ISSN 0001-4338, Izvestiya, Atmospheric and Oceanic Physics, 2014, Vol. 50, No. 4, pp. 426—430. © Pleiades Publishing, Ltd., 2014.
Original Russian Text © T.G. Talipova, E.N. Pelinovsky, O.E. Kurkina, A.R. Giniyatullin, 2014, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2014, Vol. 50, No. 4, pp. 484—

488.

Reflection of Long Internal Waves of Small Amplitudes
from an Underwater Slope

T. G. Talipova“?, E. N. Pelinovsky~ >4, O. E. Kurkina® ¢, and A. R. Giniyatullin“
¢ Alekseev State Technical University, ul. Minina 24, Nizhni Novgorod, 603950 Russia
b Institute of Applied Physics, Russian Academy of Sciences, ul. Ul’yanova 46, Nizhni Novgorod, 603950 Russia
¢ Higher School of Economics, National Research University, ul. Rodionova 136, Nizhni Novgorod, 603093 Russia
4 Special Construction Bureau of Means of Automation Researches, Far Eastern Branch, Russian Academy of Sciences,
ul. Gorkogo 25, Yuzhno-Sakhalinsk, 693023 Russia
e-mail: 1gtalipova@mail.ru, pelinovsky @gmail.com
Received June 4, 2013

Abstract—The dynamics of long waves in the vicinity of a transition point of a two-layer flow into a single-
layer one is studied within the linear theory of shallow water. The analogy between this problem and the clas-
sical problem of surface wave runup on the shore is shown. Conditions for breaking internal waves on a slope

are discussed.
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1. INTRODUCTION

High-energy internal waves are observed in differ-
ent regions of the World Ocean, mainly in shelf zones
[1-3]. Different physico-mathematical theories are
used for a numerical simulation of the dynamics of
internal waves on the shelf, from weakly nonlinear on
the basis of the equation of Korteweg—de Vries to so-
called primitive hydrodynamic equations [1, 3—6].
Internal waves do not usually approach the coast,
being reflected from a slope or breaking on them. This
process was not previously considered in the literature;
the existing approximate analytical equations have
been derived for internal waves in the case of a slowly
changing bottom and slowly varying vertical density
and horizontal flow stratifications [1, 7]. In the region
of internal wave reflection from the slope, the approx-
imation of slowness of variations in the medium
parameters is inapplicable, as are well-developed
asymptotic methods like geometrical optics or acous-
tic methods.

In this work we consider a simple analytical model
of transformation and reflection of internal waves in a
variable-depth two-layer flow of liquids of different
densities. We assume that the double-layer is trans-
formed into a single-layer one at a certain point. The
internal waves evidently cannot exist in the single-
layer flow, and this zone plays the role of the shore line
of surface waves. This analogy turns out to be quite
efficient; it allows a strict statement of the problem of
wave reflection from a slope. As a result, well known
results for a description of sea wave runup on a plane

shore (see, e.g., [8]) can be used for a description of
internal waves in a zone where a two-layer flow trans-
forms into a single-layer one. This analogy is discussed
in Section 2. The equations for calculating parameters
of an internal wave in the transition zone are given in
Section 3. Breakdown conditions of internal waves are
discussed in Section 4. The results are summarized in
Conclusions.

2. ANALOGY BETWEEN PROBLEMS
OF RUNUP OF SURFACE
AND INTERNAL WAVES

Let us consider the propagation of internal waves in
a double-layer ocean of a variable depth where a two-
layer flow transforms into a single-layer one (Fig. 1). If
the amplitude of long internal waves and the density
gradient are small (the so-called Boussinesq approxi-
mation, common in oceanology), then the following
linearized equations of shallow water are valid for
internal waves [9, 10]:

huy + hy(xu, =0, (D
O(uy — uy) 0N
L) 2
ot § ox )
0
T L] =0 3)

where we also used the “rigid rid” approximation,
which excludes surface waves. Here n is the displace-
ment of the interface between liquids of different den-
sities, u, and u, are the averaged speeds of flows in the
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upper and bottom layers, /; and /4,(x) are the depths of
the upper and bottom layers, and g' = g(p, — p;)/p; is
the reduced acceleration of gravity. The depth of the
upper layer 4, is assumed to be constant; only the lower
layer depth varies and, hence, the total length H(x) =

Excluding the flow speed in the upper layer from
Eq. (1) and applying cross differentiation to Egs. (2)
and (3), we derive the wave equation for the interface
shift:

@_Q[ 2 a_n}_ 4

atz ax c (X)ax _03 ( )
where

_ [ _hx) 5

ox)= |8 e+ ) (5)

defines the propagation speed of long waves in the
double-layer ocean.

Wave equation (4) written in such a general form
can be used to describe many wave motions in inho-
mogeneous media [11]; hence, it is possible to transfer
some well-known results of the general wave theory to
internal waves. Here we pay attention to the analogy
with surface waves in a homogeneous liquid, for which
Eq. (4) describes a water surface displacement, and the
speed of wave propagation

¢,(x) = v gh(x), (6)

where A(x) is the basin depth. In the case of a basin
bounded with the shore, A(x) begins with zero and
increases with the distance to the shore. The study of
wave parameters near point 2 = 0 (the shore line)
allows us to describe the wave runup on the shore in a
linear approximation. The plane slope model

h(x) = ox,

(7

is the most common. Here a is the slope ratio, which
can be often identified with the slope angle due to its
smallness. It is evident that Eq. (7) can be considered
a natural asymptotics of the bottom profile near the
shore; it is the first term of the Taylor expansion of the
function A(x). However, in practice, singular asymp-
totics A(x) ~ x? is often implementable; b can be both
lower than unity (the well-known Dean equilibrium
profile with b = 2/3) and higher than unity (reflection-
less beach with b = 4/3), though the case where b = 1
is also often implementable (see, e.g., [12, 13]).
Profile (7) is also of special interest in the theory of
sea wave runup on the shore. It provides for an exact
solution of the nonlinear theory of shallow water and a
detailed description of sea-wave runup on the shore
(see, e.g., [8]). The possibility of using the linear wave
equation for calculations of extreme parameters of
runup (maximum runup height and back sweep depth;
maximal flow speeds during runup and back sweep)
turned out an important and unexpected conclusion
of the nonlinear theory, since extreme parameters cal-
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Fig. 1. Double-layer variable-depth flow geometry.

culated within the nonlinear and linear theories coin-
cide. Moreover, the criterion of wave breakdown, fol-
lowing from the nonlinear theory as a condition of gra-
dient catastrophe, can be derived from a linear theory
solution [8, 14]. That is why the linear theory of sea
wave runup on the shore, which have been developed
quite long ago [8], remains popular.

Due to the complete analogy between the linear
wave equation for surface waves and waves at the inter-
face, one may assume that the results for surface waves
are true for internal waves. This naturally requires cor-
responding scaling of depths and, hence, similar vari-
ations in the propagation speed. Comparing Egs. (5)—(7),
we get the condition for a change in the bottom layer
depth with the distance

®)

with an arbitrary value of the coefficient 3, which
determines the bottom slope at point x = 0, where the
two-layer flow transforms into a single-layer one. It is
natural to call this point the “shore” line of internal
waves. The main difference between profile (8) and
profile (7) is that the former exists only at finite dis-
tances from the shore line (x < 1/B4,). However, this
restriction is not significant, since it allows sewing
together a slope with any zone of constant depth (cor-
respondingly, the slope angle changes, like for surface
waves). Fixing the slope width L and the depth of the
bottom layer at its edge /4, (or the total depth Hy=h, +
hy), one may define the slope angle

gt
LH,

The corresponding profile of the bottom-layer
depth is shown schematically in Fig. 2. We do not show
here the region of single-layer flow (x < 0), since we
intuitively assume that the depth 4, becomes negative
there (i.e., the depth A, of the upper layer starts to
decrease) for an internal wave to “physically” run up
on the slope. However, motion in this region is signif-
icantly nonlinear and cannot be considered within the
linear wave equation. Like in similar problems of sur-
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Fig. 2. Profile of the bottom layer of a double-layer flow.
The left part shows the zone of a decrease in the bottom
layer depth down to zero (shore line).

face waves, we restrict the consideration to region x > 0,
where there are liquids of different densities.

Let us make another important remark. A compar-
ison of Egs. (5)—(8) implies that

a—pE =22,
g
and, hence, similar wave motion in surface and inter-
nal waves occur at significantly different, by three
orders of magnitude, slope angles.

(10)

3. INTERNAL WAVE RUNUP ON THE SLOPE

Let us now consider a solution of linear wave equa-
tion (4) in the case of a variation in the bottom layer
depth shown in Fig. 2. In region x > L, where the basin
depth is constant, the field is a superposition of two
monochromatic waves (incident and reflected):

N(x,7) = AexpliaXt + x/cy)]

11
+ Aref eXp[lO)(t - x/cO)]a ( )
where
f by
cy = _— 12
0 g I+ hy (12)

is the speed of internal wave propagation in the basin
of a constant depth, A is the amplitude of the incident
wave, and 4,.¢is the amplitude of the reflected wave. In
the zone of variable depth (on the shelf, 0 <x < L), the
bounded solution of wave equation (4) is expressed via
the Bessel function:

nex, 1 = RJ{ 40?2)1 exp(iot),
\ ¢B

where R determines the height of the interface dis-
placement at the shore line (x = 0). Sewing solutions
(12) and (13) at the shelf edge (x = L) with the help of
ordinary boundary conditions of continuity of the
depth (pressure) and water flow in the upper layer

2 . .
—4(’)’ L_ Aexp(ﬂj + At exp(—@j, (14)
&P o o

13)

RJ,
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we can find the generally unknown complex constants R
and A,.,. In particular, the runup height (liquid inter-
face displacement at the point x = 0)

: Aexp(@) — A exp(—@} (15)
Co Cy

g2
J 72 (20)Lj o (20)Lj
Co Co

Equation (16) in this form is universal and can be
used for the runup height of both surface waves on a
linear slope (7) and internal waves on a nonlinear slope (8).
The runup height as a function of the dimensionless
parameter ®wl/c,, which is equal to the ratio of slope
length to internal wavelength, is shown in Fig. 3. As
was expected, if a slope is sufficiently steep, the wave is
reflected from it like from a vertical wall and the wave
height doubles on the wall. In the case of a smooth
slope, a wave intensifies on the shelf and the runup
height of the internal wave increases.

The oscillation phase of the shore line differs from
the incident wave phase by magnitude

J [20)Lj
_\ G )
J, (20)L)
Co
The phase is small for steep slopes and tends to —m/2
for smooth slopes. The frequency dependence of the
shore line oscillation amplitude and phase results in a
complex wave transformation at the shore line in the

case of a single wave approaching, which is beyond the
scope of this work.

17)

@ = —arctan
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The wave reflection coefficient can be found in a
similar way:

J, (20)Lj i, (20)L) |
A _ A CO CO exp(ZKDLj- (18)

ref
J, (ZmLJ +id, (2coLj ¢
Co Co

The amplitude of a reflected wave (modulus of A,
is equal to the amplitude of an incident wave, which is
not a surprise, because we used the condition of total
reflection at the shore line. At the same time, the phase
of the reflected wave changes from zero for steep
slopes to m/2 for smooth slopes. This naturally also
affects the shape of the reflected wave in the case of a
single internal wave approaching.

4. WAVE BREAKDOWN ON A SLOPE

Above we consider the solution to the linear prob-
lem of internal wave transformation in a zone where a
double-layer flow changes to a single-layer one. It is
evident that nonlinear effects should be significant
near the shore line, since the oscillation amplitude
equalizes and exceeds the bottom layer depth. The
nonlinear problem has not been solved analytically so
far. However, this does not mean that the linear prob-
lem solution is completely inapplicable to describing
the wave process in the transition zone. As is men-
tioned above, the linear theory correctly predicts
extreme characteristics, in particular, wave height at
the shore line, of the runup in the similar problem of
wave runup on a plane slope. Moreover, if the param-
eter

(19)

is quite small, then the linear problem solution satis-
factorily describes the form of water-level oscillations
at the shore line [8, 14]. At the same time, the wave
breaks down at the shore line if this parameter is equal
to unity and in the sea, before approaching the shore,
at higher values of the parameter. That is why this
parameter has been called the breakdown parameter
[8, 14]. Therefore, we can try to write an analogous
breakdown parameter for an internal wave at a slope
with accounting for Eq. (10):
_o'R
2’
gP
though we cannot derive it rigorously from the nonlin-
ear theory. If condition Br,, = 1 is taken as a break-
down condition, then one can derive the equation for
the runup critical height under which the breakdown
starts:

Br,

1

(20)

1)

Ccr

|2
R, =8B
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Fig. 4. Critical height of internal wave runup as a function
of the wave period.

This equation includes a small parameter—small den-
sity gradient. However, it should be taken into account
that the internal wave frequency is also usually signifi-
cantly lower than the surface-wave frequency; hence,
the internal wave heights are quite realistic. Depen-
dence (21) is shown in Fig. 4 for a density gradient of
10~3 and a bottom slope of 0.1.

CONCLUSIONS

In this work, characteristics of internal waves in the
transition zone from a two-layer flow to a single-layer
one are calculated within the linear theory. This prob-
lem is mathematically equivalent to the similar prob-
lem of surface wave runup on a constant-gradient
slope, thought the bottom profile is different in the
problem about internal waves and the slope becomes
plane only in a vicinity of the critical point (shore
line). Let us note that the linear wave correctly pre-
dicts extreme runup parameters for surface waves, as
well as the wave breakdown criterion at the shore.
Therefore, the analogy between equations for surface
and internal waves allows us to hope that the results are
applicable for describing the runup of nonlinear inter-
nal waves on a slope, though we have not proven this
fact rigorously yet.

Let us note that similar results can be obtained for
the transformation and runup of surface and internal
waves in the case of so-called reflectionless beaches
with 4 ~ x*? in the vicinity of the shore line. However,
the corresponding results have been obtained only
within the linear theory [10, 15] and have not been
tested within nonlinear theory.
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