п тестC C C+ + and appropriate processes should be optimized in the second place.

It’s also worth mentioning that in the case of tests automation the tdC -related process should include the processes of

manual tests development and automation tests development. And the test run resC C С= + - testing process consists of
“running tests” and “result estimation” processes.

Expression (2) represents quantification of the testing process time consumption, in the case of K iterations of the
iterative development process with the coverage of N responses to the corresponding functional requirements.

When estimating the efficiency of the testing processes it’s safe to neglect the
2imp

N K NC
N

+ ∂

summand in expression

(2), because it represents the development side of the whole process, but not the testing side.
Having carried out a deeper analysis of the reviewed methods the description of which is beyond the scopes of this paper,

the following assumptions have been made about the proposed methods and factors:

Method Assumption

MM 2
0

md sd td

run

res

С C C C
C С
С

= = =
 =
 =

MA (programmatic automation)

10

0
0.5

md sd

td

run

res

С C C

C C C
K

C
С C

= =

 = +

 =


=

MA (playback automation)
2

0
0.5

md sd

td

run

res

С C C
C C C
C
С C

= =
 = +
 =
 =

PR
0
0
0.5

md sd

td

run

res

С C C
C
C
С C

= =
 =
 =
 =

Testing processes efficiency is the ratio of the MM process time and the given process time:

() MM

process

TEff K
Т

= , where 0.1N
N

∂
= is assumed for estimation purposes.

 Software Engineering 2012, 2(4): 165-173 171

2

2 (1) 3 (1 0.1) (2.3 5)

10 0.7 100.5 (1) 2 (1 0.1) (1)(1 0.1) 3.5

0.5 (1) 5 (1 0.1) (5.5)

0.5 (1) 2 (1 0.1) (0.7 2.5)
playback

programmatic

MM

MA

MA

PR

T C K C K K C
KT C K C K C K C C

K K
T C K C K C K

T C K C K C K

= + + + = +
 + = + + + + + + = +

 = + + + = +

 = + + + = +

The efficiency then will be expressed as:
2

2 2

2.3 5 2.3 5()
0.7 10 0.7 3.5 103.5

2.3 5()
5.5

2.3 5()
0.7 2.5

programmati

playbac

c

k

MA

MA

PR

K K KEff K
K K K

K
KEff K

K
KEff K

K

 + +
= = + + + +


 + = +

+ = +


 (2.1)

5. Partial Criterion of Generation
Process Efficiency

The efficiency of the PR method may be assumed from the
result of integral criterion review. The base of the PR method
is an effective tests generation technique. To be able to
generate tests, one should develop an application prototype,
based on appropriate rules(9), extract an EFSM (extended
finite state machine) from the prototype(10)and represent
this EFSM as a graph with parameters and conditions.
Generated tests may then be used for manual or automated
(programmatic approach) testing.

Numerical metrics of the generation technique in this case
would be:

N - the number of test cases generated by the algorithm
L - the average length of a generated test case
For a particular technique, both of these parameters

depend on the inputted graph G of the appropriate EFSM.
Let’s consider the graph complexity concept ()comp G as a
numerical representation of “how difficult it is to generate a
full coverage test suite” with a particular generation
technique for the provided graph. Graph complexity should
consider the number of graph nodes, transitions, parameters
and conditions. It also should be kept in mind that dynamic
graphs (with parameters and conditions) are “more difficult”
to traverse. It’s suggested to use an rms expression for the
graph complexity and to make use of a numerical factor to
increase the priority of parameters and conditions over the
number of nodes and transitions:

2 2 2 2() () ()comp G K M VC VP= + + + ,
where

K - the number of graph nodes
M - the number of graph transitions
C - the number of graph conditions
P - the number of graph parameters
V - the priority factor
Then the partial criterion of the generation process will be

expressed as:
()()

(()) (())
comp GF G

N comp G L comp G
=

×
(3)

where
G - the MA prototype’s EFSM graph,

2 2 2 2() () ()comp G K M VC VP= + + + - complexity
of the graph.

This figure represents a test generation process. The
provided partial criterion (3)measures generation efficiency
in context of this process.

In fact, the product () ()N comp L comp× estimates the
number of user requests to the application (e.g. button clicks)
that should be done to achieve the required coverage.
Therefore a lower value of the product corresponds to greater
efficiency of the generation technique. The ()comp G in
the fraction numerator of (3)normalizes the efficiency value
so that it would not be dependent on the graph itself.

6. Numerical Results
Let’s plot the reviewed methods efficiency using the

expression

172 V. A. Filippov et al.: Mobile Applications Testing Processes Metrics and Optimization Criteria

 (2.1):

2

2

2.3 5()
0.7 3.5 10

2.3 5()
5.5

2.3 5()
0.7 2.5

playback

programmaticMA

MA

PR

K KEff K
K K

KEff K
K

KEff K
K

 +
= + +

+ = +
+ = +

Figure 4. Generation process efficiency metrics

Figure 5. Testing methods efficiency

This figure presents the dependency of the testing process
efficiency from the number of iteration cycles. The number

of cycles for MA normally resides within [10..30] values.
The process efficiency is calculated as the ratio of the sum of

2

2 2

2.3 5 2.3 5()
0.7 10 0.7 3.5 103.5

2.3 5()
5.5

2.3 5()
0.7 2.5

programmati

playbac

c

k

MA

MA

PR

K K KEff K
K K K

K
KEff K

K
KEff K

K

 + +
= = + + + +


 + = +

+ = +


 Software Engineering 2012, 2(4): 165-173 173

K cycles time of MM and the given processes. The
following features can be distinguished in this figure:

• The PR method is the most efficient even with K values
between [5..10]

• Efficiency calculation is based on the MM method,
therefore this method has constant efficiency on the plot

The significance of the proposed partial criterion is in the
capability to measure different test generation techniques
based on the graph traversal approach. This criterion
abstracts the measurement procedure from the concrete
design under test.

7. Conclusions
The paper comprises an analysis of mobile applications

testing processes, mobile applications testing metrics, along
with the full test coverage criterion. It also contains an
integral optimization criterion of testing processes which
leads to an assumption of a tests generation approach
efficiency. Therefore a partial criterion of the tests
generation process is proposed. The numerical results
section includes processes comparison and proves the taken
assumptions.

The significance of the proposed integral criterion is in the
capability to measure different testing methods integrated
into the iterative development process.

The significance of the proposed partial criterion is in the
capability to measure different tests generation techniques
and algorithms based on the graph traversal approach.

REFERENCES
[1] Современные проблемы фундаментальных и прикладных

наук. Хатько, Е. Е. Москва, Долгопрудный : МФТИ, 2009.
Один из подходов к анализу системы тестирования
сложных программных комплексов. Vol. 1, pp. 104-107.
52.

[2] Heiskanen, H., Maunumaa, M. and Katara, M.Test Process
Improvement for Automated Test Generation. Tampere :
Tampere University of Technology, Department of Software
Systems, 2010.

[3] Xijiang, L, Pomeranz, I and R., Sudhakar M.Techniques for
Improving the Efficiency of Sequential Circuit Test
Generation. Iowa : University of Iowa.

[4] Ural, H. Formal methods for test sequence generation.
Computercommunications. 1992, Vol. 15.

[5] Кулямин, В. В.Методы верификации программного
обеспечения. Москва : Институт системного
программирования РАН.

[6] Томас, Д. and Х., Хэнссон Д.Гибкая разработка
веб-приложений в среде Rails. Москва. Санкт-Петербург :
Питер, 2008.

[7] Степанченко, И. В. Эквивалентное разбиение. Методы
тестирования программного обеспечения. Волгоград :
РПК "Политехник", 2006.

[8] Хатько, Е. Е. and Филиппов, В. А. Проблемы качества
тестирования программного обеспечения для
мультизадачных пользовательских комплексов. Качество.
Инновации. Образование. 3 2011, Vol. 3, pp. 32-35.

[9] Хатько, Е. Е. Об одном методе тестирования
«мобильных» приложений. Труды МФТИ. 3, 2012, Vol. 4,
pp. 132-140.

[10] Карпов, Ю. Г.Теория автоматов. Санк-Петербург : Питер,
2003.

	1. Introduction
	2. An Analysis of Development and Testing Processes of Mobile Applications
	3. Testing metrics of Mobile Applications
	4. Integral Criterion of Testing Process Efficiency
	5. Partial Criterion of Generation Process Efficiency
	6. Numerical Results
	7. Conclusions

