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Preface

The goal of this book is to develop methodological princspbé Data Correcting
(DC) algorithms for solving NP-hard problems in combin&tboptimization. We
consider two large classes of NP-hard problems definedraiththe set of all sub-
sets of a finite set (see the Maximization of Submodular Fanst Quadratic Cost
Partition, and Simple Plant Location Problems), or on thesall permutations of
a finite set (see the Traveling Salesman Problem).

The book is organized as follows. In Chapter 1 we motivateDBeapproach
by its application to a single real-valued function definadaocontinuous domain,
that has a finite range, and describe how this approach mégdupplied to a general
combinatorial optimization problem including its implentation for the Asymmet-
ric Traveling Salesman Problem (ATSP).

The first purpose of Chapter 2 is to make more accessible té/dstern com-
munity some long-standing theoretical results about thieiire of local and global
maxima of submodular functions due to Cherenin [29] and Khaagaov [89] in-
cluding Cherenin’s excluding rules and his Dichotomy Algfan (see Petrov and
Cherenin [118], Cherenin [27], [28]). We use Cherenin’siaitomy Algorithm for
determining a polynomially solvable class of submodularctions PP-function$
and show that PP-functions contain precisely one compaufestrict local max-
ima. The second purpose of Chapter 2 is to present a gerai@atiof Cherenin’s
excluding rules. This result is a base of DC algorithms ferreximization (mini-
mization) of submodular (supermodular) functions preseint Chapter 3.

In Chapter 3 we present the DC algorithm for maximizationutfraodular func-
tions; it is a recursive Branch-and-Bound (BnB) type altjon (see e.g., Balas
and Toth [6]). In the DC algorithm the values of a given submadfunction are
“heuristically” corrected at each branching step in suchay hat the new (cor-
rected) submodular function will be as close as possiblepiolynomially solvable
instance from the class of submodular PP-functions (icgtsiy and the result satis-
fies a prescribed accuracy parameter. The working of the B&igthm is illustrated
by means of an instance of the Simple Plant Location Prob&#iP). Computa-
tional results, obtained for the Quadratic Cost Partitioobiem (QCP), show that
the computing results of the DC algorithm in general aredpettan the computa-
tional results known in the current literature (see e.graBanaet al.[8], Gloveret
al. [55], Leeet al.[102], Pardalos and Rodgers [114], Pardadbal.[115], Poljak
and Rendl [119], [120]), not only for sparse graphs but atsonbnsparse graphs
(with density more than 40%) often with speeds 100 timesfaste further im-
prove the DC algorithm for submodular functions by introieigcan extended PP-
function. Our computational experiments with the improied algorithm on QCP
instances, similar to those in Lex al. [102], allow us to solve QCP instances on
dense graphs with number of vertices up to 500 within 10 neiswin a standard
personal computer.

In Chapter 4 we deal with a pseudo-Boolean representatithe PLP (see e.g.,
Beresnev [13], Dearingt al.[38], and Hammer [80]).
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We improve the class of Branch and Peg algorithms (see Gotdaret al. [67,
68]) by using SPLP-specific bounds (suggested in Erlenkjgttg) and preprocess-
ing rules (coined in Khumawala [91]) in Chapter 4. We furtherorporate a new
reduction procedure based on data correcting, which ingé&nathan the preprocess-
ing rules from Khumawala [91], to reduce the original inst&amo a smaller ‘core’
instance, and then solve it using a procedure based on D@talgadeveloped in
Chapter 3. Computational experiments with the DC algorititapted to the SPLP
on benchmark instances suggest that the algorithm compaiewith other algo-
rithms known for the SPLP (see Goldengagiral. [69]).

In the summary of this book we discuss future research dimestfor DC ap-
proach based on the main results presented in the conctusidine chapters.

Nizhny Novgorod, Russia; Boris Goldengorin
Groningen, The Netherlands
Gainsville, Florida Panos M. Pardalos
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Chapter 1
Introduction

Combinatorial optimization problems are those where orgetbachoose among
a countable number of alternatives. Managerial applioatiof such problems are
often concerned with the efficient allocation of limited sesces to meet desired
objectives, for example, increasing productivity whengbeof solutions (variants)
is finite. Constraints on basic resources, such as labdlities; supplies, or capital,
restrict the possible alternatives to those that are censilieasible Applications
of these problems include goods distribution, productidmesluling, capital bud-
geting, facility location, the design of communication arahsportation networks,
the design of very large scale integration (VLSI) circuitee design of automated
production systems, artificial intelligence, machine téag,and software engineer-
ing.

In mathematics there are applications to the subject of auaidics, graph the-
ory, probability theory, auction theory, and logic.

Statistical applications include problems of data analysid reliability. The
number and variety of applications of combinatorial optation models are so
great that we only can provide references for some of themdse, Dell Amicoet
al. [40], Korte and Vygen [94]).

Combinatorial optimization is a part of mathematical optiation that is related
to operations research, algorithm theory, and computalticomplexity theory. It
has important applications in several fields, includingiarl intelligence, machine
learning, mathematics, auction theory, energy, biomedi@nd software engineer-
ing.

The combinatorial nature of the above mentioned problems&from the fact
that in many real-world problems, activities and resourfasinstance machines
and people, are indivisible. Also, many problems have orfigite number of alter-
native choices and consequently can be formulated as camabial optimization
problems - the word “combinatorial” refers to the fact thdeasible solution to a
combinatorial optimization problem can be constructed aerabination of indi-
visible objects. It is relatively easy to construct an aitijon which computes the
cost of each feasible solution and keeps the best in mindrtinfately, such an ex-
haustive enumeration algorithm is usually impractical wtieere are more than 20



2 1 Introduction

objects, since there are simply too many feasible solutibosexample, the Trav-
eling Salesman Problem (TSP) defined on the setafies has(n — 1)! different
feasible solutions (tours). Even assuming that we haveyafast computer that can
evaluate one million tours per second, and we have 20-c#iesnumerative algo-
rithm would take over 750 centuries to evaluate all posdibles (see e.g., Dolan
and Aldous [41]).

Computer scientists have found that certain types of pros)ealled NP-hard
problems, are intractable (see e.g., Garey and Johnsoh R8lighly speaking
this means that the time it takes to solve any typical NP-paiotblem seems to
grow exponentially as the amount of input data (instanoegiases (see e.g., Cook
et al. [37], Nemhauser and Wolsey [111]). On the other hand, forymdR-hard
problems we can provide provable analytic or algorithmiarelsterizations of the
instances input data that guarantee a polynomial time isal@igorithm for the
corresponding instances. These instances are gadligthomially solvable special
casef the combinatorial optimization problem (see e.g., Budlet al. [22]).

Polynomially solvable special cases of combinatorial mmj#ation problems
have long been studied in the literature (see, e.g., for theeling Salesman Prob-
lem Gilmoreet al.[52] and Kabadi [85]). Apart from being mathematical curios
ties, they often provide important insights for serioushpem-solving. In fact, the
concluding paragraph of Gilmoet al.[52] states the following, regarding polyno-
mially solvable special cases for the TSP.

“ ... We believe, however, that in the long run the greatest inapa# of these special cases
will be for approximation algorithms. Much remains to be ddamthis area.”

This book is a step in the direction of incorporating polynaltg solvable special
cases into approximation and exact algorithms (see Gébah[53]). We propose
a Data Correcting (DC) algorithm— an approximation algorithm that makes use
of polynomially solvable special cases to arrive at higladgy solutions. The basic
insight that leads to this algorithm is the fact that it ieofeasy to compute an upper
bound on the difference in cost between an optimal solutfanmroblem instance
and any feasible solution to the instance. The results édawith this algorithm
are very promising (see the computational results in theesponding sections of
this book).

The approximation in the DC algorithm is in terms of accuracy parameter
which is an upper bound on the difference between the obgectilue of an optimal
solution to the instance and that of a solution returned kyOl algorithm. Note
that this is not expressed as a fraction of the optimal objgtlue for this instance.
In this respect, the algorithm is different from commetptimal algorithms, in
which ¢ is defined as a fraction of the optimal objective functiorueal

Even though the algorithm is meant mainly for NP-hard coratarial optimiza-
tion problems, it can be used for functions defined on a cantis domain too. We
will, in fact, motivate the DC algorithm in the next sectiosing a function defined
on a continuous domain that has a finite range. We then showdtid® 1.2, how
this approach can be adapted for NP-hard optimization prog] using the Asym-
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metric TSP as an illustration. We conclude the introducthigpter with a summary
of the remaining chapters of this book.

1.1 Data Correcting (DC) Approach for Real-Valued Functiors

Consider a real-valued functioh: 2 — O, whereZ is the domain on which the
function is defined. Here we discuss a minimization probl@maximization ver-
sion of the problem can be dealt with in a similar manner (skesBet al. [53]).
We assume that function valuesoére easy to compute, but finding the minimum
of f over a subdomain takes more than a reasonable amount of tampone. We
concern ourselves with the problem of findiagminimal solutions to the function
f over 2, i.e. the problem of finding a member ¢%|x € 2, f(x) < f(x*)+a},
wherex* € argmine»{ f(X)}, anda is a predefinedccuracy parameter

Let us assume thdt7,..., %} is a partition of the domaiw. Let us further
assume that for each of the sub-domainsof &, we are able to find functions
gi . 5 — O, which are easy to minimize ovés;, and such that

f-a( <3 e, (1.1)

We call such easily minimizable functioregular (see Goldengorin [59]).

Theorem 1.1 provides an interesting approximafigr' ) of the unknown global
optimum f (x*), wheref (x?) is the minimum of all values (x{), ..., f(x3) andx?
is the minimum of a functio; on %; satisfying (1.1).

Theorem 1.1.Fori=1,...,p, let ¥ € argmine4{gi(x)}, and
x% e argmin{ f(x")}. Moreover, let X € argminec4{ f(x)}. Then
f(x%) < f(x*)+a.

g(x) < f(x)+ 5. ie. f(x") < f(x)+a. Thus min{ f(x7)} <min{f(x)}+a,
which proves the result.

Proof. Let x* € argmineg {f(x)}. Then fori=1,....p, f(x") — 5 < gi(x") <
f

Notice thatx* andx® do not need to be in the same sub-domairZofTheo-
rem 1.1 forms the basis of the DC algorithm to find an approt@manimum of a
function f over a certain domai¥. The procedure consists of three steps. In the
first step the domai®w of the function is partitioned into several sub-domains. In
the second step is approximated in each of the sub-domains by regular fansti
satisfying the condition in Expression (1.1) and a minimuanp of the regular
function is obtained. Finally, the third step, in which theatmum points computed
in the second step are considered and the best among therasisrchs the out-
put. This procedure can be further strengthened by usingria@unds to check if
a given sub-domain can possibly lead to a solution better &my found thus far.
The approximation off by regular functiong); is calleddata correcting since an
easy way of obtaining the regular functions is by altering dlata that describ&
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A pseudocode of the algorithm, which we cBllocedure DCis provided in Fig-
ure 1.1.

Procedure DC

Input: f, 2, a.
Output: x* € 2 such thatf (x¥) < min{f (x)|x€ 2} +a.
Code:

1 begin

2 bestvalue= o;

3 create a partitiof 21, ..., Zn} of 7,

4 for each sub-domait;

5 begin

6 fi ;= a lower bound tdf (x), x € %;
7 if f; > bestvalue

8 then fathom 2

9

else
10 if the constructed regular functigp(x)
11 satisfies (1.1)
12 then calculatex € argmincg {gi(x)}; and
13 go to line 15
14 else gotoline 3;
15 if f(x") < bestvalue
16 then begin
17 X3 = x7;
18 bestvalue= f(x7);
19 end;
20 end;
21 return x%;
22end.

Fig. 1.1 A DC algorithm for a real-valued function.

Lines 6 through 8 in the code carry out the bounding proceskliaes 9 and 14
implement the process of computing the minimum of the ragulaction over this
sub-domain. The code in lines 15 through 19 remembers thereisnum. By The-
orem 1.1, the solution chosen by the code in lines 15 thro@gk &na-minimum
of f, and therefore, this solution is returned by the algorithriinie 21. The differ-
ence between this algorithm and the usual Branch-and-B@m) method is, that
in the DC-algorithm in each domai#;, the original function is approximated by a
regular function, as can be seen in line 9. Note that a refuutation should not be
either a lower or an upper bound to the unknown optimal vatub .o

We will now illustrate the DC algorithm through an exampléeTexample that
we choose is one of a real-valued function of one variabiteesthese are some of
the simplest functions to visualize.

Consider the problem of finding an-minimum of the functionf shown in Fig-
ure 1.2. The function is defined on the dom&irand is assumed to be analytically
intractable.
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f(x)

Fig. 1.2 A general functionf.

The DC approach can be used to solve the problem above, fiadofg a solu-
tion x® € D such thatf (x¥) < min{f(x)|x€ 2} +a.

Consider the partitiofD1,D2,D3,D4,D5} of D shown in Figure 1.3. Let us
suppose that we have a regular funciga(x) such thatg (x) — f(x)| < &, Vx € D.
Assume also, thag is a minimum point ofj; (x) in D1. Since this is the best solution
that we have so far, we stosg as ana-minimal solution tof(x) in the domain
D1. We then consider the next interval in the partiti@3, We construct a regular
functiongz(x) with |g2(x) — f(x)| < &, ¥x € D2, and findxy, its minimum point over
D.. Sincef (x2) > f(x1) (see Figure 1.3), we retaia as ourar-optimal solution over
D; UD». Proceeding in this manner, we examifig) in D3 throughDs, compute
regular functiongs(x) throughgs(x) for these domains, and computgthrough
Xs. In this examplexs replaces as oura-minimal solution after consideration of
D3, and remains so until the end. At the end of the algoritkgrs returned as a
value ofx“.

There are four points worth noting at this stage. The firsha twe need to
examine all the sub-domains in the original domain beforeetiern a near-optimal
solution using this approach. The reason for this is vergrclEhe correctness of the
algorithm depends on the resultin Theorem 1.1, and thigémeonly concerns the
bestamong the minima of each of the sub-domains. For instandbeiprevious
example, if we stop as soon as we obtain the tirsiptimal solutionx; we would
be mistaken, since Theorem 1.1 appliext@nly overD; U D,. The second point
is that there is no guarantee that the near-optimal solugittined by DC will be in
the neighborhood of a true optimal solution. There is in,faothing preventing the
near-optimal solution existing in a sub-domain different the sub-domain of an
optimal solution, as is evident from the previous examptee Tfue minimum off
lies in the domairDs, but DC returnsg, which is inD3. The third point is that the
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—— Original Function
— Regular Function

g & g 2 &

X, X, box, X,! X
R :
’ :

D, D, D, D, D,

Fig. 1.3 lllustrating the DC approach of

regular functiongji(x) approximatingf (x) do not need to have the same functional
form, and are not induced by the form 6fx) in that domain. In this Example,
01(x) is quadratic, whilegz(X) is linear. In general it is not always the case that
for each specific domaiD; and a fixed class of regular functions we can satisfy the
required quality of approximation expressed by (1.1). lchsaicase we continue the
splitting process of the domalid into subdomains such that the required quality of
approximation will be achieved. It is not necessarily that a fori=1,...,n.In

this case based on differeat an optimal approximation value of = y might be
computed (see Theorems 3.2 and 3.3). Finally, for the prédheorem 1.1, it is
sufficient for{Zx, ..., %n} to be a cover o/ (as opposed to a partition).

1.2 DC for NP-Hard Combinatorial Optimization Problems

The DC methodology described in the previous section cand@porated into an
implicit enumeration scheme (like BnB) and used to obtaiarfmotimal solutions
to NP-hard combinatorial optimization problems. In thistge we describe how
this incorporation is achieved for a general combinatasimization problem. A
combinatorial optimization problem (COPY.C,., fc) is the problem of finding

S" € argOPT{fc(9) | Se v},

whereC : ¢ — [0 is the instance of the problem with ground $2tsatisfying
|| =n(n>1),.7 C 27 the set of feasible solutions, afig : . — [ the objective
function. In this section it is assumed tH@PT = min, so that we only consider
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minimization problems. In case of the Traveling SalesmarbRm (TSP) (see e.g.,
Lawler et al.[100], Gutin and Punnen [78]), i.e. the problem of finding arsbst
tour visiting a given se{1,...,m} covering them locations,¢ is the set of edges
connecting these locations? the set of possible tours (also callethmiltonian
tours) along then locations C is them x m distance matrix o with n = n?, and
fc(S) = Sesc(s) with C = {c(s)} for eachse Se ¢ is the cost of the tour.

Different entries o€ define differentinstances of the same COP.((&Cy, .7, fc, )
and(¥¢,C,, .7, fc,) define two instanceS; andC, of the same COP. The function
p(-,-) is called aproximity measuréor the COP(¥,C,.~, fc), if for each pair of
instance£; = {ci(s)} andCy = {cy(s)} of this COP, it holds that

fe,(S1) = fe,(S)| < p(Cr, C2), (1.2)

for each§" € argmin{ f¢, (S) | Se .’} fori = 1,2. Heres € Sand in case of the TSP
sis an edge (arc) of a Hamiltonian cy@e

Theorem 1.2.Let(¥,C,.7, fc) be a COP with ground s&f.
Then,
P1(C1.C2) = S [ca(s) — Ca(9)]| (1.3)
s
is a proximity measure, if eithect= S, or fc = max, where for each & .7 it
holds thaty .(S) = S ssC(S), andmax(S) = maxcsc(s).

Proof. Take any two instances; andC, of the COP(¥¢,C,.~, fc), and anyS' €
argmin{fc,(S) | Se 7'}, i =1,2. Assume thafc, (S;) — fc,(S;) > 0. Then,

|f01 (q) - sz(SEH = fCl(SD - sz(SE) < fCl(SE) - sz(SE) =

Y ses5[C1(S) — C2(9)] < Fsesy [Ca(S) — C2(S)] < Fsew [Ca(S) — C2(S)]-

The other case can be shown along similar lines.

Note that the complexity of computing the proximity measet€C;,Cy) in The-
orem 1.2 is polynomial, although, in general, that of commfc(S") is not.

Corollary 1.1. Let (¥4,Cy,.7, fc,) and (¥,C,,.7, fc,) be two instances and G
of the same COP with the corresponding proximity meapi@®,C,), optimal so-
lutions § and S, respectively. There are two virtual bounds fef (5;) as follows:

fe,($) = p(C1,C2) < ey (SD), (1.4)

fe,(S1) < 1, (S5) + P(C1,Co). (1.5)

Proof. The proof is straightforward from (1.2).

Both virtual bounds might be useful within a branch-and+mbtype algorithm
either to discard a subproblem by means of the lower virtoahi (1.4) or to im-
prove the value of the best currently found feasible sofutip means of a feasible
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solution related to the upper virtual bound (1.5). It medwas tight proximity mea-
sures might be used as a new source of lower and upper vidualds in combina-
torial optimization (see e.g., Korte and Vygen [94]).

One way of implementing the DC step as formulated in Sectidnfdr COP
(¢,C,.7, fc) is illustrated by means of the Asymmetric TSP (ATSP), i.e. Ti5P
in which the distance;j from locationi to j is not necessarily equal to the dis-
tancec;ji from j toi. In order to execute the DC step, we construct a polynomially
solvable relaxatio?,C, 7R, fc) of the original problen{¥,C,.~, fc) with the op-
timal solutionSi € .#R, hamely, the Assignment Problem (AP) defined on the same
ground set/ with the same distance matix and the set of feasible solutioré;
being (not necessary cyclic) permutations of. 1. m, i.e. g D .. It means that
Sk € YR need not be feasible (7,C,.7, fc). We next construct a “good” solution
S to (¢9,C,.7, fc) based ortg. To that end, we apply a patching operationSgn
to obtain the cyclic permutation (toug: (see e.g., Karp [88]). We also construct
an instanc&r for which (4,Cg,.7, fc) will have S as an optimal solution. Note
that, in generalCg # C. Cr is called thecorrected instancéased orC. Clearly,
thecorrectedCOP(¥¢,Cg,.7, fc) is polynomially solvable. The proximity measure
P(C.Cr) =313 [cij — c{:j| then is an upper bound to the difference between
the costs ofs: and of an optimal solution t¢¢,C,., fc). The following example
illustrates this technique.

Consider the 6-city ATSP instance with the distance malrix [c;j] shown be-
low.

123456

C

1/ -101619 2522
2119 -10131310
3
4
5

1028 -221613
192513 -1019
16221913 -11
6(1322151310 -

Solving the AP orC by means of the Hungarian method (see e.g., Kuhn [97]) esult
in the following reduced distance mat@x' = [c{{].

ctl1 23 4 5 6
- 06 71612
9 -0140
018 -10 7 3
8142 - 0 8

0

5118 0 -
2114 0 O

Recall that the Hungarian method is based on the followirgydbservations. If we
add (subtract) an arbitrary finite const#to all entries of either rowor columnj

of the distance matri€ then the set of feasible solutions to the AP is not changed.
Hence, any distance matrix can be reduced into a distang&méh non-negative
entries. Therefore, an optimal solution to the original At be represented by a

DO WN B
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set ofn “independent” zeros in a reduced distance matrix. We caditatn zeros
independenif each pair of them is located in a set of pairwise distinatsand
columns. Note that the value of an optimal solution to thgiagl AP will differ
from the optimal solution of the reduced AP by the sum of atlexd! (subtracted)
constants leading to the reduced matrix.

In this examplesk = {(1231), (4564 }. Using patching techniques (see, Karp [88]),
we obtain the solutioise = (1245631. Here, the patching technique involves the
deletion of an ardii, j1) from (1231) and an ardiy, j2) from (4564), and inser-
tion of the arcgiy, j2) and(iz, j1) into the remaining set of arcs such that the value
of i, j, + Gi,j; is minimal. In this exampléiy, j1) = (2,3) and(iz, j2) = (6,4) (see
Figure 1.4).

Fig. 1.4 A patching operation.

Notice that the patched solutigti245632 would be an optimal solution to the
AP if c5, andck, had been set to zero @, and that would have been the case, if
C24 andcgz had been initially reduced by 1 and 4, respectively, i.ehd tlistance
matrix in the original ATSP instance had be&gn, as shown below.

Cell1 2 3 456
1 -101619 25 22
2119 -10121310
3|11028 -221613
4
5

192513 -1019
16221913 -11
6/1322111310 -

ThereforeCr is the corrected distance matrix. The proximity measuresfeeg
P1(C.Cr) = 371 551 cij — | = |coa— Chyl + |Co3— C5 = 4+ 1=5.

Since a proximity measure is an upper bound for the diffexdoetween the
optimal value of the original instance (in our exam@)eand the corrected instance
(in our exampleCg), it may be clear that the stronger the bound, the betteravoul
be the performance of enumeration algorithms dependingion Bounds. In this
sensep,, as defined below, is a stronger proximity measure for ATSRiitces:
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= Flow F

C.,C :min{ max |Cjj — Ci; max|Cjj — Cij } 1.6

£2(C,Cr) i;l§j§n| ! ”|71211§i§n| i~ il (1.6)

Note that both measureg; andp,, use a set of corrected entries@fwhich are
located in pairwise distinct rows and columns on each ctingstep. Hence, the
values ofp; andp, will be the same and equal to the cost of patching the solution
S for each correcting step. Consider the ATSP instance inltbeeaexample. The
COStCog + Co3 — Chy — C, Of patching the solutio (1231), (4564} to (1245631

is exactly equal to the values @f(C,Cr) and po(C,Cr). Actually, after two or
more correcting steps, the set of corrected entries doesagessary contain entries
located in pairwise distinct rows and columns. This meaas tie values of the
proximity measurep; andp, become different, actually they will satisfyy < p;.

It means that, using the proximity measyxe one can save execution time. In case
of the ATSP, the values @; andp, become available as by-products of computing
the best patching at tHest correcting step.

1.3 The DC Approach in Action

The correcting step in DC algorithms can be representedesf®liowing approxi-
mation problem
min{p(C,Cr) |Cr € #Z} = p(C,C}) (1.7)

for any COP(¥4,C,.7, fc). In (1.7),% is a set of regular or polynomially solvable
instances of the same size@sActually, CE is an instance as close as possible to
the given instanc€, andp(-,-) is a proximity measure as defined in the previous
section. Itis clear that the computational complexity aflem (1.7) depends both
on the structure of the sé£ and the proximity measum(C,Cg). For many classes
Z% the approximation problem (1.7) is NP-hard (see e.g., Gugdgan [64]). In the
DC approach we therefore just use a heuristic for solving)(kay with solution
C2 € #, so thatp(C,C) < p(C,C2). Recall that Theorem 1.2 enables us to decide
‘how far’ the solution of(/,CZ,.7, fca ) is ‘away’ from (¢,C, ., fc). Leta be the
accuracy parameter. In fact,gfC,C2) < a, we have found aa-optimal solution

to the original problem with cost vect@, so we are done. [p(C,C¢) > a, we
partition (branch) the se¥’ of feasible solutions into a number of new sets. Like in
usual BnB, the partition is obtained with so-called branghiules. These rules are
problem specific. However, in case of DC, it turns out thatanbhing rule based
on upper tolerancegbeing bounds on the values of the input parameters, whereas
within these bounds the same optimal solution holds; see\&ag der Poort [131])
on the entries in the currently best solution is the bestahfor the givenZ (see
Dechter and Pearl [39]). This fact will not be elaborateceisee Goldengorin and
Sierksma [70]). More details about upper tolerances basalching rules might
be found in Turkensteeet al. [130] and Germet al. [51]. Figure 1.5 presents the
pseudocode of a recursive version of the DC method for coatdiial optimization
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problems with minimization objective. The input s the cesttorC, with its sizen,
the feasible solutions set’, and the accuracy parameterNotice that lines 2 and
3 refer to the DC step discussed earlier in this section. dingturns ara-optimal
solution defined in the postcondition of the algorithm.

Algorithm DC (C, n, S, fc, a)
Input: C, .7, a.
Output: 7 € . such thatfc(S") < min{fc(S)|Se ¥} +a.
Code:
1 begin
2 find a feasible instand&? to approximation
problem (1.7);

3 ifp(C,Cq)<a

4 return §%;

5 else

6 begin

7 partition.# into subsets; fori =1,... k;

8 § :=DCC,n, A, fc,a)fori=1,...k

9 return the best solution amo®&f fori =1,...k;
10 end;
1l end.

Fig. 1.5 A Data-correcting algorithm for combinatorial optimizaii problems with a minimiza-
tion objective.

Recall that, in the ATSP example, the sgtof polynomial instances, used in
the DC algorithm, is the set of distance matrices for whiah Hungarian Algo-
rithm returns a tour (cyclic permutation). As a proximity aserre we us@, from
formula (1.6). The branching rule makes use of aneasgelding a maximum con-
tribution ce towards the value of the proximity measure, i.e.

ce cargmax|cj —cfj| 1i,j=1,...m}, (1.8)

with [cjj] the current input instance ar[mfj] its ‘polynomially solvable co-worker’.
Let K(h) andK(t) be subtours from the AP optimal solution that contains eithe
the headh or the tailt of an arce = (h,t) used for patchindg<(h) andK(t) (see
Figure 1.4). The current set of Hamiltonian touys is partitioned into subsets
Z(e) = {Se .“|e¢ S} for all arcse from the shortest (in terms of the number
of arcs) subtour amonig (h) andK(t). A motivation why branching by excluding
arcs is better than branching by including arcs is presantégrmset al.[51] and
Goldengorin and Sierksma [70].

For example (see Figure 1.4), the maximum contributigitowards the value
of the proximity measur@(C,Cg) is found on the ar¢2,4). Since the lengths of
both subtourK(2) = (1231) andK(4) = (4564 are the same we may branch by
deleting all arcs either fro{(2) or fromK(4).
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The current matrix is adapted accordingly. Namely, including an are (i, j)
in any feasible solution is equivalent to deleting the f@amd columnj from C, and
excluding an are = (i, j) from any feasible solution is equivalent to settigto
infinity.

We illustrate the execution of the DC algorithm in case of 8eity instance
from Table 1.1 with accuracy parameter= 0 (see Goldengorigt al.[71]) . This
instance is considered in Balas and Toth [6].

1 2 3 4 5 6 7 8

. [- 2 1T 10 8 7 6 b

: |6 - 1 8 8 4 6 T

s |5 12 - 11 8 12 3 1
Cl=s 11 9 10 - 1 9 8 1p
s |11 11 9 4 - 2 10 B

¢ 12 8 5 2 11 - 11 B
;|10 11 12 10 9 12 - B

s |7 10 10 10 6 3 1 |

Table 1.1 8-city ATSP instance.

1 2 3 4 5 6 7 8

| -[o] 9 8 6 5 4 3
2|3 -[0o] 7 7 3 5 ¢
s0] 9 - 8 5 9 o0 4
ct=« | 8 8 9 -[0o] 8 7 9
|7 9 7 2 —[o] 8 7
|8 6 30 9 - 9 1
|15 8 9 7 6 9 -0
s|4 9 9 9 5 2[0] -

Table 1.2 ATSP instance after subtracting the row and column minima.

The original problem is the problem at the root node of thetsmh tree in Fig-
ure 1.6. We call this: subproblem 1. The nodes are labelearditg to the order in
which the problems are evaluated. The Hungarian Algorittariswith subtracting
its smallest entry from each row (see e.g., Nering and TuldKe?]). Similarly, for
the columns. We obtain the mat®¢ in Table 1.2. Its optimal AP solution is given
by the entries that are boxed in, namgly= (1231)(4564)(787). The subtours are
patched and result in the togk = (12378645 with fc(St) = 26. The superindex
of SF corresponds to the label of the subproblem. The cost of pajchese sub-
tours is 9, so that the cost of the patched tour exceeds thettse AP optimal
solution by 9 (see Table 1.4). We next construct the cordetatrix that hast as
its optimal solution. This is done by decreasing the cosheféarc(5,1) by 7 units
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and the cost of the ar@,6) by 2 units, and leaving all other arc costs unchanged.
This leads to the corrected matf* (see Table 1.3). Clearlp,z(C,Cf) =74+2=9,

1 2 3 4 5 6 7 8
. [- 2 1T 10 8 7 6 b
: |6 - 1 8 8 4 6 T
s |5 12 - 11 8 12 3 1
cE=+ |11 9 10 - 1 9 8 1p
5 11 9 4 - 2 10 9
s |12 8 5 2 11 - 11 P
» (10 11 12 10 9 12 - B
s | 7 10 10 10 6 1 4

Table 1.3 The corrected matrix at the root node.

which is more than the prescribed accuracy: 0. Thus we need to branch.

The largest contribution towards the valuem{C,CT) is the correction of the
cost of arc(5,1). So we branch on all arcs from subtd4i564) and obtain three
subproblems, namely, = .(4,5), .3 = .’(5,6), and.7, = .7 (6,4). (Note that
subtour(4564) corresponds to the head of g 1), and subtou(1231) to the tail
of arc(5,1). Since the lengths of both subto{d231) and(4564) are the same, an
alternative choice is subto(t231).) It is clear that#, U 3 U %4 = .71, although
not each pair of subsets has nonempty intersection. A nola@gng representation
of a set of subproblems can be found in Murty [108].

Now we solve the AP for each of the three subproblems, and fiatf¢ (S3) =
29, fc(SB) = 25, andfc(St) = 25. Subproblem 2 can be fathomed, sirfigéS3) =
29> fc(St) = 26. The three subtours of the soluti§h = (12631 (454)(787) are
patched, yielding = (126453781 with fc(S2) = 31, and the cost of patching de-
creased from 9 to 6. For subproblem 4 the same soluBprs (12631 (454)(787),

St = (12645378 are found, withfc (st ) = 31 and patching cost 6. Now the largest
contribution towards the value @k(C,C§) is the cost correction of the a(8, 1).
The DC algorithm branches on the arcs of subtd87), giving rise to subprob-
lems.s = .7 (7,8) and.s = . (8, 7). The AP solution of subproblems 5 and 6 are
fc(S}) = 31 andfc(S5) = 26, respectively. Both are fathomed. Sirge= S, the
DC algorithm creates for subproblem 4 two subproblems 7 am'drch(SA) =31
and fc(ﬁ) = 27, respectively. So both are fathomed. Therefore, the QGrihm
has found the optimal solutiofe(S%) = fc(St) = 26 with a = 0. Note that 8 sub-
problems are solved. The results are listed in Table 1.4coneesponding tree of
solutions is shown in Figure 1.6.

Note that ifa = 1, then we could stop the solution process after solving tke fi
four problems, since the value of the current lower bound eesal tofc(S3) =
fo(SR) = 25.

As we have seen the optimal solutiog%= St = (12631)(454)(787) € /3N
4 # 0 are the same for subproblems 3 and 4 because their setasiiflée so-
lutions have a nonempty intersection. A set of mutuallyaligj solutions (sub-
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Fig. 1.6 The DC Algorithm tree with non-disjoint subproblems.

i Sk fc(S) & fc(S) p2(C,.CT)
1 (1231)(4564)(787) 17 (123786451) 26 9

2 (1231)(478564) 29 fathomed

3 (12631)(454)(787) 25 (126453781) 31 6

4 (12631)(454)(787) 25 (126453781) 31 6

5 (12371)(45864) 31 fathomed

6 (123786451) 26 fathomed 0

7 (1231)(456874) 31 fathomed

8 (121)(37863)(454) 27 fathomed

Table 1.4 The DC solutions for the 8-city ATSP.

problems) (see e.g., Zhang and Korf [136]) can be constuatefollows (see
Figure 1.7):e/0 = {S: (5,6) ¢ S}, o3 = {S: (5,6) € Sand(4,5) ¢ S}, and
oy ={S: (5,6),(4,5) € Sand(6,4) ¢ S} with the corresponding optimal solu-
tions fo(SB) = fc[(12631)(454)(787)] = 25, fc(SY) = fc[(1231)(478564] = 29,
fo(Sh) = fc[(1245631(787)] = 27, the same patched solutids(St) = 26, and
the same corrected mat@ . Hence, subproblems 3 and 4 are fathomed. # 1,
then we could stop the solution process after solving the fimsr subproblems,
otherwise (ifa = 0) we patch the solutioiss into fc(S2) = fc(12796453) =
31 and split subproblem 2 into two subproblems 5 and 6 withcbreespond-
ing o% = {S: (5,6),(7.8) ¢ S}, % = {S: (7,8) € Sand(5,6),(8,7) ¢ S}, and
fo(SR) = fc[(12371)(45864)] = 31, fc(P) = fc[(12378645)] = 26. Therefore,
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tour

Fig. 1.7 The DC Algorithm tree with disjoint subproblems.

the DC algorithm has found the optimal solution by solvingu®@oblems. Note
that in both implementations (with and without overlappseis of feasible solu-
tions) the DC algorithm has the largest contribution 4 talsdahe values qb(C,CsF)
andp(C,CF) for the corresponding inserted ar@1) and(2,8), respectively, and
indicates for branching the same shortest sub{aar).

The previous example shows that the DC algorithm can be eactve alter-
native to usual BnB algorithms (see e.g., Balas and Toth [6]}he next section
we report computational experiences with the data congalgorithm on ATSP
instances.

1.4 Preliminary Computational Experience with ATSP Instances

In this section we demonstrate the effectiveness of the Q@ #hm on some bench-
mark ATSP instances from TSPLIB [121]. TSPLIB has twentyeseATSP in-
stances, out of which we have chosen twelve which could beeddb optimality
within five hours using a basic BnB algorithm. Eight of thesdobg to the ftv’
class of instances, while four belong to thibg’ class. We implemented the DC
algorithm in C and ran it on an Intel Pentium computer with Ig6& and 128MB
RAM.

The results of our experiments are presented graphicaljguares 1.8 through
1.11. In computing accuracies, (Figures 1.8 and 1.10) we hbotted the accuracy
and deviation of the solution output by the data correctiggrthm from the opti-
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Achieved Accuracy Vs Alpha for 'ftv' problems
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ftv70 —<—
ftvo4 —k—
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ftv47 ——
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Alpha (as a fraction of the cost of an optimal solution)

Fig. 1.8 Accuracy achieved versusfor ftvinstances.

Execution Times Vs Alpha for 'ftv' problems
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Fig. 1.9 Variation of execution times verswsfor ftvinstances.
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Achieved Accuracy Vs Alpha for 'tbg' problems
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Fig. 1.10 Accuracy achieved versus for rbg instances.

Execution Time Vs Alpha for 'rbg' problems
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Fig. 1.11 Variation of execution times versusfor rbg instances.
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mal (called ‘achieved accuracy’ in the figures) as a fraabibitie cost of an optimal
solution to the instance. We observed that for each of thévenastances that we
studied, the achieved accuracy is consistently less théfh &0the pre-specified
accuracy.

There was a wide variation in the CPU time required to soleedifferent in-
stances. For examplétv70 required 17206 seconds to solve to optimality, while
rbg323 required just 5 seconds. Thus, in order to maintain umity while demon-
strating the variation in execution times with respect taraes ina values, we
represented the execution times for each instance for @actue as a percentage
of the execution time required to solve that instance tonoglity. Notice that for all
the ftv instances whenr was 5% of the cost of the optimal solution, the execution
time was reduced to 20% of that required to solve the resmettstance to opti-
mality. The reductions in execution times fiug instances were equally steep, with
the exception ofbg323 which was anyway an easy instance to solve.

1.5 Concluding Remarks

In this chapter we provide an introduction to the concept afaDCorrecting (DC),
a method in which our knowledge of polynomially solvable gpkcases in a
given problem domain is utilized to obtain near-optimalusioins with the pre-
specified performance guarantees within relatively shxetetion times. The al-
gorithm makes use of the fact that even if the cost of an optmlation to a given
instance is not known, it is possible to compute a bound ordise of the solution
based on the cost of an optimal solution to another instance.

In Section 1.1, we describe the DC process on a single variahl-valued func-
tion. Most of the terminology used in data correcting is dadiim this section. We
also provide a pseudocode for a DC algorithm for a generbVedaed function and
an example demonstrating the algorithm. In Section 1.2,iveevshow the DC ap-
proach can be used to solve NP-hard combinatorial optimizatroblems. It turns
out that it fits nicely into the framework of BnB. We also prdeia pseudocode for
an algorithm applying DC, on a combinatorial optimizationlgem with min-sum
objective, and show, using an example, how the algorithnkgwon the Asymmetric
Traveling Salesman Problem in Section 1.3.

In Section 1.4 we describe computational experiences waticbmark Asym-
metric Traveling Salesman Problems from the TSPLIB (seadtgil21]). We show
that the deviation in cost of the solutions output by our dataecting implementa-
tion from the optimal is about 80% of the allowable deviatiand the time required
to solve the problem at hand to 95% optimality is about 20%eftime required to
solve the problem to optimality.

We have used DC primarily for solving some of the NP-hard coiatiorial op-
timization problems. Our choice among many examples of éoatbrial optimiza-
tion problems is motivated as follows:

One of the chosen problems should represent a wide rangeobfepns defined
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on the set of all permutations and another one — on the setl aglubtets of a

finite set, i.e. we have chosen the Asymmetric Traveling Sasn Problem [54]

and maximization (minimization) of a general submodulapémodular) function

[66] specified by means of the Quadratic Cost Partition [&2jpple Plant Loca-

tion [1, 60, 69], assortment problem [56, 57, 61, 62, g8Median Problem [2, 74],

and its application to the Cell Formation Problem [75]. Intallar, we have studied
the performance of this algorithm on general supermoduidrsabmodular func-

tions, applied it to Quadratic Cost Partition and SimplenPlabcation Problems (see
Chapter 3 of this book), and in this chapter, on the Asymrmodtraveling Salesman
Problem. Much research remains to be done on testing therpehce of this ap-

proach on other hard combinatorial problems.






Chapter 2

Maximization of Submodular Functions: Theory
and Algorithms

2.1 Introduction

In this chapter we give some theoretical results fundanheatéhe problem of
finding a global maximum of a general submodular (or, eqeiviy, global min-
imum of a general supermodular) set function (see Goldemdjo8] which we call
the Problem of Maximization of Submodular Functions (PM8Blowing Lee et
al. [102]). By a set function we mean a mapping frof ® the real numbers,
whereN = {1,2,...,n}. Another well-known term for an arbitrary set function is
a pseudo-Boolean functiofsee [19, 20, 81]) which is a mapping frof0,1}" to
the real numbers. PMSF is known to be NP-hard, though thesponding mini-
mization problem is known to be polynomially solvable (seg ,eSchrijver[127]).
Enormous interest in studying PMSF arises from the factdbetral classes of im-
portant combinatorial optimization problems belong to FiScluding the Simple
or “Uncapacitated” Plant (Facility) Location Problem (S§BLand its competitive
version (see Benati [12]), the Quadratic Cost Partitionbnm (QCP) with non-
negative edge weights, and its special case — the Max-Cbtdtng the generalized
transportation problem (Nemhausgal.[109], [110]). Many models in mathemat-
ics (Lovasz[103]), including the rank function of elemeantinear algebra, which is
a special case of matroid rank functions (see Edmonds [4RFaank [45]) require
the solution of a PMSF.

Although the general problem of the maximization of a subatadfunction is
known to be NP-hard, there has been a sustained researdtaéfied at developing
practical procedures for solving medium and large-scadtairces of the PMSF.
Often the approach taken has been problem specific, andrsagelarity of the
underlying objective function has been only implicit to #realysis. For example,
Barahoneet al. [7] have addressed the Max-Cut Problem from the point of view
of polyhedral combinatorics and developed a branch and Igatithm, suitable
for applications in statistical physics and circuit laydetsign. Beasley [9] applies
Lagrangean heuristics to several classes of location @noblincluding SPLPs and
reports results of extensive experiments on a Cray supgretan Leeet al. [102]

21
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have made a study of the quadratic cost partition problen®)Q& which max-
cut with nonnegative edge weights is a special case, again fine standpoint of
polyhedral combinatorics.

There have been fewer published attempts to develop digasifor minimiza-
tion of a general supermodular function. We believe thattudiest attempt to ex-
ploit supermodularity is the work of Petrov and Cherening[lvho identified a
supermodular structure in their study of railway timetagliTheir procedure was
subsequently published by Cherenin [29] as the “method ofessive calcula-
tions”. Their algorithm however is not widely known in the SvgBabayev [4])
where, as far as we are aware of, the only general procechatbave been stud-
ied in depth are the greedy approximation algorithm from Nauseret al.[109],
and the algorithm for maximization of submodular functisnbject to linear con-
straints from (Nemhauser and Wolsey [110]). In a commentiote by Frieze [46],
Babayev [4] demonstrated that Frieze’s two rules: OP1 an®l, @&veloped to ac-
celerate a BnB algorithm for the SPLP were a consequence@f®@m’s theorem
for PMSF [29]. Note that Alcouffe and Muratet’s [3] algonithis based on a special
case of Cherenin’s [29] “method of successive calculations

Indeed the only practical algorithmic implementation kmawthe West appears
to be the "accelerated greedy” (AG) algorithm of Minoux [1,08hich has been ap-
plied to optimal planning and design of telecommunicatietworks. We note that
the AG algorithm has also been applied to the problem of Datgdtexperimental
design (Robertazzi and Schwartz [125]); see alsceKal. [92] and Lee [101] for
further examples of “hard” D-optimal design problems in ieomwmental monitor-
ing. In Genkin and Muchnik [50] an optimal algorithm is cansted with exponen-
tial time complexity for the well-known Shannon max-min pkem. This algorithm
is applied to the maximization of submodular functions sabjo a convex set of
feasible solutions, and to the problem of - what is known ascoding monotonic
Boolean functions [19].

In this chapter we present an elegant key theorem of Cherahiich provides
the basis of excluding rules, and in particularly, for thstification of the Prelimi-
nary Preservation (Dichotomy) algorithm. We generalizei@hin’s excluding rules
in the form of “preservations rules” which will be used in @iter 3. Moreover, our
preservations rules can be used for implicit enumeraticsubproblems in a BnB
approach for solving PMSF.

The chapter is organized as follows. In Section 2.2 we mitigeheoretical de-
velopment of these rules by presenting some importanttsesalthe structure of lo-
cal and global maxima for submodular functions by Chere2®j and Khachaturov
[89], [90]. In this section a fundamental theorem of Chemdsistated, which pro-
vides the basis of “the method of successive calculatid®sttion 2.2 also contains
an important characterization of local maxima as disjooponents of “strict”
and “saddle” vertices which greatly assists the underatgmaf the difference be-
tween the properties of Cherenin’s “excluding rules” and ‘queservation rules”
discussed in Section 2.3. In Section 2.4 we present our ma@ofEm 2.8 from
which generalized bounds for implicit enumeration can bevdd, and allow the
rules of Section 2.3 to be extended to other casasptimality). We present the two
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different representations (a) and (b) of the partition ef¢hrrent set of feasible so-
lutions (vertices) defined by a strictly inner vertex witlspect to this set. By using
our main Theorem 2.8 and representations (a) and (b) we piheveorrectness of
Cherenin’s excluding rules in the form of our preservatioles. These rules are
the basis of Cherenin’s Preliminary Preservation Algaonitt®PA) [118]. We intro-
duce the so calledon-binary branching rulesased on Theorem 2.8 in Section 2.6.
Non-binary branching rules are illustrated by an instari¢cee@SPLP. In Section 2.5
we outline the main steps of the PPA and illustrate how our peservation rules
(see Corollary 2.6) can be applied to a small example of thePS®/e show that if
the PPA terminates with a global maximum then the given swuiao function has
exactly one strict component. Section 2.7 gives a numbeoélading remarks.

2.2 The Structure of Local and Global Maxima of Submodular
Set Functions

In this section we present results of Cherenin-Khachat(seg Cherenin[29] and

Khachaturov[89]) which are hardly known in the Westerrrétere (see also Babayev[4]).
Letzbe a real-valued function defined on the power 8atfN = {1,2,...,n};n>

1. For eact8, T € 2V with SC T, define

ST]={le2V|SCICT}.

Note that[0,N] = 2N. Any interval [S,T] is, in fact, asubintervalof [0,N] if 0 C

SC T C N; notation[S, T] C [0,N]. In this book we mean by an interval always a
subinterval ofl®,N]. Throughout this book we consider a set of PMSFs defined on
any interval[S T] C [0,N] as follows:

max{z(l) || € [ST|} =Z'[ST], forall [ST] C [O,N].
The functionzis calledsubmodulaion [S,T] if for eachl,J € [S,T] it holds that
Z(1)+2zJ) >z(1UJ)+z(1NJ).

Expressions of the fori8\ {k} andSu {k} will be abbreviated t&— k andS+ k.
The following theorem presented in Nemhauseéral. [109] gives a number
of equivalent formulations for submodular functions whishuseful for a clearer
understanding of the concept of submodularity. Since siomeetve use the in-
cremental or decremental value #fS), we definedj*(S) =2z(S+j)—2z9) and

dj (S)=2S— )~ 9.

Theorem 2.1.All the following statements are equivalent and define a suthiar
function.
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(i) z(A)+2z(B)>2zAUB)+2zANB), VABCN.

(i) df(S)>df(T), VSCTCNand jeN\T.

(iii) dF (S) > df (S+K), YSC N and je N\ (S+K)

As an example consider the Quadratic Cost Partition Prol@@P), for which
it is well known that the objective functiorQ) is a submodular function (see
e.g., Leeet al. [102]). For given real numberg; and nonnegative real numbers
gij with i, j € N, the QCP is the problem of finding a subggtof N such that
the weightz(Q) = Jicqpi — %Zi,jeQ gij is as large as possible. L&t be the
vertex setE C N x N the edge set of an edge-weighted gr&phk- (N,E), and
wij > 0 are edge weights. For ea@hC N, the cutd(Q) is defined as the edge
set for which each edge has one enddrand the other one iN\Q. It is easy
to see that the Max-Cut Problem with nonnegative edge weighad QCP where
pi =3 jenWij andgij = 2wj, fori,j € N.

Lemma 2.1.The objective &) of the Quadratic Cost Partition problem is submod-
ular.
Proof. According to Theorem 2(dii ) a function is submodular if
d" (S >d"(S+k), YSCN and le N\ (S+k) and ke N\'S
Substitutingd," (S) = z(S+1) — z(S) we get
Z(S+1)—2z(S) > z(S+ k+1) — z(S+K)

Substitutingz(S) = Yicspi — 3 Yijesdij gives

1 1
pi— 5 Gj—(ypi—5 Y qj) >
icSH I 2i.je I ! gsl 2 z !

i,JES

1 1
> Pi-3 dij — ( Pi—5 dij)

ieStk+| i,JeSHk+ ieStk i.jeStHk

Canceling out terms involving; we obtain
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- Gij +  Gij = — ; Qij + Qi
i,jeSH i,JES i,jeStk+I i,jeStk

This result, after some bookkeeping, implies
Ok + ik >0

Sinceg;j is nonnegative for all, j € N, the proofis completed.

Hence, the QCP problem is a special case of the problem ofmizirig a sub-
modular function.

A subset € [0,N] is called docal maximunof zif for eachi € N,
zZ(L) > max{z(L—i),z(L+i)}.

A subsetSe [0,N] is called aglobal maximunof zif z(S) > z(I) for eachl €
[0,N]. We will use the Hasse diagram (see e.g., Grimaldi [76] agdi€i2.1) as the
ground graptG = (V,E) in whichV = [0,N] and a pair(l,J) is an edge if either
I cJordcCl,and[I\J|+|I\I|=1.

The graphG = (V,E) is calledzweightedif the weight of each vertex € V
is equal toz(l); notationG = (V,E, z). In terms ofG = (V,E, z) the PMSF means
finding a vertexSe V of the weightz(S) which is as large as possible. An example
of the weighteds with N = {1,2,3,4} is depicted in Figure 2.2, where the weight
z(1) is indicated inside the corresponding vertex

Here among others the verticgs, 2,3} and{4} are local maxima, an{4} is a
global maximum (see Figure 2.2).

A sequencé = (19,1%,...,I") of subsets! € 2V, t =0,1,...,nsuch thatl!| =t
and

0=1°citci?c...cltc...cI™cI"=N

is called achainin [0,N]. An example of the chain @ {2} c {2,4} C {1,2,4} C
{1,2,3,4} in Figure 2.3 is shown.

Similarly, a chain of any intervdl5, T] can be defined. A submodular functinn
is nondecreasing (nonincreasingh the chain™ if z(1') < z(I™) (z(I') > z(1™M))
forall I, msuch that 6< | < m< n; concepts oincreasing, decreasing and constant
(signs, respectively:, >, =) are defined in an obvious manner (see, for example,
Figure 2.4).

The following theorem (see Cherenin [29]) shows the quasiavity of a sub-
modular function on any chain that includes a local maximseee(Figure 2.5).

Theorem 2.2.Let z be a submodular function @ and let L be a local maximum.
Then z is nondecreasing on any chair{@L], and nonincreasing on any chain in
[L, N

Proof. We show that is nondecreasing on any chain[iL]. If eitherL = 0 (we
obtain the nonincreasing case) [of = 1, the assertion is true, sinteis a local
maximum ofz. So, let/L| > 1 andl,J € [0,L] such thatt = +k, ke L\I.
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Fig. 2.1 The Hasse diagram dfl, 2, 3,4}.

Note that 0C ... C |1 ¢ J C ... C L. The submodularity of impliesz(J) + z(L —
k) >z(1)+2z(L),orz(J)—z(l) > z(L) —z(L—k). SinceL is a local maximumgz(L) —
z(L—k) > 0. Hencez(J) > (1), and we have finished the proof of the nondecreasing
case. The proof fol., N] is similar.

Corollary 2.1. Let z be a submodular function @Y and let Ly and L, be local
maxima with b C L. Then z is a constant dhy,L,], and every Le [L,L5] is a
local maximum of z.

Proof. First we show that is a constant function ofiy,L]. Let us apply Theo-
rem2.2toachainincluding@... C L1 C Ly C... CN,firstto the single (isolated)
local maximunlL, and second to the single local maximum For the first case we
obtainz(0) < ... <z(Ly) < ... < z(l) < z(Ly). For any subchain of the interval
[L1,L2] we havez(L;) < ... < z(Lp). By the same reasoning for the second case we
havez(L;) > ... > z(L). Combining both sequences of inequalities we have proved
the constancy of.

Now we show that everl € [L1,L,] is a local maximum of. Assume the con-
trary that there existk € [L1,Lp] that is not a local maximum af. Then either
there is aL —i ¢ [Li,Ly] with z(L) < z(L —i) or there is aL +i ¢ [L1,Lp] with
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Fig. 2.2 Example of local maximd1,2}, {1,2,3}, {1,3}, {2,3}, {3}, and the global maximum
{4} on the Hasse diagram.

z(L) < z(L +1). In the first case we get accordingly the definition of subnfexdty
Z(L)+z(Ly—i)>z(L—i)+2z(Ly) orz(L) —z(L —i) > z(Ly) —z(L, —1i) > 0. This
contradictz(L) < z(L —1i). In the second case a similar argument holds by using
instead ofLo.

In Corollary 2.1 we have indicated two important structupabperties of a
submodular function considered on intervals whose endtpaire local maxima.
Namely, on such an interval a submodular function preseavamnstant value and
every point of this interval is a local maximum. It will be na&l to consider the
widest intervals with the above mentioned properties.

A local maximumL € 2N (L € 2V) is called alower (respectivelyupper max-
imumif there is no other local maximuin such thalL C L ( respectivelyl c L).
For example, in Figure 2.6 the vertglx2, 3} is an upper local maximum and the
vertices{1,2}, {3} are lower local maxima. Note that the vertgx 4} is not a lo-
cal maximum. If an intervall], L] with L C L has as its end points lower and upper
maxima then it is the widest interval on which the submodiulaction is a constant
and each point is a local maximum. We call a pair of intervijsl]j] with L; C L;,

i = 1,2 connectedf [L;, L1] N [L,, L2]# 0. The intervals of local maxima form a
set ofcomponents of local maxim@wo intervals belong to the same component if
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Fig. 2.3 Example
{1,2,3,4}.

Fig. 2.4 Example
of {1,2,3,4}.

of the chain & {2} C {2,4}  {1,2,4} C {1,2,3,4} in the Hasse diagram of

nonincreasing

't

nondecreasing

N\

|
0c {2} c{2,4} c{1,2,4} c {1,2,3,4}

of a nondecreasing (nonincreasing) function orchiaén in the Hasse diagram
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Fig. 2.5 A quasiconcave behaviour of a submodular function on thenchith a local maximum
L (Cherenin’s theorem).

Fig. 2.6 Lower local maxima:{1,2}, {3}; upper local maximum{1,2,3}; SDC (shadowed);
global maximumi{4}.
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they are connected. Hence, two local maximandL, are in the same component
if there is a path irG = (V,E, z) with end verticed.; andL,, and all intermediate
vertices of this path are local maxima.

By the following definitions Khachaturov [89] (see also Gardorin [64]) intro-
duced two kinds of components of subgraphs of local maxima.

Let Vp be the subset df corresponding to all local maxima afand letHy =
(Vo, Eo, 2) be the subgraph & induced byv,. This subgraph consists of at least one
component. We denote the componentsiy= (V4,E},2), with j € Jo={1,....r}.
Note thatifL; andL, are vertices in the same component thagn ) = z(L>).

A componenHé is called astrict local maximum compone(®TC) if for each
| ¢V, for which there is an edg@, L) with L € V§, we havez(l) < z(L). A com-
ponentH(J) is called asaddle local maximum compond®DC) if for somel ¢ VJ,
there exists an edgé, L) with L € V§ such that(l) = z(L). An example of the SDC
defined by two interval§{1,2},{1,2,3}] and[{3}, {1,2,3}] is shown in Figure 2.6.
The values of a submodular function in Figure 2.6 are primsitle the vertices.
Here a trivial STC by the vertepd} is defined. Note tha§3,4} is not a local maxi-
mum because its neighbf#} is the global maximum with valug{4}) = 11.

Al vertices in a componeriti} are local maxima of the same kind. Therefore,
the index sefp of these components can be split into two subsktseing the index
set of the STCs, andp being the index set of the SDCs.

The following theorem of Khachaturov [89] is an applicatmrheorem 2.2 to
the case of a nontrivial STC (see Figure 2.7).

z(1)

Fig. 2.7 The behavior of a submodular function on a chain with lowed apper local maxima
(Khachaturov's theorem).

Theorem 2.3.Let z be a submodular function @Y and let LandL be lower and
upper maxima with IC L, both located in an STC. Then z is strictly increasing on
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each subchai® C ... C L of [0,L], constant or[L,L], and strictly decreasing on
each subchaih C ... C N of [L,N].

Proof. We first show that is strictly increasing on0,L]. The proof of the strictly
decreasing case is similar. If eitler= 0 (we obtain the decreasing case)ldr= 1,
the assertion is true, sinteis a local maximum ot. So, let/L| > 1 andl,J € [0, L]
suchthatl =1 +k, ke L\I.Notethat@Z | C JC ... C L. The submodularity of
impliesz(J) +z(L — k) > z(I) +z(L), orz(J) — z(1) > z(L) — z(L — k). SinceL € V{4
for somej € Ji, z(L) — z(L — k) > 0. Hencez(J) > z(1), and we have finished the
proof of the strictly increasing case.

The property that is constant oriL, L] follows from Corollary 2.1.

Note thatL andL need not be lower and upper maxima in Theorem 2.3. It is
clear from the proof of Theorem 2.3 that any pair of embeddedllmaximal
andL; locatedonachain@...CLi—icLiC...CLyCcLy+kC...CNsuch
thatz(L; —i) < z(L1) andz(L, + k) < z(Lp) will imply that z is strictly increasing
on each subchain @ ... CL; —i C L; and strictly decreasing on each subchain
L, CLr+kC ... €N. We call such a local maximummoundary local maximum
In other words, a boundary local maximum is connected witttiaes outside the
component.

Lemma 2.2.Let LeVOj for some je J;, and let | satisfy d) = z(L) with (I,L) € E.
Then 1€ V{ for the same k J.

Proof. LetL ¢ Voj for somej € Jy. If | ¢Vg, thenz(l) < z(L), since(l,L) € E and
L is a local maximum of the STC.

Khachaturov [89] has observed that any global maximum lgeloma STC.

Theorem 2.4.Let S be a global maximum of the submodular function z defined o
2N. Then SV for some je J;.

Proof. Suppose, to the contrary, th&te V(‘) with i € J,. Then there exists ahe
V '\ Vo, adjacent to somé € V with z(I) = z(J). Thisl| is not a local maximum and
hence| has an adjacent vertd& with z(M) > z(1). Thusz(S) =z(J) = z(I) < z(M),
contradicting the assumption thais a global maximum of.

Theorem 2.4 implies that we may restrict the search for aajlotaximum of a
submodular functioato STC’s. Based on Corollary 2.1, and definitions of strict an
saddle components we can represent each component of lagahenas a maximal
connected set of intervals whose end points are lower anerdppal maxima.
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2.3 Excluding Rules: an Old Proof

There are two “excluding rules” (see Petrov and Cherenig][1Hrieze [46], Al-
couffe and Muratet [3]), that can be used to eliminate cersaibsets froni0, N]
when determining a global maximum of a submodular function.

Theorem 2.5.Let z be a submodular function ¢&,N] and \j with j € Jo be the
components of local maxima. Then the following asserti@hd. h

a. First Strict Excluding Rule (FSER).

If for some Tand L with® C Ty € T, € N we have@T) > z(T), then\g N[T,T]=
Oforall j € Jo.

b. Second Strict Excluding Rule (SSER).

If forsome $and Swith0 C S C S C N we have &) < 2(S, then\g NS S| =
Oforall j € Jp.

Proof. We prove case (a) because a proof of case (b) is similar. Lebunsider a
chain0C...CTy CT, CLCTC...CNwith L € V{N[T,,T] # 0 for somej € J.
Applying Theorem 2.2 to the subchain®... CT; C T, C L we havez(0) < ... <
Z(T1) < z(T,) < z(L) which contradictg(T1) > z(T).

This theorem states that by applying the strict rules we d@rclude any local
maximum. In other words, we preserve all local maxima. Infdtlewing theorem
of Khachaturov [89] we will see that applying excluding milith nonstrict in-
equalities (nonstrict rules) will preserve at least onalanaximum of each STC.
We will call such a maximum eepresentativef the STC.

Theorem 2.6.Let z be a submodular function ¢8 T| C [0,N] and for every jc
Jl,V0 [S,T] # 0. Then the following assertions hold.

a. First Excluding Rule (FER).

If for some T and b with SC T; € T, C T holds that £T;) > 2(T,), then \ N
([ST]\[T2, T]) # Oforall j € J;.

b. Second Excluding Rule (SER). ,

If for some $and $ with SC S C S C T holds that £5) < 2(S), then \g N
(IST]\[S,S] #Oforall j € Jy.

Proof. We prove case (a) because the proof of case (b) is similaud.ebnsider
two cases: .

Case 1:2(Ty) > z(T,). Theorem 2.5 implies thaty N [T, T] = 0 for all j €
Jo = J1 U J,. Since for everyj .Jl,VoJ N[ST] # 0 and[T2, T] C [ST] we have
(STI\[T2, TNV, #0forall j € Jy.

Case 2z(T;) = z(T). If we can construct a chain through two boundary local max-
imaL; andL, that also contain$; andT,, then we have just two possibilities:
DL CTiCTCLy

(2) all others.

Each case of the possibility (2) contradicts Theorem 2.8r@torel 1 CT1 C To C
Lo, andLy C Ty € ([ST]\ [To, T]) V4 # O forall j € 4.
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In Section 2.6 we will give an example of the SPLP in which bplagation of a
nonstrict excluding rule we discard the local minimg&)4} of the corresponding
supermodular function. This local minimum is an analogu¢heftrivial SDC for
the corresponding supermodular function.

By applying Theorem 2.6a (respectively, 2.6b) we can dib@dr\ ™! (respec-
tively, 25\S) subsets of intervael,, T] (respectively[S, Si]) because this interval
does notinclude a local maximum of any STC fr¢®iT|. If T, = SandT, = S+
then in case of Theorem 2.6a the interf@-i,T] can be discarded. B =T —i
and$S; =T then in case of Theorem 2.6b the inter{@IT —i] can be discarded.
These two special cases are important because we may exchalesubinterval
of the current interval while we preserve at least one regagive from each STC.
The rules excluding a half subinterval are calfgtine rules

Based on the last special cases of excluding rules, we pgre€smmenin’s Pre-
liminary Preservation (Dichotomy) Algorithm for the maxization of submodular
functions in Section 2.5. Before we present the Dichotomgo#ithm we give in
Theorem 2.7 an alternative proof of the correctness of thpeeial cases of exclud-
ing rules which is based only on Lemma 2.2, the definitions®T& and a submod-
ular functionz. This proof shows that in case of submodular functions tti@iden
of a STC is an insightful notion for understanding the camess of Cherenin’s Di-
chotomy Algorithm. Therefore, it is not necessary to useatadl statements of the
previous section in order to justify both prime rules. In tiext section we present
a generalization and a simple justification of the same rules

Theorem 2.7.Let z be a submodular function @. Suppose thatfdd C SC T C
N and for every k Ji, V3 N[S,T] # 0. Then the following assertions hold.

a. First Prime Excluding Rule (FPER). _

If for some ic T\ S it holds that ¢S+i) < z(S), then[S,T —i]NV{ # 0 for all
j € J1.

b. Second Prime Excluding Rule (SPER). ,

If for some i€ T\ S it holds that ¢T —i) < z(T), then[S+i,T]NV, # 0 for all
j €.

Proof. We prove only part (a). The proof of part (b) is similar.
a. Letz(S+i) < z(S) for somei € T\ Sand letG € V3 N[S,T] for anyj € J;. Then
ScG.
Case 1i € G. From the definition of submodularity applied to the 8ts i and
S+i

2G

—i) i)>2z(GUSHi)+2zS) =
z(G—i)

—1)

—1)

+2S+

—7z(GUSH+i)>2S) —2zS+i)>0=

(G >2Z(GUS+Ii) =2G) = (Gis alocal maximum)
Z(G =2(G )G6V0:>(byLemma22)
G—|€V0:>G—|€VO ST—i]=VsN[ST—i]#0
Case2i¢G. _

i ¢G=GeV N[ST—i]|=VN[ST—i]#0.
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Theorem 2.7a states thatz[fS+i) —z(S) <0 for some € T\ S, then by preserv-
ing the intervallS T —i] we preserve at least one strict local maximum from each
STC, and hence we preserve at least one global maximum fromS3eC containing
a global maximum. Therefore, in this case it is possible tiede exactly the whole
interval [S+i,T] of [S T] from consideration when searching for a global maxi-
mum of the submodular functiaon [S, T| C [0,N]. For example, see Figure 2.8, if
z(0) —z(0+1) > 0, then the intervdK 1},{1,2,3,4}]| can be excluded, i.e., the inter-
val [0,{2,3,4}] will be preserved (FPER). ({1,2,3,4}) —z({1,2,3,4} — 1) > O,
then the intervald, {2,3,4}] can be excluded, i.e., the interyél },{1,2,3,4}] will
be preserved (SPER).

Fig. 2.8 Example of Prime Excluding Rules.

If the prime rules are not applicable it will be useful to dist less than a half
subinterval of the current intervé, T] C [0,N]. In the following section we fur-
ther relax most of the theoretical results presented in teeipus sections of this
chapter with the purpose to show the correctness of all dimjurules and their
generalizations (preservation rules) based only on thaitlefis of submodularity
and the maximum valug [S, T] of the functionz on the interva[S T| C [0, N].
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2.4 Preservation Rules: Generalization and a Simple
Justification

In the following theorem we give an important interpretataf the submodularity
property which is based on two pairs of submodular functialues. For this pur-
pose we introduce anpper (respectively, lower) partitioaf the current interval
[ST] by aninnerverte : SC QC T into two parts|Q,T] and[S T|\ [Q,T] (re-
spectively[S Q] and[S, T]\ [S Q]). In terms of the maximum values of the function
z defined on each of two parts of the above mentioned partiiosyzecial case of
submodularity can be read as eitl&([S,T]\ [Q,T]) + z(Q) > z(S) + z*[Q, T] or
Z([STI\[SQ)+2Q) > Z[SQ +«T).

Here, the both maximal values of a submodular function aed grguments
(vertices) involved in each of the above indicated inedigaliareunknown In
other words, Theorem 2.8 establishes a relationship of tfierehce between
the unknown optimal values of on the two parts of the partition, for example,
([ST]\[Q,T]) and[Q,T] of [S,T] and the corresponding differene€s) — z(Q)
(see the FER in Theorem 2.6); a symmetrical result is obddioethe SER.

Theorem 2.8.Let z be a submodular function on the inter{y@IT| C [0,N]. Then
for any Q such that & Q C T the following assertions hold.

a. Z([STI\[QT])-Z[QT] > S —ZQ).

b.Z([STI\[S Q) -Z[SQ > «T) - ZQ).

Proof. We prove only case (a) because the proof of case (b) is sitndez'[Q, T] =
z(QUJ) with J C T\ Q. Definel = SuUJ. Thenl € [ST]\ [Q,T] sinceQ\SZ I.
We have thatz"([ST]\ [Q,T]) — z(S) > z(I) — z(S) = z(SUJ) — z(S). From the
submodularity o we havez(SUJ) — z(S) > z2(QUJ) — z(Q). Thereforez" ([S T] \
QT —2S) >Z[QT]-2zQ).

Theorem 2.8 is a generalization of Cherenin-KhachaturonNés stating that the
difference of values of a submodular function on any pairrmbedded subsets is
a lower bound for the difference between the optimal valdfesan the two parts
of the partition defined by this pair of embedded subsets.thiberem can be used
to decide in which part of the partitiofiS,T]\ [Q,T]) and[Q, T] of [S,T] a global
maximum ofzis located.

We may represent the partition of intery& T| from Theorem 2.8 by means of
its proper subintervals as follows:

(a) upper partition[ST]\ [Q,T]= | J [ST —i]
icQ\s

and
(b) lower partition[S, T]\ [S Q] = | J [S+i,T].
ieT\Q
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{1,2,3,4

discarded interval

Fig. 2.9 Arepresentation of the upper partition of the inted@&lIT| = [0,{1,2,3,4}] with Q\ S=
{1,2,3}.

Examples of upper and lower partitions in Figure 2.9 and le@u10 are shown.

A disadvantage of representatiofe§ and (b) is a non-empty overlapping of
each pairwise distinct intervals involved in these repmesigons. As easy to see
in Figure 2.11 and Figure 2.12 we can avoid such an overlgppynrepresent-
ing the remaining part$[S,T]\ [Q,T]) and ([ST]\ [S Q]) with a sequence of
“parallel” non-overlapping intervals. For example, théeatience[0,{1,2,3,4}]\
[{1,2,3},{1,2,3,4}] = [{1,2},{1,2,4}] U [{1},{1,3,4}] U [0,{2,3,4}] (see Fig-
ure 2.9 and Figure 2.10), and the differefid 1, 2,3,4}]\ [0,{1,2}] = [{3},{1,2,3}]U
[{4},{1,2,3,4}] (see Figure 2.11 and Figure 2.12).

The sequence of non-overlapping intervals can be creatéuelfpllowing itera-
tive procedure. We will use the valde= dim([U,W)]) of thedimensiorof an inter-
val [U,W] interpreted as the corresponding subspace of the Booleae &p, 1}"
which is another representation of the interi@aN].

If we have discard th&-dimensional subintervalQ,T] in the upper parti-
tion of the interval[S T], then the first non-overlapping intervili, W] is the
k-dimensional subinterval of thé& + 1)-dimensional intervalUs, T] = [Q,T] U
[U1,Wi]. In other words, the first non-overlapping interiidd, W | is thek-dimensional
complement to thék+ 1)-dimensional intervaldy, T| such thafUs, W] = [U1, T]\
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discarded interval

Fig. 2.10 A representation of the lower partition b = {1,2} for the interval [ST] =
[0,{1,2,3,4}] with T\ Q = {3,4}.

[Q,T]. The second non-overlapping intervl,,Ws] is the (k4 1)-dimensional
subinterval of the(k 4 2)-dimensional intervalU,, T] = [U1, T] U [U2, W], and
[U2,We] = [U2, T\ [Uy, T}, etc. Finally,[Ug,Wg] = [Ug, T]\ [U(g_1), T]. The number
g of the non-overlapping intervals in the upper partition dgzi@ ton — k, where
k = dim[Q, T]. The representation of a lower partition by the sequenceoof n
overlapping intervals can be described in similar linegeNbat the above indicated
representation of lower (upper) partition by a sequencenfaoverlapping intervals
has theninimum number of mutually disjoint intervals

For example (see Figure 2.12), the complement intervit®, 3}, {1,2, 3,4}]
is[{1,2},{1,2,4}]since[{1,2},{1,2,4}]U[{1,2,3},{1,2,3,4}] =[{1,2},{1,2,3,4}],
and the complement td1,2},{1,2,3,4}] is [{1},{1,3,4}]. Finally, the comple-
ment to[{1},{1,2,3,4}]is [0,{2,3,4}].

If, in Theorem 2.8, we replad® by S+ Kk in part (a), and) by T —k in part (b),
we obtain the following generalization of the prime rulestst in Theorem 2.7.

Corollary 2.2. Let z be a submodular function on the inter{f@IT] C [0,N] and let
k € T\ S. Then the following assertions hold.

a. Z[ST -k —Z[S+k,T] > z(S) — (S+Kk).

b. Z[S+k T -z [ST—K >2zT) —zT — k).
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discarded interval

Fig. 2.11 The non-overlapping representation of the lower partition parallel intervals
[{3},{1,2,3}] and[{4},{1,2,3,4}].

By adding the conditior(S) — z(S+ k) > 0 to part (a) and the conditiaT) —
Z(T —Kk) > O to part (b) of Corollary 2.2 we obtain another form (see @Garg 2.3)
of two prime rules from Theorem 2.7 for preserving subinéds\containing at least
one global maximum of on [S, T].

Corollary 2.3. Let z be a submodular function on the intery&|T] C [0,N] and
k € T\ S. Then the following assertions hold.

a. First Preservation (FP) Rule.

If 2(S) > z(S+Kk), then 2[S T] = Z[S T — K > Z*[S+k, T].

b. Second Preservation (SP) Rule.

If z(T) > z(T — k), then Z[ST] =z [S+k T] > Z[ST — K.

Proof. a. From Corollary 2.2a we haw®[S T — k] — z*[S+ k, T] > z(S) — 2(S+ k).
By assumptiorg(S) — z(S+k) > 0. Hencez' [S T] = Z*[S T — K > Z*[S+k, T]. b.
The proofis similar.

From the calculation point of view these rules are the sama @akeorem 2.6
but Theorem 2.7 is more powerful than Corollary 2.3. In Tleeo2.7 we preserve
at least one strict local maximum from each STC, and hencelmi@l maximum
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{1,2,3,4

discarded interval

Fig. 2.12 The nonoverlapping representation of the upper partitipnttie parallel intervals
[{1,2},{1,2,4}], [{1},{1,3,4}], and [0, {2,3,4}].

from each STC that contains global maxima. Corollary 2.3 ctétes that we pre-
serve at least one global maximum. However, we can use @oydl.3 for con-
structing some extension of the preservation rules.

For € > 0, we may consider the problem of finding an approximate soiut
J € [ST] such thaz"[ST] < z(J) + ¢; J is called ane—maximumof z on [S T].
The following corollary presents an extension of the rutesf Corollary 2.3 which
is appropriate to the problem efmaximization.

Corollary 2.4. Let z be a submodular function on the intery@IT] C [0,N], and
k € T\ S. Then the following assertions hold.

a. First 6-Preservation @-FP) Rule.

Ifz(S)—2z(S+k) =0 <0,thenZ2[ST] -z [S T —K < —6, whichmeans thd8, T —
k] contains a 6]-maximum ofS T].

b. Second)-Preservation (-SP) Rule.

If z(T) —z(T —k) =n <0, then 2[ST] -z [S+k, T] < —n, which means that
[S+k, T] contains & n|-maximum ofS, T].

Proof. The proof of part (a) is as follows.
Case 1. IfZ'[ST] =z [ST — k] thenZ'[ST —K — Z[ST — k] < -0 or Z*[S,T| —
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Z[ST—K < -6.

Case 2. 12 [S T] = z'[S+k, T], then from Theorem 2.7a follows tha{S T — k] —
Z'[S+kT]>0o0rz[ST—-K —Zz[ST] > 6. Hencez'[ST| -z [ST —k < —6.
The proof of (b) is similar.

2.5 The Preliminary Preservation Algorithm (PPA)

By means of Corollary 2.3 it is often possible to exclude gégpart of[0, N] from
consideration when determining a global maximunean [0,N]. The so called
Preliminary Preservation Algorithm (PPA3ee Goldengoriet al,[66]) determines
the smallest subintervb, T| of [0, N] containing a global maximum af by using
the preservation rules of Corollary 2.3.

We call the PPA thalichotomy algorithnbecause in every successful step it
halves the current domain of a submodular function.

Let [ST] be an interval. For eadhe T\ S, defined* (S T,i) =z(T) — z(T —i)
andd~ (S T,i) = z(S) — z(S+1); moreover, defind,,,, (S T) = max{d" (S T,i) |
i €T\SHLr (ST)=min{r | d7(ST,r) = &}.x(ST)}. Similarly, for6=(S,T,i))
definedn,(ST) =maxd (ST,i)) |[ieT\ShLr (ST)=min{r | d (ST,r)=
Omax(S,T)}. If no confusion is likely, we briefly write =, r™, d~, 8" instead of
I~ (ST), rt(ST), dnax(S T), anddi.(S T) respectively.

Each time that eithe® or T are updated during the execution of the PPA, the
conditions of Corollary 2.3 remain satisfied, and theref(8, T| = z*[U,W] with
[U,W] C [S T] remains invariant at each step of the PPA. At the end of tharidfon
we have that majo™,0 } < 0, and therefore(S) < z(S+i) andz(T) < z(T —

i) for eachi € T\ S. Hence Corollary 2.3 cannot be applied to further reduce the
interval[S, T] without violatingz*‘[S, T] = z*[U,W]. Note that this remark shows the
correctness of the procedure PP(.).

If we replace in the PPA the rules of Corollary 2.3 by those ofdary 2.4
we obtain ane-maximization variant of the PPA. In this case the outputhafd-
PPA will be a subintervalS, T| of [U,W] such thatz‘[U,W] — Z[ST] < & with
postconditiong(S) + € < z(S+1) andz(T) + &€ < z(T —i) foreachi e T\ S.

The following theorem can also be found in [58, 66]. It pra@sdn upper bound
for the worst case complexity of the PPA; the complexity tiotis dependent only
on the number of comparisons of pairs of valueszfor

Theorem 2.9.The time complexity of the PP algorithm procedure is at m@stD

Note that if the PPA terminates with= T, thenS s a global maximum ot.
Any submodular functioz on [U,W] for which the PP algorithm returns a global
maximum forzis called aPP-function

An example of a set of PP-function® is shown in Figure 2.14. Here, for all
vertices without prespecified valuesaf) can be assigned an arbitrary value@f
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Procedure PPU,W, S T)

Input: A submodular functiorz on the subinterval
[U,W] of [0,N]

Output: A subinterval[S, T] of [U,W] such that
Z[ST] =2z [U,W], z(S) < z(S+1i) and
Z(T) <z(T —i)foreachie T\ S

begin
S«U; T<+W,
Step 1if S=T

then goto Step 4;
Step 2: Calculaté™ andr;
if 37 > 0 (Corollary 2.3b)
then begin call PPG&+r*,T;ST)
goto Step 4
end;
Step 3: Calculaté— andr—;
if 5~ > 0 (Corollary 2.3a)
then begin call PP§T —r—;ST)
goto Step 4
end;
Step 4:
end;

Fig. 2.13 The Dichotomy (Preliminary Preservation) Algorithm

such that each corresponding set functzn € & defined on the whole weighted
graphG will be submodular. For example, if for all vertices withquiespecified
values ofz(1) in Figure 2.14 we set(l) = a, then for each real valued constant
a: 2 < a< 3the corresponding functianis a submodular PP-function. It means
that by applying the Dichotomy algorithm we have found anrogt solution to the
PSMF for all PP-functions defined by a constant

Corollary 2.5 describes in terms of STCs some propertiesef/ariabless and
T during the iterations of the PPA. A representatiec Vg with j € J; which
will be preserved through all iterations during the exemuif the PPA by FPER
(LLeVIN[ST —i]#0with j € J;) or SPER [ € Vg N[S+i,T] # 0 with j € &)
is called aPP-representativef STC Hé with j € J; (see Theorem 2.7).

Corollary 2.5. If z is a submodular PP-function oy, W] C [0,N], then at each
iteration of the PPA S Njey, L and T2 Ujey, L1

Proof. Theorem 2.7a says that#S+i) — z(S) < 0 for somei € T\ S, then by
preserving the interval]ST —i] we preserve at least one PP-representalii\/e
from each STO—I({, and hence ¢ L{. In case of Theorem 2.7b we preserve PP-
representativeb{ such that € Li forall STCs in[S, T]. Thereforej € SC mjelei
andT D U,-EJlL{.

The following theorem gives a property of PP-functions imte of STCs.
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discarded by {1,2,3,4} discarded by
FPER,, =2 FPER,, =4

discarded by
SPER[] =3

discarded by
SPERy{ =1

Fig. 2.14 The idea of the Dichotomy algorithra{{1,3}) = 4 is the global maximum for all sub-
modular functions from the subclass &f.

Theorem 2.10.If z is a submodular PP-function ojy,W] C [0,N], then[U, W]
contains exactly one STC.

Proof. Fromﬂjele{ 25=TD> U,-EJIL{ we obtainﬂjele{ = U,-EJIL{ or L{ =L
forall j € J;.

Note that not each submodular function with exactly one Sm(DoN] is a PP-
function. For example, leN = {1,2,3} and consider the submodular functian
defined byz(l) = 2 for any| € [0,{1,2,3}] \ ({0} U{1,2,3}) andz(I) = 1 for
I € ({0} U{1,2,3}). The vertex set of the unique STC defined by this function
can be represented Hy1},{1,2}]U[{1},{1,3}JU[{2},{1,2}] U [{2},{2,3}] U
[{3},{1,3}]U[{3},{2,3}]. The PPA terminates witf5 T] = [0,{1,2,3}] and so,
zis not a PP-function.
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2.6 Non-Binary Branching Rules

Usually in BnB type algorithms we usésnarybranching rule by which the original
set[S T] of feasible solutions will be split by an eleméninto two subset$S—+
k,T] and[S, T —Kk]. Let us consider an intervé&b, T| for which the postconditions
of the PPA are satisfied, i.ez(S) < z(S+1i) andz(T) < z(T —i) for eachi € T \
S. Thus the PPA cannot make the inter{@|T| smaller. By using Corollary 2.6
we can sometimes find two subintervd®T — k;] and [S, T — kp] such that the
postconditions of the PPA algorithm for each of these irgksrare violated.

Corollary 2.6. Let z be a submodular function on the interf@IT] C [0,N] and let
ki,ko € T\ S with kk # kp. Then the following assertions hold.

a. max{z*[S,T — kl],Z*[S,T — kz]} —Z*[S-l— k1+k2,T] >

Z(S) — z(S+ki+ k).

b.max{z* [S+ki, T],Z' [S+ ko, T]} = Z*[S T\ {ke, ko }] >

2AT) ~ 2T\ {ki.ke})-

Proof. We prove only part (a) because the proof of part (b) is simit@placeQ by
S+ki+kzin Theorem 2.8a. The; ([ST]\ [Q,T]) = Z'[Q,T] = Z'(Uicqs[S T —
i) -2[QT]=

Z([ST—kJU[ST —kp]) —Z*[S+ ki + ko, T| =

max{z‘[S T —ki],Z'[ST — ko] } — Z[S+ ki + ko, T] >

Z(S) —z(Q) = ZS) — LS+ ki + k).

In the case thax(S) — z(S+ ki + k2) > 0 we can discard the intervgb+ kq +
k2, T] and continue the search for an optimal solution by applyiveg RPA sep-
arately to each remaining intervg®, T — k] and [S,T — k], which are obtained
by subtracting an elemet from T. The symmetrical case will be obtained if
Z(T) —z(T \ {ky,k2}) > 0. Corollary 2.6 can easily be generalized to the case of
m-ary branching by elemenks, ky, ...,.kmwith m<|T\ §.

We conclude this section with a simple plant location exaniarrowed from
Boffey[18]. The data are presented in Table 2.1.

Location Delivery cost to site

il fi |i=1{j=2|j=3]|j=4|j=5
1 7 7 115]110| 7 | 10
2 3 10| 17| 4 | 11| 22
3l 3 16| 7 6 | 18 | 14
4 6 11| 7 6 | 12| 8

Table 2.1 The data of the SPLP.

For solving the SPLP it suffices to solve the problem {mfh) | | € [0,N]} =
Z[0,N] = z(G) with N = {1,2,3,4}, m=5 and
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m
)=y fi+ Y ming;.
% ! JZ:L icl N

As usual for the SPLF; is the fixed cost of opening a plant at locatiorg;
is the cost of satisfying the demand of customday planti, andz(l) is a super-
modular function. Note that if in the definition of a submaahfunction we change
the sign =" to the opposite sign<” then we obtain the definition of a supermod-
ular function. For the sake of completeness, let us showztatof the SPLP is
supermodular.

Lemma 2.3.The objective ) of the SPLP is supermodular.
Proof. According to Theorem 2(1) a function is supermodular if

z(A)+2z(B) < z(AUB)+2z(ANB), VA BCN.
We use the following representation of this definition

2(A) +z(B) — 2(AUB) +2(ANB) < 0, YA,BCN.

Substituting
m
Z(1)=% fi+ Y ming;
% JZl icl
gives
m m
fi + mincij-l-EBfi-l- minc;j —
iezA ng €A i€ 121 1€B
m m
fi—Z.min Gij — ; fi — _min Cij =
ie;uB i= icAUB icAB ]leeAmB
[zAfi—f—EBfi— fi — fi]+
i€ i€ icAUB icANB
m . . . .
2, (minos = i)+ (e, — mincy)
Note that

S Hi+Sf— § fi— § fi]=0,
i;l igBI ieuBI ieﬂBI

hence it is enough to show that for egck 1,...,m

minc; — min ¢jj) + (mincj; — min ¢;j)] <O0.
[(ieA g ieAuBC”) (ieB G~ s )] <

Let us consider two cases. Case 1. mingCij = Caj for somea € A. Then
MiNicaCij = MiNicaue Gij @and Mineg Gij < MiNjicanBGij.

Case 2: mipaugGij = Cpj for someb € B. Then minegGjj = MinicausGij and
MiNicaGij < MiNicansGij-



2.6 Non-Binary Branching Rules 45

)z ()3

(56){1}

discarded by non-

binary branching rule

) ‘ (50
discard:; SP rule
(=)o '

Fig. 2.15 The SPLP example: illustration of non-binary branchingrul

We use this example for illustrating that the supermodulacfion defined by
data from Table 2.1 is not a PP-function. Of course, here waarttee corresponding
definition of a PP-function obtained by replacing the deabnis of local, global
maxima of a submodular function by the local, global mininfiasupermodular
function. Itis easy to check that this supermodular funchias two trivial analogues
of STCs:{1,4}, {1,3} and one trivial analogue of SD§2,4} (see Figure 2.15).

After the first execution of Step 3 of the PPA, we have {Baf]| = [{1},{1,2,3,4}],
because®* = 7({1,2,3,4}) — z({2,3,4}) = 0 andr* = 1. Together with interval
[{0},{2,3,4}] the PPA has discarded the trivial SO, 4}. After the second exe-
cution of Steps 2 and 3 the PPA terminates with intef8ar| = [{1},{1,2,3,4}],
because all postconditions of the PPA are satisfied. Hehtefunction is not a
PP-function. A global minimum of this SPLP can be found by legagpion of the
following analogue of the inequality from Corollary 2.6b:

min{z*[S+ky, T],Z*[S+ ko, T|} = Z*[S T\ {kg, ko }] <
2T) — AT\ {ki.kz}).

Let us substitute all possible paif;,k} into the right-hand side of this in-
equality withS= {1} andT = {1,2,3,4}. Then, we have that oni({1,2,3,4}) —
7({1,2,3,4} — {3,4}) =52—53< 0.Hence, we can discard the inter{gl},{1,2,3,4} —
{3,4}] and we may continue to fing'[{1},{1,2,3,4}] by solving two remaining



46 2 Maximization of Submodular Functions: Theory and Aidons

subproblemg*[{1,3},{1,2,3}] andz*[{1,4},{1,2,3,4}] defined on “parallel” in-
tervals[{1,3},{1,2,3}] and[{1,4},{1,2,3,4}] (with disjoint set of feasible solu-
tions) instead of two corresponding subprobleniS+ki, T] = z°[{1,3},{1,2,3,4}]

andz [S+ko, T] = z'[{1,4},{1,2,3,4}] which have the non-empty intersection on
[{1,3,4},{1,2,3,4}]. Each of these subproblems can be solved by the correspond-
ing analogue of the PPA.

2.7 Concluding Remarks

We have considered a submodular functiodefined on the Boolean hypercube
to which we can apply a classic theorem of Cherenin thist quasiconcave on
any chain that intersects a local maxima component. Thidtreaables a clearer
understanding of the structure of a submodular functioeims of components of
the graph of local maxima. Specifically we may state that eachponent of the
graph of local maxima is a maximal connected set of intenwélsse end points are
lower and upper local maxima. Cherenin’s theorem providestication of “the
method of successive calculations”. This method was sstdésapplied to solve
problems arising in railway logistics planning (see Cher¢a7], [28], Petrov and
Cherenin [118]), and for constructing BnB type algorithresg Khachaturov [89,
90], Frieze [46], Alcouffe and Muratet [3], Goldengorin [5&/, 60, 61, 62, 63, 64],
Goldengoriret al.[66], Goldengorin and Ghosh [72]) for solving a number of NP-
hard problems.

We have shown that if the Dichotomy algorithm (PPA) termésavithS=T
then the given submodular function has exactly one strictpament of local max-
ima (STC). Hence the number of subproblems created in a braitcout bounds
type algorithm, which is based on the Dichotomy algoritham be used as an upper
bound for the number of the STCs. In a similar way, an uppentdar the number
of all components (STCs and SDCs) by using strict excludirgsrcan be calcu-
lated. This information can be used for complexity analysigrms of the number
of local optima for a specific class of problems arisen in ficac(computational
experiments).

We next proposed a generalization of Cherenin’s excluditesrgiven by Theo-
rem 2.8 which provides implicit enumeration bounds for airsive implementation
of any BnB procedure incorporating the Dichotomy algoritfrhis generalization
is useful in two respects. Firstly it is suitable for usetoptimalprocedures which
obtain an approximate global maximum within specified baui@kcondly the the-
orem allows the derivation of alternatives to the prime eduig rules by which
we are able to discard subintervals of smaller cardinatignthalf original subin-
terval. We show that the remaining part of the current irdkoan be represented
by a set of subintervals, some of which may include just orietstomponent. In
other words, we try to prepare the necessary conditionshimDtichotomy algo-
rithm to terminate on each subinterval. Moreover, Theore®ni€ based only on
the definition of the maximum value of PMSF for an interval@fN], and relaxed
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Cherenin-Khachaturov’s theory presented in Sections 222a3 (which is based
on notions of monotonicities on a chain, local and global imax strict and saddle
components in the Hasse diagram).

Corollary 2.2 can be considered as the basis of our Data &orge(DC) algo-
rithm presented in the next chapter. It states that if ammatdS T] is split into
[ST—K and[S+k,T], then the difference between the submodular function galue
Z(S) andz(S+ k), or between the values afT) andz(T — k) is an upper bound
for the difference of the (unknown!) optimal values on the tsubintervals. This
difference is used for ‘correcting’ the current data (valoéa submodular function
2) in the DC algorithm. In the next chapter our computatiorxpleziments with the
Quadratic Cost Partition Problem show that we can subsignteduce the calcu-
lation time for data correcting algorithms [59, 66] by resiue application of our
main theorem.

An interesting subject for future research is the invesiigeof the computational
efficiency ofm-ary branching rules (see Corollary 2.6) for specific proigevhich
can be reduced to the maximization of submodular functions.

Another purpose of this chapter is to present our main rgg8lt which can
be stated as follows. For any partition of the current Hasgadisagram(S, T]
spanned on a pair of embedded subses®C QC T C N =1{1,2,...,n} into
two parts eithefST]\ [Q,T] and[Q,T] or [ST]\ [S Q] and[S Q] defined by an
inner subse from this subdiagram, the difference of two correspondimgct
tion values eitheg(S) — z(Q) or z(T) — z(Q) is a lower bound for the difference
between the unknown(!) optimal values eitt@&([ST|\ [Q,T]) — Z*([Q,T]) or
Z([STI\[SQ]) —Z([S Q]), respectively, of the submodular functiariThe main
result was successfully used as a base of Data Correctiny &[@Grithms for the
maximization of general submodular functions and its sgerases, for example,
the quadratic cost partition and simple plant location pgots (which is a special
case of minimization a supermodular function). Chereniixsluding Rules, the
Dichotomy Algorithm and its generalization with the newtheching rules are easy
corollaries of our main result. The usefulness of our newthéng rules is illus-
trated by means of a numerical Simple Plant Location Proleeample.






Chapter 3

Data Correcting Approach for the Maximization
of Submodular Functions

The Data Correcting(DC) Algorithm is a recursive BnB typgaalthm, in which
the data of a given problem instance are ‘heuristicallyexiad’ at each branching
in such a way that the new instance will be as close as pogsilpelynomially
solvable and the result satisfies a prescribed accuracyiffieeence between op-
timal and current solution). The main idea of the data caimgapproach for an
arbitrary functiorez defined on a seéscan be described as follows (see e.g., Golden-
gorinet al.[66]). Lety belongs to a polynomially solvable class of functions which
is a subclass of a given class of functiadefined also o1, and let

p(zy) = max{|z(s) ~y(s)| : s€ S}

be the proximity measure. If we denote the maximal valueg afidy on S by
Z*(S) = z(s;) andy*(S) = y(sy) then an analogue of Theorem 1.2 is read as follows.

Theorem 3.1.

1Z(§ -y (S <pzY)

Proof. If Z(S) > y*(S) thenz'(S) —y*(S) = [Z'(S) — Y (S| = 2sz) —¥(§)) < Zs) —
¥(&) =2(s;) —¥(s7)| < p(zy)- Otherwisez'(S) <y*(S), we havey*(S) —z(S) =
iy(()) ((??I=If‘()) Y (S =¥(s) —2s) <¥(sy) —2sy) = y(sy) —2(s))| =
Z

Let us remind that we assume an efficient (polynomial) comguf the value of
p(zy). In general if the problem of finding'(S) is intractable then the computing
of p(zy) is also intractable. In this chapter we replace the computfrintractable
value ofp(zy) by computing an upper bound pfz y) which is tractable and based
on the so calledorrecting rules

In this chapter the Data Correcting (DC) algorithm is apgplie determining
exact or approximate global maxima (respectively, miniofaubmodular (respec-
tively, supermodular) functions. The algorithm is illegd by an instance of the

49
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Simple Plant Location Problem (SPLP). The computatiorallts, obtained for the
Quadratic Cost Partition Problem (QCP), show that the D@rétlym outperforms a
branch-and-cut algorithm, not only for sparse graphs tad fdr nonsparse graphs
(with density more than 40%) often with speeds 100 time®fast

3.1 The Main Idea of the Data Correcting (DC) algorithm; an
extension of the PPA

Recall that if a submodular functianis not a PP-function, then the PP algorithm
terminates with a subintervg®, T] of [0,N] with S# T that contains a maximum of
zwithout knowing its exact location if§, T]. In this case, the conditions

6" <0 forieT\S (3.1)

0 <0 forieT\S (3.2)

are satisfied at termination of the PP algorithm. The basia @f the DC algorithm
is that if a situation occurs for which both (3.1) and (3.2)dhehen the data of the
current problem will be ‘corrected’ in such a way that@rectedunctiony violates
at least one of the conditions (3.1) or (3.2).

In this section we will restrict ourselves to the situation Which the submod-
ularity of the corrected function is easy to prove (see Guigein et al. [66]).
Hence a situation is studied for which there is an elemen® \S such that, ei-
thery(T —i) < y(T), ory(S+1i) < y(S) holds. Now Corollary 2.3 can be applied
again, and we are in the situation that the PP algorithm cappked. For all pos-
sible elements we try to choose one for which the correction procedure raaist
a solution within the prescribed boumgl If such an elementdoes not exist, we
choose an arbitrarye T\Sand branch the current problem into two subproblems,
one on[S+i,T] and one offS, T —i]. We should in any case find answers to the
following questions:

- How should the difference between the values of a globalimam of the
corrected and the uncorrected functions be estimated hamddoes this difference
depend on the specific corrections?

- How should the above mentioned difference be decreaseasi it does not
satisfy the prescribed accuragy?

The answers to these questions can be found below. In ordereterve the
submodularity we will use the following correcting rules.

LetDC SCT CN,andr™, r~ € T\S Moreover, ley be a supermodular function
on[0,N]. For eacH € [S T] define the following two correcting rules.

Correcting Rule 1

_fz()+ T, ifl € [ST—rt];
y(h = {z(l), otherwise
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Correcting Rule 2

N — Z()+ o ,ifl €[S+r,T];
()= {Z(S), otherwise

It can be easily seen thatfis submodular on a certain interval, then sg.is
An extension of the PP algorithm is based on the statemeritsecfollowing
lemma.

Lemma 3.1.Let z be a submodular function on the interV@IT| C [0,N] and let
i € T\S. Then

a.fo” =2z(S)—z(S+i)>0and Z[ST—i]—zA) <y<eg, thenZ[ST]—-2zA) <
y<e.

b.1fd" =2(T)—2zT—i)>0and Z[S+i,T| —z(A) <y<eg, thenZ[ST]—2z(A) <
y<e.

C.lf—e<d =29 —zS+i)<0and Z[ST —i|—zA) <y< e+, then
z[ST|—zA)<y-0 <e.

d. If —e< 0" =(T)—2zT —i) <0, and Z[S+i,T]—z(A) <y< e+ ", then
Z[ST]—z(A)<y-9d"<e.

Proof. The proof of (a) is as follows. Frodd— > 0 and Corollary 2.3a we obtain
Z[ST]=Z[S T —i]. Hencez* [ST]| —z°(A) =Z*[ST —i]— z*(A) < y < €. Since
the proof of (b) is similar to that of (a) we conclude with a girof (c).

Fromd~ < 0 and Corollary 2.4a we obtaii[S,T] - Z*[ST—i] <d orz [ST] <
Z[ST—i]—0 orz[ST]—z(A) <Z'[ST—i]-0 —Z(A)<y—90 <€+ —
0 =¢.

The following theorem defines the branching step, and showsacurrent value
of y can be decreased.

Theorem 3.2.Let z be an arbitrary function defined on a finite set S and let S
UtepS Withmax{z(A) | A € S} =7 (S), fort e P={1,...,p}. Then for any >0
the following assertion holds.

If *(S) — z(At) < % < € for someA; € S and for all te P,

then Z2(S) —max{z(A;) |t € P} <max{z(A&)+ ¥ |t € P} —max{z(A) [t € P} =
y<max{y |teP}<e.

Proof. Z(S) —max{z(A) |t € P} = max{z*(S) |t € P} —max{z(A) |t € P} <
max{z(A)+ 1 [t € P} —maxX{z(A) |t e P} = y<max{z(A)|teP}+max{y |te
P} —max{z(A) |t € P} =max{y |t e P} <e.

Note thatz need not be submodular in Theorem 3.2. It is clear from thefpro
of Theorem 3.2 thay is independent on the order in which we combine pairs of
{Z()‘t)v M}

Let us show now thay may attain maxy | t € P}. For the sake of simplicity, in
the case of binary branching, Theorem 3.2 can be formulatéallaws. IfZ*[S, T —
K—z(A7) <y <eg andz’ [S+k T]—zA") <y" <g, forsomer A" € [O,N]
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and somg/~ andy*, thenmaxz(A~)+y ,zAT)+yt} —max{z(A7),z(A")} =
y < maqy .y} <e.

Now we can construct an example for whigS, T] = max{z(A ~)+y ,z(A ")+
y™}, and therefore we can assert that thén Theorem 3.2 is the best possi-
ble. For example, suppose that= 12,z(A~) =15,y =8, Z'[ST — k] = 23,
zZ(A*T) =13,y" =9, andz’[S+k T] = 21. Thenz‘ [ST —k — (A ~) = 23— 15=
8<y =8<¢ andz [S+kT]—2zA")=21-13=8< y" =9 < &. More-
over,z [ST]=23=maXxzA ") +y ,z(A")+y"} = max15+8,13+9} = 23
with max{z(A~),z(A ")} = max{15,13} = 15, andy = max{15+ 8,13+ 9} —
max{15,13} =8 < max{y ,y"} = max{8,9} = 9.

For the sake of completeness we prove the “minimizationiavdarof Theo-
rem 3.2. Let us consider the following problem:

min{z(A) | A € S} =Z(9).

Theorem 3.3.Let z be an arbitrary function defined on a finite set S and let S
UtepS Withmin{z(A) | A € §} =Z(S), fort € P={1,...,p}. Then for any > 0
the following assertion holds.

Ifz(A&) —Z°(S) < % < & for somei; € S and for all te P,

thenmin{z(A) | t € P} —Z(S) < min{z(A;) |t € P} —min{z(A) — % |t € P} =
y<max{y |teP}<e.

Proof. min{z(A;) |t € P} — Z(S) = min{z(A;) |t € P} —min{z*(]) |t € P} <
min{z(A;) | t € P} —min{z(A) — % |t € P} = min{z(A) | t € P} + max{y +
[—z(A)] |t € P} <min{z(A) |t € P} +max{y |t € P} + max{[—z(A)] |t € P} =
min{z(A) |t € P} + max{y |t € P} —min{[z(A)] |t € P} = maxX{y | t € P}.

The main step of the DC algorithm, to be formulated in Sec8adt is called
Procedure DC(). The input parameters of Procedure DC() mratarval [S,T],
and a prescribed value @f the output parameters afeandy, with A € [0,N]
andz'[ST|—z(A) < y< ¢e. The value ofy is an upper bound for the accuracy of
Z[ST]—2z(A), and may sometimes be smaller than the prescribed accardtye
procedure starts with trying to make the interf@&lT] as small as possible by using
Corollary 2.3(a) and 2.3(b). If this is not possible, theeingl is partitioned into two
subintervals. Then, with the help of Lemmas 3.1(c) and 3.t (day be possible to
narrow one of the two subintervals. If this is not possildhe, Procedure DC( ) will
use the following branching rule.

Branching Rule: Fork € argmin{min[d~ (S, T,i), 67 (S T,i)] | i € T\S}, split
the interval[S, T] into two subinterval$S+k, T],[S, T — k], and use the prescribed
accuracy of [S,T] for both subintervals.

Our choice for the branching variabke= T\Sis motivated by the observation
that 3" (ST,rt) < 07(ST —kr*)andd (S T,r7) < (S+k,T,r™), follow-
ing straightforwardly from the submodularity af Hence, the values af*, &,
for givenr™, r—, are seen to increase monotonically with successive biageh
Our choice is aimed at making the right hand sidesd~ as large as possible
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after branching (and if possible non-negative), with theppge of increasing the
‘probability’ of satisfying the preservation rules (seer@tary 2.3). Moreover, this
branching rule makes the upper bound for the differencedatvay-maximum and

a global maximum as small as possible.

Note that in Procedure DC@) needs not be in the intervg®, T]. Notice that in
most BnB algorithms a solution for a subproblem is searchsié the solution
space of that subproblem. From the proofs of Lemma 3.1 andréhe3.2 it can
be seen that this is not necessary here. For any prescribechage the Procedure
DC() reads now as follows.

ProcedureDC(S T, €;A,y)
Input: A submodular functiorz on the intervalS, T], € > 0.
Output: A €[0,N] andy > 0 such thaz*[ST] —z(A) <y<e.
begin Step 1if S=T
then begin A ;=S y:=0;
goto Step 7;
end
Step 2: Calculaté™ andr™;
if ot >0
then begin call DC(S+r+,T,&;A,y);
{Lemma 3.1B goto Step 7;
end
Step 3: Calculaté ™~ andr—;
ifo- >0
then begin call DC(S T —r—,€;A,y);
{Lemma 3.14 goto Step 7;
end
Step 4if 6 < ¢
then begin call DC(S+r",T,e—0%;A,y);
y:=y+0" {Lemma 3.1¢;
goto Step 7;
end
Step 5ifd— <¢
then begin call DC(ST—r",e—307;A,y);
y:=y+0 {Lemma3.1¢;
goto Step 7;
end
Step 6: Seleck € T\S(Branching Rule)
call DC(S+k, T, ;A" y")
call DC(ST -k, gA7,y)
A :=argmaXz(A~),z(A ")} {Theorem 3.2
yi=max{zAT)+y",zA7)+y }—max{z(AT),z(A ")}
Step 7{Z"[ST]—z(A) <y < &} (with z(A) = max{z(A "),z(A ")})
end;
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Fig. 3.1 Procedure DC.

In Section 3.3 we will illustrate this algorithm by solving astance of the Sim-
ple Plant Location Problem.

3.2 The DC Algorithm (see Goldengorinet al.[66])

The DC algorithm is a BnB type algorithm, and is presented gecarsive proce-
dure.

The Data Correcting Algorithm

Input: A submodular functioz on [0,N] and a prescribed accuragy> 0.
Output: A € [0,N] andy > 0 such tharz*[0,N] —z(A) <y < &.

begincall DC(O,N, &; A, y)

end;

The correctness of the DC algorithm is shown in the followtimgorem.

Theorem 3.4.For any submodular function z defined on the intef@aN] and for
any accuracygp > 0, the DC algorithm constructs an elemehte [0,N] and an
elementy > 0 such that Z[0,N] — z(A) < y < &.

Proof. We only need to show that each step of the DC algorithm is cbrilehe
correctness of Step 1 follows from the fact thaSi= T then the intervalS T]
contains a unique solution andsatisfies the prescribed accuragy(i.e.,z*[0,N] —
zZ(A)=2(A)—2z(A) =0< y < ). The correctness of Steps 2 and 3 follows from
Lemma 3.1b and Lemma 3.1a, respectively; the correctne®ps 4 and 5 follows
from Lemma 3.1d and Lemma 3.1c, respectively; the corrastoéStep 6 follows
from Theorem 3.2. So, if the Procedure DC() is called withatguments 0N, and

&, then, when it is finishedz [0,N] — z(A ) < y < & holds.

It is possible to make the DC algorithm more efficient if wehfan subprob-
lems by using upper bounds. For subproblems of the forr{zt) | A € [ST]} =
Z*[S T], the following lemma, due to Khachaturov [89] and Minoux$],rovides
two upper bounds.
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Lemma 3.2.1f z(S) —z(S+i) < 0and 4T) —z(T —i) < Oforalli € T\ S, then

uby = z(S) — 2\ [2(S) —z(S+i)| = Z[ST],
icT\s

and
ub, = z(S) — 2\ [Z(T)—2z(T -] >Z[ST|.
ieT\S

Proof. We will prove onlyub; because the proof afb, is similar. From Theo-
rem 2.1(iv) we have thag(T) < z(S) — Jicm\g[z(S) — z(S+1i)] for SC T C N. Let
X be a setifS T] such thag(X) = z*[S, T]. Then als@(X) < Z(S) — Yiex\s[Z(S) —
Z(S+1)] < ZS) — Jien\dlAS) — 2(S+1i)] > Z*[ST] sincez(S) — z(S+i) < 0 for all
ieT\S

We next explain how to incorporate such an upper bound ire®i@ algorithm.
During the running of the DC program we keep a global vari#bie the subset of
N that has the highest function value found so far. Then we elude a Step 3a

after Step 3 in Procedure DC(). Step 3a: Calculdte= min{uby,ub,};
if ub—z(B)<e
then beginA := B;y:=ub—z(B);
goto Step 7;
end

We will refer to the upper boundb defined in Step 3a as the Khachaturov-
Minoux bound. Itis obvious that andy satisfyz*[S,T| —z(A) <ub—z(B) =y <e.
Note that in this caseg is, in general, not an element of the inter{@IT].

The DC algorithm can also be used as a fast greedy heuristite prescribed
accuracye is very large, branchings never occur at Step 6; the intd&dl] is
halved in every recursive call of the algorithm ur8i= T, and a ‘greedy’ solution
is found. Moreover, the calculated accuracgives insight into the quality of the
solution obtained, as it is an upper bound for the differénaglue of the solution
obtained and an optimal solution. Note that, thanks to SPepisd 3, the ‘greedy’
solution found by the DC algorithm when a larges specified, is in general bet-
ter than one obtained by a standard or accelerated greednthig like the ones
described in Minoux [105].

3.3 The Simple Plant Location Problem; an lllustration of the
DC Algorithm

Recall that the objective function of SPLP is supermoddiae DC algorithm is
used for the determination of a global minimum (O-minimumd a 2-minimum for
the SPL problem of which the data are presented in Table 2el§gsction 2.6).
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S=0,T={1,2,3,4},e=0
y:=0,z(A) :=47

Step2,0t=0rt=1

Y

S={1},T={1,2,3,4},e =0
y:=0,z(A) =47

/\Step 6k=3

S={1,3},T ={1,2,3,4},e =0 S={1},T ={1,2,4},e =0
y:=0,z(A) :=47 y:=0,z(A):=48

Step 30 =4, =4 Step 20" =4rt =4
Y Y

S={1,3},T=
y:=0,2(

O

{1,2,3},¢ S={1,4},T ={1,2,4},e =0
M) =47 y:=0,z(A):=48

Step3,0 =0, =2 Step30 =1r =2

Y Y

S={1,3},T ={1,3},¢ S={1,4},T ={1,4},e =
y:=0,z(A) :=47

y:=0,z(A):=48

Fig. 3.2 The recursive solution tree fap = 0.

The recursive solution trees for the casgs= 0 andgy = 2 are depicted in Fig-
ure 3.2 and Figure 3.3, respectively. Each subproblem ieesepted by a box in

S=0T={1234}e=2
y:=1,0(A):=48

Step2,6" =0,r" =1

Y

S={1}.T={1234},e=2
y:=1,2(A):=48

Step4,6t =1t =2

Y

S={1,2},T={1,234},e=1
y:=0,z(A):=48

/\Step 6k=3

S={1,23}T={1,234}e=1 S={1,2},T={1,24},e=1
y:=0,z(A):=48 y:=0,z(A):=49

Step 3,0 =41 =4 Step 20t = —4,rt =4

Y Y
S={1,23}T={1,23},e=1 S={1,2,4},T ={1,24},e=1
y:=0,z(A):=48 y:=0,z(A):=49

Fig. 3.3 The recursive solution tree fap = 2.
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which the values of the input and the output parameters ay@rshAt each arc
of the trees the corresponding steps of the Procedure DE(ndrcated. In Fig-
ure 3.2 the prescribed accuragy= 0 is not yet satisfied at the second level of the
tree, so that a branching is needed. In the casg ef 2, the DC algorithm applies
the branching rule at the third level because after the sktwel the value of the
current accuracy is equal to £ € 1). An improved version of the DC algorithm
applied to the SPL problem is presented in Goldengorin €f68] and based on the
pseudo-Boolean approach to the SPLP (see Chapter 4 in i3.bo

3.4 Computational Experiments with the Quadratic Cost
Partition Problem (QCP) and Quadratic Zero-One
Optimization Problem: a Brief Review

The Quadratic Cost Partition (QCP) problem can be descalddllows (see Sec-
tion 2.2 and Leet al.[102]). Given nonnegative real numbeysand real numbers
pi withi,j € N={1,2,...,n}, the QCP is the problem of finding a subSst N

such that the function 1
(=73 pi—5  Gj

will be maximized. As a special case we have the Max-Cut Rrai{MCP), to be
described as follows. Consider an edge weighted undiregtephU (N, E) with
edge weightsvij > 0, ij € E. Define a cutd(T) as the edge set containing all the
edges with one end il and the other end iN \ T. Define further the weight of a
cut as the sum of the edge weights in the cut. The MCP is thdegobf finding a
cut, and thus a partition, with the maximum possible weighe MCP is a special
case of the QCP, namely take

pi =) wij anddij = 2wjj.
2

An instance of the QCP is defined by an integer positive n, toved real numbers
R,i=1,..,n, and a symmetric matriQ = ||q;j||, i,j = 1,...,n with nonnegative
entries.

The QCP and the MCP arise in many real world applicationg §86é references
within) such as capital budgeting, time tabling, commutidcascheduling, statisti-
cal physics, design of printed circuit boards and VLS| degg&ge also Barahoret
al. [8], Carter [24] and Leet al.[102]). Since the MCP is a special case of the QCP,
the QCP is also NP-hard, Karp [87]. Arrapproximation algorithm is a polynomial-
time algorithm that always finds a feasible solution with &jective function value
within a factora of optimal (Williamson [135]). The best knowa-approximation
algorithm for MCP giveso = 0.87856 (Williamson [135]). On the negative side
though, Hastad [82] has shown that there can be.8¢13approximation algorithm
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for MCP unles$® = NP. In other words, to solve the MCP with prescribed accuracy
within 5.9% is an NP-hard problem.

The earliest formulation of the QCP (see Hammer [79]) in 'eohan uncon-
strained quadratic zero-one programming problem (QZOtREifollowing pseudo-
Boolean formulation:

n 10 o n
maX(iZi PiXi — Ei;jglq”XqXJ | xe {07 1} ).

Sincex? = x; we can assume that the diagonal®# ||qj; || is zero.

We would like to make an important remark: the equivalendgveen QZOP
and the MCP has been pointed out in Hammer [79] (see also Baaah al. [8]).
Since the MCP is a special case of the QCP, the QZOP and the fe@E@@ivalent
also. It means that in quadratic time for each instance oQHAOP we can find an
instance of the QCP such that they have the same sets ofléesaslibtions and the
same values of densities. We will use this remark as a maiivaf the comparabil-
ity of our computational experiments with the QCP instarexed either QZOP or
MCP instances reviewed below through the values of dersifithe corresponding
instances (see Goldengorin and Ghosh [72]).

A mixed-integer programming (MIP) formulation can be founéadberg [113].
In this formulation the quadratic term is replaced by a Ime@e and a number of
linear constraints:

n 1 n n
max(y pixi— aijVij | i +x—vij <1;
2PX32,2,

fori,j=1,...n; xe {0,1}", y e {0,1}™").

Another MIP formulation is given in Leet al. [102]:

n
max(zipixi—)\ A > > ajit+x—1)
i= (i,j)€E(T)Ud(T)

forT CN;x€ {0,1}",A >0)

where
E(T)={(@,j)|ieT, jeT, g >0}

and
O(T)={(,]) [T €T, j€N\T, gj > 0}.

An advantage of the latter formulation over Padberg’s fdation [113] is a
smaller number of variables, although an exponential nunolbeconstraints is
required. The exponential number of constraints makes [osrible to solve
the full formulation for large instances. In order to ovar@this difficulty Lee
et al. [102] start with only a small subset of the vertex set conmstsa(A >
> (i.j)eE(M)us(T) Gij (X +Xj — 1)) and generate violated ones as soon as they are
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needed. Therefore they need to solve the problem of reciognizolated con-

straints, i.e. a separation problem for the vertex set caim$$ in their branch and
cut algorithm. The separation problem is a typical part efloch and cut algorithms
based on the polyhedral approach in combinatorial optitiimaBoros and Ham-
mer [21] have shown that the corresponding separation @nubhre polynomially
solvable for a wide class of QZOPs.

The methods of computational studies of the QZOP can befitakmto the fol-
lowing groups [99]: BnB methods [16], [114], linear prognauwing based methods
(branch and cut algorithms [8], [102]), eigenvalue basethous, and approaches
via semidefinite programming [119], [120]. We will not dissuall of these ap-
proaches but restrict ourselves to one important remarkhate not found any com-
putational study oéxact optimal solution&r the QCP or QZOP fodensegraphs
in which the number of vertices is at least 60. An exceptioa $pecialized exact
algorithm for the maximum clique problem (e.g. the stapiitmber problem in the
complementary graph) in Carragan and Pardalos [25]. They@imputational re-
sults for problems growing up to 100 variables with any edgresity. However, the
maximum clique problem is a special case of the QZOP. Bitleirand Sutter [16]
gave a comprehensive analysis of computational resultéspel in Barahonat
al. [8], Carragan and Pardalos [25], Carter [24], Kalantari Badchi [86], Parda-
los and Rodgers [114], Williams [134]. For example, Barahenal. (see Table 3
in [8]) as well as Pardalos and Rodgers (see Table 5.4 in JT&pprted compu-
tational results for dense QZOPs with up to 30 vertices; éteal. (see Table 1 in
[102]) reported computational results for dense QCPs wittvertices. Chardaire
and Sutter (see Table 1 in [26]) reported computationalli®$or dense QZOPs
with up to 50 vertices. For 75 vertices their algorithm onhds the exact optimum
for 5 instances out of possible 10. For 100 vertices, theyardn find the exact
optimum for just one out of ten instances [26]. Moreover, gleaeral conclusion
of all published computational studies can be summarizéaliasvs [120]: “When
the edge density is decreased, the polyhedral bound idlgliggtter. On the other
hand, increasing the density makes the polyhedral bound plyoother words, for
all above mentioned methods, average calculation times gsoedge densities in-
crease. Gloveet al.[55] have reported computational experiments withataptive
memory tabu searcalgorithm for the QZOP on dense graphs with 200 and 500 ver-
tices, and they conclude that this problems are very difftoidolve by currengxact
methods: “Here, however, we have no proof of optimalitycsithese problems are
beyond the scope of those that can be handled within pratitioa limits by exact
algorithms” [55]. In the next section we present computaicexperiments with
the DCA based on the PP algorithm (see Goldengorin and Gh@&3h (We have
found a set of “threshold” QCP instances on dense graphsupitio 400 vertices
for which this algorithm solved them to optimality within b@in on a standard PC.
In concluding sections we improve this algorithm and reporhputational results
with “threshold” QCP instances.
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3.5 The QCP: Computational Experiments

We have obtained computational results using randomlyrgéseconnected graphs
with the number of vertices varying from 40 to 80 and edge itgidsvarying from

10% to 100% (i.ed € [0.1,1.0]). Here the edge density 5= % |E| is the num-
2

ber of random generated edges 7 is the number of edges in the corresponding

simple complete graph. The valuesgfandg;; are uniformly distributed in the in-
tervals [0,100] and [1,100], respectively. The computsigesults are summarized
in Table 3.1. We have tested the DC algorithm on the QCP tetigmms from Lee
et al.[102], and have made a comparison between our results asd tiom Leeet
al. [102].

Each problem set is labeled by the number of vertices of taphgtogether with
their densitiesd. For example, problem 50/7 refers to graphs with 50 vertaes
densityd = 0.7(or 70%), problem 40 refers to complete graphs with 40 eesti For
each combination of density and number of vertices, five sangroblems were
solved. The column ‘Lee et al. of Table 3.1 contains the agercomputational
times for the problems on a RISC 6000 workstation as giveneadt al. [102].
The DC algorithm was coded by means of Turbo Pascal 6.0 andéxesited on
a PC with a 133 Mhz processor. Cells with “min”, “avg”, and “xian Table 3.1
show minimum, maximum and average performances of twoststatifor the DC
algorithm: ‘the number of generated subproblems’ solvad,‘the number of fath-
omed subproblems’ indicating the number of subproblemsadited by means of
the upper boundsb; andub, from Lemma 3.2. When the graph has at most 40
vertices, the problem is very easy, and the calculationdiare less than.05 sec.
For problems with at least 40 vertices the average caloulditnes grow exponen-
tially with decreasing values of the densdy(see Figure 3.4) for all values @§.
This behavior differs from the results of the algorithm frawee et al.[102]; their
calculation times grow with increasing densities. For peols with density more
than 10% our algorithm is faster than the algorithm from keal. [102]. For one
problem (80/1) with density equal to 10% our algorithm usesenime.

Some typical properties of the behavior of the DC algoritime shown in the
Figures 3.4, 3.5 and 3.6. In Figure 3.5 it can be seen thatdlcelation time of the
DC algorithm grows exponentially when the number of veRioereases. This is
to be expected since general QCPs are NP-hard. Figure 3.8 $tov the calcula-
tion times of the DC algorithm depend on the valuegfWe have used different
prescribed accuracies varying from 0% to 5% of the value®fjlobal minimum.

In all experiments witlgy > 0 the maximum value of the calculatgddenoted by
Ymax) IS at most 001949x z*[0, N], i.e. within 2% of a global minimum. Moreover,
for all test problems with density at least 3q#> 0.3), we obtainedmax= 0, that
is, we found an exact global minimum with a calculation tini@omost 5 secs. In
Figure 3.7 ymaxis depicted for various values ef.

Prof. Fabio Tardella suggested that in case of the QCP tiged# dominance of
the matrix might have a great influence on the calculatioesiisee Goldengort
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Prob]Time average, s¢c# of generated subg# of fathomed subp}.

[Ceeetall DC[ min[ avgl max] min] avg max
40/2 097 0.10 618 797 972 306 396 481
40/3 2.09 0.08 470 640 793 235 313 85
40/4 6.79 0.05 430 539 735 204 258 54
40/5 6.63 0.028 428 497 584 201 231 278
40/6 8.62 0.038 340 387 434 153 173 192
40/7 11.40 0.030 204 216 267 85 100 116
40/8 1457 0.028 217 261 292 80 95 103
40/9 8.46 0.012 107 154 223 34 42 56

40 13.89 0.004 119 160 213 33 38 48
50/1 0.56 0.29 1354 1885 2525 686 945 1Pp58
50/2 5.36 0.45 2100 2778 3919 1042 1393 1971

50/3 16.19 0.27 1671 2074 2565 814 1019 1268
50/4 95.32 0.18 1183 1576 1976 576 755 P50
50/5 38.65 0.08 870 943 1051 414 447 502
50/6 43.01 0.07 646 725 798 291 321 45
50/7 48.07 0.05 610 648 714 245 270 294

60/2 12,11 156 5470 8635 11527 2718 4303 {744
60/3 183.02 0.71 3481 5069 7005 1736 2519 3478
60/4  150.50 0.39 2450 3037 3895 1221 1503 1917
60/5 137.22 0.22 1701 2080 2532 825 1012 1236

70/2  437.74  4.89 15823 23953 34998 7909 11971 1486
70/3 367.50 1.91 9559 11105 13968 4769 5540 ¢967

80/1 20.87 28.12 55517 92836 132447 27771 46418 66228
80/2  864.27 17.10 64261 66460 68372 32102 33202 34160

Table 3.1 The comparison of computational results.
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Fig. 3.4 Average calculation time in secs against the derssifgase:m= 80, g = 0).

al. [66]). Assuming that alp; are positive, theliagonal dominancédd) is defined
asdd = %,i € N, i.e., it is the quotient of the “main diagonal entrg{’ and
the sum of the off diagonal entries in theh row and column ofQ = ||g;j||. We
have calculated the diagonal dominance values of the iostainom Table 3.1. The
results of these calculations are presented in Table 3&fifidt column shows that
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Secs
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Q¢ m
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Fig. 3.5 Average calculation time in secs against the number ofagstn (case:d = 0.3, &, = 0).
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0] &
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Fig. 3.6 Average time in secs against prescribed accuggggase:m= 80,d = 0.2).

78.8% of the diagonal elements have values in the intgfr@b,0.2]; the meaning
of columns 2 and 3 are similar.

dd [0.05,0.2][[0.2,0.8][[0.8, 25|
percentage 78.8 17.2 4.0

Table 3.2 The distribution of the diagonal dominances.

We have studied the influence of the diagonal dominance oamérage calcula-
tion time of the DC algorithm for the following randomly geated instances. The
number of verticesn varies from 40 to 80, the edge densitekare chosen in the
interval [0.1,1.0], and the edge weights are randomly generated from the @lterv
[1,100, just as in Table 3.1. The weights of the vertiggowever, are calculated
from the edge weights by using a constddtfor all vertices in the same instance,
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2.0%,

1.5%

1.0%

0.5%)

0.0% 2
0% 1% 2% 3% 4% 5%

Fig. 3.7 ymaxas percentage of the value of a global minimum.

namelypi = 2ddy ;; gij,i € 19, The results for the case = 40 are shown in Fig-
ure 3.8.

Secs.
3000+

1000p
300F
100F
30F

10f

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3.8 Average time in secs against diagonal dominance (cases:
40,d =0.3,0.4,...,1.0).

The calculation times grow exponentially with increasirgues of the density
d, and for fixedd they grow exponentially ifld comes close t0.8. The maximum
calculation time is attained fatd = 0.5 andd = 1.0. This is the case of a “pure
max-cut problem on a complete graph. Recall that for theaimtsts from Leest

”
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al.[102], as shown in Figure 3.4, the calculation times de@é&gsncreasing values
of the density. Notice that this phenomenon does not occeeise of constarutd.

We may conclude that diagonal dominance is a good “yardstakmeasur-
ing the intractability of instances of the QCP. For example,randomly generated
instances with a constadid for all vertices from the interval uniof0.05,0.2] U
[0.8,1.0] can be classified as “easy” instances of the QCP and from teevai
[0.4,0.6] as “hard” ones. In all our experiments with constadi the effect of expo-
nentially increasing calculation times with increasindues ofm (see Figure 3.5),
and the exponentially decreasing calculation times withéasing values &), (see
Figure 3.6) is preserved.

3.6 Remarks for the DC Algorithm

Corollary 2.2 can be considered as the basis of our Data Gorgealgorithm. It
states that if an interva®, T| is splitinto[S T —k] and[S+k, T], then the difference
between the submodular function valwéS) andz(S+ k), or between the values of
z(T) andz(T —K) is an upper bound for the difference of the (unknown!) optima
values on the two subintervals. This difference is useddorrecting’ the current
data (values of) in the algorithm.

Another keystone in this chapter is Theorem 3.2. For anyfisubset§,t € P
that cover the feasible region, for exames UicpS, it enables us to derive a new
upper bound between an upper bound on the optimal value oljeetive function
on Sand the optimal value. This new and sharper upper bound, winglemented
in the DC algorithm, yields an increase of the calculatedieanzy, and a decrease
in the value of the associated parameateMoreover, this bound can also be built
into other BnB type algorithms for finding the best calculedecuracy based on the
accuracies for all resolved subproblems.

The DC algorithm presented in this chapter is a recursive Bm@ algorithm.
This recursion makes it possible to present a short prod$ @idrrectness; see The-
orem 3.4.

We have tested the DC algorithm on cases of the QCP, enaldingarison with
the results presented in Le al. [102]. The striking computational result is the
ability of the DC algorithm to find exact solutions for instas with densities larger
than 30% and with a prescribed accuracy of 5% within fragtioha second. For
example, an exact global optimum of the QCP with 80 vertices00% density,
was found within 0.22 sec on a PC with a 133 Mhz processor.

Benati [12] has applied the DC algorithm for solving mediuimed instances
of the Uncapacitated Competitive Location Problem withbatalistic customers’
behavior.

We point out that when the value ef is very large, the DC algorithm behaves
as a greedy algorithm.

Therefore, the DC algorithm was more efficient for QCP inséandefined on
dense graphs. However, we did not answer to the followingtipres.



3.6 Remarks for the DC Algorithm 65

1. What are the largest (threshold) QCP instances fromet.ed [102] defined
on dense graphs in a reasonable CPU time by the DC algorithrbecaolved?

2. Is it possible to increase the threshold numbers of astfor the QCP in-
stances by any modification of the DC algorithm?

In the remainder of this section we answer the first questimhimthe next sec-
tion we answer the second question. Note that most of thegigol computational
experiments with QZOP instances by 10 min CPU per instan@stscted. So, we
have kept 10 min CPU as a reasonable time for finding an exéctalsolution to
each QCP instance involved in our computational experiment

We have tested the DC algorithm for QCPs on a Pentium processning at
300 Mhz with 64 MB memory. All algorithms are implemented ielphi 3.

The threshold QCP instances from Leteal. [102] which can be solved by the
DC algorithm within 10 minutes and are bounded by 300 vestiaee shown in
Table 3.3.

Prob. Average time, secs

Dens. 100 [200

100 0.831/0.752 64.372/38.351

90 1.027/0.916 78.614/49.926

80 1.784/1.108 217.898/162.455
70 2.498/1.593 631.492/376.629
60 3.509/2.874 1414.103/895.426
50 9.382/5.931 */1937.673

40 17.245/10.327 *[*

30 48.013/22.209 *[*

20 195.82/74.841 *[*

10 446.293/95.122 *[*

Prob. Average time segs
Dens. 300 [400 [500
100 340.681/229.396 1894.811/1162.396 F/*
90 794.037/583.754 3505.892/1996.544 />
80 2681.973/1875.603 */3604.715 *f*
70 */3165.384 *[* *[*

60 */* */* */*

Table 3.3 “Threshold” QCP instances solved by the DC algorithm with@hmin.

Prof. Fabio Tardella has proposed a ‘measure’ of intralitalif the QCP in
connection with the DC algorithm, namely the so called dieda@ominance. Our
computational experiments with the DC algorithm show thatances of the QCP
with diagonal dominances from the intervals unj6105,0.2] U[0.8, 25| can be clas-
sified as ‘easy’ instances, and instances with diagonalni@ncies from the interval
[0.4,0.6] as ‘hard’ to solve.

We would like to remark that the DC algorithm can be used faalrclasses
of combinatorial optimization problems that are reductbléhe maximization of a
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submodular function. Recently, Krause [96] has incorgadatur DC algorithm in
the general purpose software MATLAB.

Our computational experiments with the Quadratic CostitRartProblem show
that we can substantially reduce the calculation time féa darrecting algorithms
[59, 66] by recursive application of our main theorem.

3.7 A Generalization of the DC Algorithm: a Multilevel Search
in the Hasse Diagram

In the previous section we have reported computationalréxeats with DC al-
gorithm applied to Quadratic Cost Partition Problem (QCi8jances by which we
are able to solve the QCP instances on dense graphs up to @@@wevithin 10
min on a standard PC. In this section we improve the aboveioresd DC algo-
rithm for the submodular functions by using instead of twaghboring levels in
the Hasse diagram (the so called Preliminary Preservatigarthm (PPA) of or-
der zero) more deep searahlévels of the Hasse diagram) procedure (the PPA of
orderr). We study the behavior of the DC algorithm through the nunabesearch
levels of the Hasse diagram for the QCP case. Our compughiaperiments with
the QCP instances from Lext al.[102] show that the “trade off” level of the Hasse
diagram is bounded hy= 3 (see Goldengorin and Ghosh [72]). Computational ex-
periments with the improved DCA allow us to solve QCP insémnan dense graphs
with number of vertices up to 500 within 10 min on a standard PC

In the next section we determine a generalization of the BBAed thePPA of
order r (PPAr).

3.7.1 PPA of order r (PPAr)

The preservations rules in the PPA “look” only one level dieethe Hasse diagram.
The following statements allow us to explore the solutioacgomore than one level
deep. This may be useful because we obtain additional plitss#for narrowing
the original interval [65].

In this section we use Corollary 2.2 in the following formiita.

Corollary 3.1. Let z be a submodular function on the inter{f@IT] C [0,N] and let
ke T\ S. Then the following assertions hold.

a. Z[S+k T]—Z[ST—K
b. Z[ST -k —Z[S+k,T]

N

(S+k)— 29 =d;"(S).

<
< 2T —k) = 2T) =d (T).

N

Theorem 3.5.Let z be a submodular function 98, T] C [0,N] and let ke T\S.
Then the following assertions hold.
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a. Forany f (k) € argmaxd, (S+t) :t € T\(S+Kk)},
Z[S+k T]—maxz (ST —K,z(S+k)} <max{d (S+1t; (k)),0}.

b. Forany ¢ (k) € argmaxd, (T —t):teT\(S+k)},
Z'[ST -k —maXqz [S+k,T],zT —k)} <max{d, (T —t; (k)),0}.

Proof. We prove only part (a) since the proof of (b) is similar. Let
t;" (k) € argmaxz’ [S+k+t,T]:t € T\(S+K)}
We may represent the partition [ T] by means of its subintervals as follows:

[ST]=SuU [J [S+t,T].
teT\S

Applying this representation on the inter{8H-k, T] we have
Z'[S+k T) = max{z(S+Kk),Z' [S+k+1t, (k), T]}.
We distinguish now the following two cases:
Case 17(S+k) < Z°[S+k+t] (k),T]. Thenz*[S+k, T] = Z*[S+ k+t, (k), T].
For anyk € T\ [S+t;" (k)] Corollary 3.1(a) on the intervab+t," (k), T] states that:
Z S+t (k) +k T] = Z'[S+t (k), T —K < d (S+1t;] (k)),

i.e., after substituting* S+ k, T] instead ofz*[S+ k+t; (k), T] this inequality can
be written as follows:

Z[S+k T] = Z'[S+1t; (k), T —K < df (S+t] (k)),

and taking into account that[S+t;" (k), T — k] <z [S T — k] we have
Z[S+kT]—-Z[ST —K <d (S+t] (k).

Adding two maximum operations leads to the following indgya

Z[S+k T]—maXqz'[ST — K, z(S+k)} < max{d, (S+t; (k)),0}.

Finally, d; (S+t;(k)) <dJ (S+tg (k) sinced,” (S+t) was maximal fotg (k). This

gives the required result.

Case 27(S+k) > z*[S+k+1t, (k), T].

Thenz'[S+ Kk, T] = z(S+ k). Consider the inequality

Z(S+k)—max{Z'[ST—Kk],z(S+k)} <O0.

Sincez(S+k) = z[S+k, T] we have

Z[S+kT]—maxz[S T —k,zS+k)} <0.
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Adding a maximum operation witti” (S+t; (k)) gives the required result
Z[S+k T]—maxz[S T —K,z(S+k)} <max{d’ (S+1t; (k)),0}.

Corollary 3.2. (preservation rules of order one). Let z be a submodulartion®n
[ST] C[0,N] and let ke T\S. Then the following assertions hold.
First Preservation Rule of Order One
(@) If max{d, (S+t):t € T\(S+k)} <0, then
Z[ST]=maq{z'[ST —Kk,z(S+k)} > Z*[S+k,T]
Second Preservation Rule of Order One
(b) If max{d, (T):te T\(S+k)} <0, then
Z[ST]=max{Z'[S+k T[,Z(T —k)} > Z'[ST —K|

In the following theorem we show if the current intery&| T] cannot be nar-
rowed by preservation rules of order one then the same adteannot be narrowed
by preservation rules of order zero (see the preservati@s in Corollary 2.3).
Moreover, if the interva|S, T] can be narrowed by preservation rules of order zero
then this interval can be narrowed by preservation ruleg@émoone. In this sense
we will say that preservation rules of order one ao¢ weakerthan preservations
rules of order zero.

Theorem 3.6.Preservations rules of order one are not weaker than pregems
rules of order zero.

Proof. We compare only first preservation rules of order one andrael® because
the proof for the case of second rules is similar.

Assume that the preservation rule of order one is not agglicae., maxd, (S+
t):t e T\(S+k)} = df(S+to) > 0. The definition of submodularity of im-
plies df (S) > df (S+1to). Hence,d(S) > 0 and the first preservation rule is
not applicable. In case when the first preservation rule deoeero is applica-
ble, i.e.,d} (S) < 0 we have G> d/(S) > d/ (S+t) forall t € T\(S+Kk), i.e.,
max{d, (S+t):teT\(S+k)} <0.

Note that the computational complexity for rules of ordee@nd order zero
is different not only in their time complexities but also tmetr space complexities
because together with the preserved interval eitBerk, T] or [S T — k] we should
preserve exactly one additional value eitb@ — k) or z(S+ k), respectively. This
property is also valid for the preservation rules of onder 1.

Instead of one level deep (order one) we may ‘loolévels deep (order) with
a view to determine whether we can include or exclude an eienie simplify
the presentation of the following theorem, we need some ra@ations describing
certain subsets of the intervi@, T] as followsM," [ST] = {I € [ST]: I\S < r}
andM; [ST] = {1 €[ST]:[T\I| <r}.

The setdV"[S, T] andM;, [S,T] are the collection of subsets that contain in the
vicinity on one side of the setS (the bottom of the corresponding Hasse subdi-
agram) andr (the top of the corresponding Hasse subdiagram) flewels deep.
Define further the collections of sets
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NF[ST]=MF[STI\M[ST],

NC[STI =M [STI\M, 4 [ST]

The setN,"[S T] andN, [S,T]| are the collection of sets which are located on
the levelr aboveSand belowT in the Hasse diagram, respectively. Mg{S T] =
max{z(1):1 e M [S T}, vy [STI=max{z(l):1 € M; [ST]}, Wi [S T =max{d/(I):

I € NF[S+K,T]} andw, [ST] =max{d, (I):1 € N [ST—k]}.

Theorem 3.7.Let z be a submodular function ¢8 T] C [0,N] with ke T\S and
let r be a positive integer. Then the following assertionklho
(@) If NS [S+Kk,T]| > 0, then

Z'[S+k T]—maxz (ST —K,v[ST]} < max{w[ST],0}.

(b) If N7 [ST —K]| >0, then
Z'[ST -k —maXqz [S+k,T],v, [ST]} < max{w,[S T],0}.

Proof. We prove only part (a) since the proof of the part (b) is simil&e may
represent the partition of intervgd, T] as follows:

[STI=M7[STIU |J [Tl
leNt[ST]
Applying this representation on the inter{8h-k, T] we have
Z'[S+k T =max{v; [S+k T],max{z'[I +k T]:1 € N [ST]}}.

Letl(k) € argmaXz‘[l +k,T]: 1 € N;-[S T]}, and let us consider two cases of the
last equality:
Case 1z°[I (k) +k, T] > v [S+k,T], and
Case 2Z°[I (k) + k, T] < v{ [S+k, T].

In the first case*[S+k, T] = Z*[I (k) + k, T]. Forl (k) € N;" [S T| Corollary 3.1(a)
on the intervall (k), T] states:

Z[1(K+kT]=Z[I(k), T —K < d(I(k)),

i.e.incase 1
Z'[S+k T]—Z[1(k),T =k < dlj (k)).

(1
Note for [l (k),T —k] C [ST — K we havez'[ST —k] > Z*[I (k), T —K]. This leads
to the following inequality

Z[S+kT]-Z[ST—K < d(1(k)).
Adding two maximum operations gives
Z[S+kT)—maxz[ST—K,v [S+kT]} <maxd, (I(k)),0}.

Sincew,} [S,T] is the maximum ofi,f (1) for I € N;"[S+k, T], we have the required
result.
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In the second casg&[S+k, T] = v;"[S+ k, T] the following equality holds:
Z'[S+kT] -V [S+kT]}=0

or
Z[S+kT]—maxZ[ST -k, v [S+kT]} <0.

Adding a maximum operation witw, (S, T] completes the proof of case (a)

Z[S+kT]—maqz[ST — K,V [S+k T]} < max{wy [S T],0}.

Corollary 3.3. (preservation rules of order r). Let z be a submodular fumcton
[ST] C[0,N]and let ke T\S. Then the following assertions hold.
First Preservation Rule of Order r
(@) If wi[ST]<0,then
Z[ST)=maXx{z [ST—K,v[S+kT]} >z [S+k,T]
Second Preservation Rule of Order
(b) If W, [ST] <0, then
Z[ST]=maq{z'[S+kT],v, [ST—K} >Z[ST—K

Note that the analogue of Theorem 3.6 can be proved for pesen rules of
orderr — 1 andr as follows. Preservation rules of ordeare not weaker than preser-
vations rules of order— 1.

Now we can describe the PPA of ordefPPAr). The PPAr behaves in the same
manner as the PPA, i.e., it tries to decrease the originahiat[X,Y] in which an
optimal solution is located. The difference between the algmrithms lies in the
fact that the PPA searches only one level deep in the Hasgeadiawhile the PPAr
searches levels deep. The PPAr chooses one element to investigdteefurom
either the top or the bottom of the Hasse diagram. We coulkekitiyate all vertices
from T\ Shut this would cost too much time. Therefore we use a heatistselect
the element which we investigate further. The element weosds an element
for which it is likely that one of the preservations rules oflerr will succeed in
including or excluding this element from an optimal solati@he preservations
rules of order one apply if mgxl, (S+t) :t € T\ (S+k)} <0 or maxd, (T —t):
te T\ (S+Kk)} <0. Soif we want them to apply then we have to choose an element
k so as to minimize the valuely (S+t) andd, (T —t). According to an equivalent
definition of a submodular function (see Nemhaueteal. [109]), d,f (S) > d7 (S+
t), if we choosed,” (S) as small as possible, thelj (S+t) will not be large and
hopefully negative for alt, and the first preservation rule of order one is more
likely to apply. Also if we takek with the smallest valué, (T) then the second
preservation rule of order one is more likely to apply. Ounpaitational study (see
Section 3.7.3) selects the “best” valuapénd therefore shows the relevance of this
choice.

Itis clear that if we search deep enough, the PPAr will alwWadsan optimal so-
lution to our problem. We just take= |Y\ X|, where[X, Y] is the initial interval, and
at each step we will be able to include or exclude an elemethtsoihitial interval.
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However, the number of sets we have to examine in this casetia polynomial
function ofr.

Let us define two recursive procedures PPArplus and PPArmiméans of
which we can try to include and exclude some elements of flialimterval [X,Y].

Procedure PPArplugS T, k, r, maxd
begin Calculatez(S+k);
If z(B) < z(S+K)
then B < S+k;
For allt € T\(S+Kk) calculated, (S+t);
If df(S+t)<0orr=1
then maxd« max{maxd d} (S+t)}
elsecall PPArplugS+t, T,k,r — 1, maxd);
end

Procedure PPArmin(S, T, k, r, maxd
begin Calculatez(T — K);
If z(B) <z(T —k)
thenB+«+ T —Kk;
For allt € T\(S+k) calculated, (T —t);
Ifd (T-t)<Oorr=1
then maxd<« max{maxdd, (T —t)}
elsecall PPArplugS, T —t,k,r — 1, maxd);
end

The Preliminary Preservation Algorithm of order r.
Input: A submodular functiorz on [X,Y] of [0, N]
Output: The subinterva|S T] and the seB such that

Z[X,Y] = max{z*[S,T],z(B)} and

min{w;} [S, T],w [ST]} > 0 forallke T\S
Step 0: S« X, T« Y,B«0;
Step 1: call PPAX,Y;S T); goto Step 2;
Step 2: dT + max{d} (S) :ke T\S}, d™ < max{d, (T) ke T\S};

If d* < d~ then goto Step 3else gotoStep 4;
Step 3: k+« argmaxd; (S) :t € T\S};

call PPArplus(ST, k,r,maxd);

If maxd< OthenT <« T —k, goto Step 1.
Step 4: k<« argmaxXd; (T):teT\S};

call PPArminS, T, k,r,maxd);

If maxd< Othen S« S+ Kk, goto Step 1.

Note that the PPAr finds a maximum of the submodular funcfidhe levelr of
the Hasse diagram is “deeper or equal” to the level on which@ S located.



72 3 Data Correcting Approach for the Maximization of Submiad Functions

3.7.2 The Data Correcting Algorithm Based on the PPAr

In this section we briefly describe the main idea and the siracof the DC al-
gorithm based on the PPAr and abbreviated to DCA(PPAr). Eseription of the
DCA(PPAO) can be found in Section 3.2 (see also Goldenguirah. [66]). We will
point out the main differences between the DCA(PPA) and tGA [ PAr).

Recall that if a submodular functianis not a PP-function, then the PPA ter-
minates with a subintervdlS, T] of [0,N] with S# T containing a maximum
of z without knowing its exact location ifiS T]. In this case, the postcondition
min{d;" (S),d”(T) | i € T\S} = & > 0 of the PPA is satisfied. The basic idea of
the DCA is that if a situation occurs for which this postcdimfi holds, then the
data of the current problem will be corrected in such a waydt@rrected function
z violates at least one of inequalitiel§ (S) = 5 > 0 or d, (T) =6 > 0 for some
k,p € T\S In that manner the PPA can continue. Moreover, each caoreof z
is carried out in such a way that the new (corrected) funateznains submodular.
If the PPA stops again without an optimal solution we apply tlorrecting rules
again and so on until the PPA finds an optimal solution.kerT \ SCorollary 3.1
gives upper bounds for the valug§S T] — z*[S T — k], namely,d, (S), and for
Z'[ST] - Z'[S+k,T], namelyd, (T).

So, if we choose to include an elemérin the interval[S, T], then we know that
the difference between an optimal solution of the origing&tival and the new one
will be smaller thard,! (S). A similar interpretation holds fod, (T). Itis clear that
after at mosh corrections we will find an approximate solutidre [0, N] such that
Z[0,N] < z(J) +¢&, wheree = 51 ; & with & equal to eithed;" (S) ord; (T).

Before the PPA stops there are a few options. First, if we ddile to al-
low a certain prescribed accuracy, s&y of an approximate solution for the
current interval[S, T], then after each correction we must check the inequalities
Z[X,Y] - Z[ST] < € < &. If € > & then it is possible to look deeper than one
level in the Hasse diagram (see the PP&ither to determine whether or not an
element belongs to an optimal solution at least to reduce the current values of
d:"(S) andd;” (T), becausev; [ST] > w" ;,[S T] andw[; [S,T] > W} [S,T —t], or
Wy [ST] > w4, [S T] andw,, [S T] > w,, [S—t, T]. We will explore these possibil-
ities in the DCA(PPA).

Finally, we can divide the current problem into two subpesb$ by splitting the
corresponding interval intis+k, T] and[S T — k] for some chosek, and apply the
PPA on each interval separately. The monotonicity propats) > d" (S+t) of a
submodular function is the base of the following branchurg (see Section 3.1 and
Goldengoriret al. [66]). Note thatd," (S) = -6 (S, T,i) andd; (S) = —3" (S T,i).
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Branching Rule:

For k € argmaymaxd* (S),d(T)] : i € T\S}, split the interval[S T] into two
subintervals[S+ k, T], [S, T — k], and use the prescribed accuraeyof [S,T] for
both intervals

To make the DCA more efficient we incorporate improved uppmurals by
which we can discard certain subproblems from further aersition. We may dis-
card a subproblem if some optimal value found so far is |attggem the upper bound
of the subproblem under investigation because the optiataévof this subproblem
will never be larger than the optimal value found so far.

Due to Khachaturov [90], the upper bounds andub, from Corollary 3.1 can
be tightened. Define the following sets of positive numbergS T) = {d(S) :
dt(S)>0,ie T\Standd (ST)={d (T):d (T) > 0,i € T\S}. Define further
the ordered arraysi*[i] is ani-th largest element add* (S T) andd~[i] is ani-th
largest element of (S T) both fori =1,...,|T\S. So,d"[1] > ... > d*[|T\9]
andd—[1] > ... > d7[|T\S]]. Let Z*[S,T,i] = max{z(l) : N*[S T]} which is the
optimal value ofz(1). Finally, let us consider two functions which describe tiee b
havior of our upper bounds while we add elements to the&ssgtdelete elements
from the sefl: (i) = z(S) + 3}_,d*[j] and f~ (i) = z(T) + 3}_,d"[j]. Hence,
Z[ST,i] <min{f*(i),f(i)}. Sincez*[ST] = max{Z'[ST,i]:i =1,...,|T\S}
we have the following upper bound

ub=max{min[f*(i),f ()] :i=1,...,|T\S} > Z[ST].

Now we will describe the DCA. The DCA starts with a submoddilarction z
on the interva[0,N] and the prescribed accuragy A list of unsolved subproblems
(LUS) is kept during the course of the DCA. Every time a subpem is further
decomposed into smaller subproblems, one of the subprahteadded to the LUS
and to the other one the DCA is applied. After a solution hanlfeund to a sub-
problem, a new subproblemis taken from the LUS, and so ohtbeti US is empty.
First, the DCA approximates a subproblem by using the PP#hidfdoes not result
in an optimal solution of that subproblem, it first tries teahrd the subproblem by
using the upper bound, else the subproblem will be eitheected (ife < &) or (if
€ > &) split up by means of the branching rule.

Note that the corrections are executed implicitly. A cotigtallows the PPA
to continue at least one step since the correction makesastegndition of the
PPA invalid. For instance, if the PPA stops with an interfd@&IT|, then after in-
creasing (correction) the value pfon [S T — k] by d./ (S) > 0 the DCA may dis-
card the subintervalS+ k, T], becausez*[S+k,T] — [z [ST — k] + d (S)] < 0.
In fact, instead of correcting the function values of thesprged subinterval, the
DCA increases the current value efwith d; (S). In our example, if the value
of the current accuracy of the intervi8 T] is equal toe, then after discarding
the subinterva[S+ k, T] its value will be equal tce +d,/ (S). These arguments
show that the DCA did not change our submodular functionieitipl On the
other hand, let € [S+k,T], J € [ST — K], then the submodularity af implies
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Z(1)+2zJ) > z(1NJ)+2z(1UJJ). Since,INJ € [ST -kl andlUJ € [S+k,T] we
havez(l) + [z(J) + d (9] > [z(1 NJ) +d;f (S)] + z(1 UJ). Therefore, by correcting
the values of on a subinterval, the DCA preserves the submodularity of
Finally, note that using the PPAr instead of the PPA yieldsitwore possibilities:
either by narrowing the current interval or by decreasirgdbrrent value of.

3.7.3 Computational Experiments for the QCP
with the DCA(PPAr)

In Goldengorinet al. [66] we have restricted our computational experiments with
the number of vertices up to 80 for the QCP instances, simstesjuch instances
in Lee et al. [102] are considered. For these instances from ékeal. [102] we
have shown that the average calculation times grow exp@tignthen the number
of vertices increases and cut down exponentially with tleegasing values of the
density. For example, an exact global optimum of the QCP ®@fihvertices and
100% density, was found within 0.22 sec on a PC with a 133 Mbzessor but for
the QCP with 80 vertices and 10% density 28.12 sec is requineithe same PC.
Therefore, the DCA(PPAOQ) was more efficient for QCP instardsfined on dense
graphs. However, we have not answered the following quegtob.

Is it possible to increase the threshold numbers of verfmethe QCP instances
by the DCA(PPAr)?

In the remainder of this Section we answer to this questios h@le tested the
DCA(PPAr) for QCPs on a Pentium processor running at 300 Mila 64 MB
memory. All algorithms are implemented in Delphi 3.

The largest part of the calculation time is taken by the dattn of the values
of d; (S) andd, (T), since they are calculated rather frequently in the coulrieeo
algorithm. In case of the QCP we may calculate, for exampkeyalue ofd, (S),
by calculating, at the first step, the expressions of

1
Z(S+k) = pi — > aij
ieS+k i,jeStk
and

1
S) = = i
() gspl 2i,Jzesq|J

and, at the second step,
dy (S =2z(S+k)—z(S).

However, we can simplify the calculating df (S) as follows:

d¢ (S =2S+k ~2S) =
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1
pi — qu Pi — q|]
| e

ieS+k ie IJES

1
Pk — 2Ijz€Sq|J+2 z Gij — ingik—égSijz
pk—zi;Qik_égSij-

Sinceqyk = 0 andg;j = gj; the last expression can be rewritten as

¢ (S = pk_gschk
= ieerlik— Pk-

Note that values off, (S) andd, (T) must be calculated for successive sets such
that S S+1tg,S+1tg+t; etc., andT, T —tg, T —to —t; etc. Hence, we can use the
previous value for calculating the next one as follows

d. (S+t)=d/ (S —aqw and d (T —t) =d, (T) — g

If we compare the two implementations of the DCA(PPAr), ngméth the direct
calculation of differences betweely (S+t)andd, (T —t), and with the prelimi-
nary simplified expression mﬁ(S), then computational experiments show that the
average computational time is reduced, on average, by @rfat®.

As problem instances we use randomly generated conne@plghaving from
50 to 500 vertices and densities 10-100% which are ‘steaibfi the same as from
Leeet al.[102]. Thedensityis defined as

Similarly,

|E]|
_—7'1 0/
d - 5 00%

where|E| is the number of generated edges afid— 1)/2 is the number of edges
in a complete simple graph. The dageandg;; are uniformly distributed withp; €
[0,100 andq;; € [1,100. So, we may compare our computational results (see also
Goldengoriret al.[66]) to those obtained by Lest al.[102].

First of all we look at calculation times of the DCA(PPAr) dee for problems
varying from 50 to 100 vertices. Since the DCA(PPAr) finddlgas optimal solu-
tion to the instances for which an optimal solution as claspa@ssible either to the
top or to the bottom of the Hasse diagram is located, we usaistence

[ —=n/2|

-100%
n2

dist(|l|,n/2) =
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between the calculated optimal solutiband the leveh/2 of the “main diagonal”
of the Hasse diagram in percentages as one of parameters ‘tfatdness” of our
instances by solving them to optimality by the DCA(PPAr).

Intuitively, it is clear that the DCA(PPAr) applied to instzes with distances
close to 0% requires more calculation time than the DCA(pR4plied to in-
stances with distances close to 100%. Empirically we hauaddsee Goldengorin
et al.[66]) that for sparse instances from Lekal.[102] the distance is close to the
“main diagonal” of the Hasse diagram (see Figure 3.9). Farspinstances with
densities bounded by 20% the DCA(PPAO) outperformes thedbrand-cut algo-
rithm from Leeet al. [102], often with speeds 10 times faster and for nonsparse
instances with density more than 40% with speeds 100 timserfaFigure 3.9
shows that the distance grows when the density of instamcesdses. Therefore,
we can expect a decrease in the average calculation timew]eéh the density
of instances increases (see Figure 3.10). Figure 3.10 stimw$he natural loga-
rithm of the average calculation time is approximatelydinédence, it is plausible
that the average calculation time grows exponentially wthersize of instances in-
creases. Moreover, this increasing is more rapid for spassances than for dense
ones. The threshold QCP instances from eeal.[102] which can be solved by the
DCA(PPAO) within 10 minutes in Table 3.3 are shown and bodrne300 vertices.

We also study the impact of the numlyeof levels of the PPAr on the average
calculation time of the DCA(PPAr). Figure 3.11 shows tharshing one or more
levels deep does not decrease the average calculationdimeri-dense instances
(d < 1.0). The smallest average calculation time is achieved at &¥or instances
of complete graphsd(= 1.0). This fact is explained for all cases by the number
of generated subproblems for different levelésee Figure 3.12). In Figure 3.12
it can be seen that in all cases the number of subproblemgigaked when we
search deeper, but the decrease percentage of the numbbpobklems for levels 0
through 5 is only 14% for instances with density of 70% whHiie D1% for instances
with density 100%. Therefore the profit of decreasing the Ioemnof subproblems
is spent on the additional costs of the average calculaitios ftor the PPAr. More
exactly, for dense graphs the balance is positive for sdavels 3 and 4. This effect
holds also for larger instances (see Figure 3.13).

In the second part of experiments we consider instanceseo®P with sizes
between 100 and 500 vertices and densities between 10% &84 WAich can be
solved with a prescribed accuracy of up to 5% within apprataty 10 minutes. Ta-
ble 3.4 gives calculation times in seconds for exact/apprate solutions (0%/5%).
The entries in this table with * could not be solved within 1hhates. All instances
with sizes above 300 and densities below 50% could not beedalithin 10 min-
utes and are not shown in Table 3.4. In all experiments of¢bersd part, the effect
of exponentially increasing calculation times with ingeg of sizes and decreas-
ing of densities is preserved. Therefore instances of the @ith 500 vertices and
densities between 90% and 100% are the largest instanceh wém be solved by
the DCA(PPA3) within 10 minutes on a standard PC.

The impact of the “diagonal dominance” notion for instancéthe QCP is the
same as in our previous experiments (see Goldengbah [66] and Section 3.5).
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Fig. 3.9 dist(|l|,n/2) for instances of th€CP with 50100 vertices and densities 10%—-100%.
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Fig. 3.10 Natural logarithm of the average calculation time (in se)ror instances of th@CP
with 50-100 vertices and densities 10%—-100%.
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Level

Fig. 3.11 Average calculation times (in seconds) for values @dr instances with size 100 and
densities 70-100%.
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Fig. 3.12 The number of generated subproblems against the ideelinstances of th@CP with
100 vertices and densities 70%—-100%.
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Fig. 3.13 The average calculation time (in seconds) against the fefl instances of th€CP
with 200 vertices and density 100%.
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Prob. Time, average, secs

Dens 100 [200

100 0.098/0.094 2.630/2.444

90 0.138/0.118 3.824/3.607

80 0.280/0.228 9.506/8.186

70 0.393/0.304 17.643/15.693

60 0.731/0.517 86.330/72.931

50 1.752/1.298 345.723/267.445
40 3.457/2.179 *[*

30 11.032/5.880 *[*

20 47.162/17.477 *[*

10 70.081/12.196 *[*

Prob. Time, average, secs

Dens 300 [400 [500

100 18.316/ 17.179 85.827/ 85.096 229.408/222883
90 37.931/ 34.972 173.063/166.996 624.925/608.755
80 98.690/ 89.685 679.914/580.789 *[*

70 413.585/364.480 *[* *[*

60 */* */* */*

Table 3.4 Average calculation times (in seconds) against presciioedracies of 0% and 5% for
instances of the QCP with 100-500 vertices and densities-10986 within 10 min.
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3.8 Concluding Remarks

Theorem 3.5(a) can be considered as a generalization ofl@gr8.1(a) which is
the basis of the DCA(PPAr) and DCA(PPA), respectively.dtes that if an interval
[ST]issplitinto[S T —K and[S+k, T], then the maximum value of all differences
between the submodular function valzes levels + 1 andr is anupper boundor
the difference between the unknown optimal value on theadited subinterval and
the maximum of the unknown value of the preserved subintanéthe maximum
value ofz(1) onr levels of the Hasse diagram. Theorem 3.5(b) can be expounded
similarly. These upper bounds are used for implicit “cotireg’ of the current values
of z In fact, we correct the value of the current accuracy (seklé€hgorin and
Ghosh [72]).

We have tested the DCA(PPAr) on the QCP instances whichisstatly’ are
the same as in Leet al. [102]. It is shown that the distance of an optimal solution
to an antichain (“main diagonal”) of the Hasse diagram is adgmeasure of an
instance difficulty of the QCP at least for the DCA(PPAr). §Histance increases
a little slower than a linear function against the incregsimlues of the density
for any fixed number of vertices (size). The instances wisltagices from 0% to
20% can be categorized as “hard”, distances from 30% to 60%ifisult”, and
distances from 70% to 100% as “easy”. In all tested instatieeaverage calculation
time grows exponentially for decreasing density valuesfigorescribed accuracies
values. This behavior differs from the results of the braaweti cut algorithmin Lee
et al.[102]. Their calculation times grow when densities inceedshis effect is also
indicated for all algorithms based on linear programmireg(se.g., Barahonet
al. [8]; Pardalos and Rodgers [114]; Poljak and Rendl [120]). ©gperiments with
different levels of the PPAr show that for the QCP instances from keal.[102],
the best level is 3. In addition, this effect will be more antlwhen the density of the
corresponding instances will be as close as possible to 18@% that the largest
QCP instances solved by the DCA(PPAQ) based on the two neigttpblevels in
the Hasse diagramm within 10 min on a standard PC by 300 esriscbounded.

Gloveret al.[55] reported their computational experiments for binamadyratic
programs withadaptive memory tabu searghocedures. They assumed that the so
called “c” problems witm = 200 andh = 500 “ (which are 'statistically’ equivalent
to the Leeet al.[102] instances defined on dense graphs) to be the mostchizte
problems reported in the literature to date - far beyond #mabilities of current
exact methods and challenging as well for heuristic apresic

Recently Billionnet and Elloumi [17] and Rendt al.[122] have reported the
so called “achievemnts” with solving Max-Cut problem inmstas to optimlaity
on dense graphs with up to 100 and 250 vertices, respectiVely a negligible
“progress” compared to the DCA (PPA3) ability to solve stitally similar prob-
lems with up to 500 vertices. It seems that the authors of paffers [17, 122] have
overlooked the computational results produced by the datecting approach to
the Max-Cut and Quadratic Costs Partition problems puétish [66, 72].

The DCA(PPA3) have solved instances of the QCP up to 500cesrtin dense
graphs within 10 minutes on a standard PC. Since the dataationg approach is
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applicable for solving the large QCP instances defined odehse graphs it will be
interesting to investigate a “composition” of data coriegtapproach and branch-
and-cut type algorithms based on mixed integer linear pmogning for solving
large instances of the QCP up for all range of densities.






Chapter 4

Data Correcting Approach for the Simple Plant
Location Problem

In this chapter we improve the DC algorithm for general sopetular functions
by using a pseudo-Boolean representation of the Simplet Placation Problem
(SPLP) presented in the previous chapters. It is common letge that exact al-
gorithms for.#"#7-hard problems in general, and for the SPLP in particulandp
only about 10% of the execution time to find an optimal sohutidhe remaining
time is spent proving the optimality of the solution. In tloisapter, our aim is to
reduce the amount of time spent proving the optimality ofsthleition obtained. We
propose a data correcting algorithm for the SPLP that igydesi to output solutions
with a pre-specifiedcceptable accuracy (see Ghoslet al.[53]). This means that
the difference between the cost of the solution created éyalfjorithm is at most
€ more than the cost of an optimal solution. (Note that O results in an exact
algorithm for the SPLP, while = o results in a fast greedy algorithm). The objec-
tive function of the SPLP is supermodular (see Cornuegbial. [35]) and so, the
data correcting algorithm described in Section 3.2 (see@tddengoriret al.[66])
can be used to solve the SPLP. In fact, Section 3.3 contairexample to that
effect. However, it can be made much more efficient; for exeiniypy using SPLP-
specific bounds (used in Erlenkotter [44]) and preprocegssifes (used in Petrov
and Cherenin [118], Khachaturov [89], Khumawala [91], Eei¢46], Alcouffe and
Muratet [3]). The algorithm described here uses a pseudieBo representation of
the SPLP, due originally to Hammer [80] (see Section 4.2)sés a neviReduction
Procedure(RP) based on data correcting, which is stronger than therpcessing
rules used in Khumawala [91] to reduce the original instan@smaller ‘core’ in-
stance, and then solves it using a procedure based on PP afs@®Section 3.2 and
Goldengoriret al. [66]) algorithms. Recently, the RP procedure has been saf:ice
fully applied to the p-Median Problem (see Goldengorin amdskinsky [74, 75]).
Since the new Reduction Procedure is based on a lower boutek tS8PLP, we
have compared the computational efficiency of this procedarwo different lower
bounds. The first lower bound is the well known Khachaturanddx bound (see
Lemma 3.2) which is valid for a general submodular (supemwnadi function. The
second lower bound is due to Erlenkotter [44] which is baged pair of primal and
dual mathematical programming formulations of the SPLP.sWWaw how the use

83
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of preprocessing and bounds specific to the SPLP enhancetfugrmpance of the
data correcting algorithm. This algorithm is based on twocepts presented in the
previous chapter,namely, data correcting and the predingipreservation procedure
(see Chapter 2). Computational experiments with the dat@cting algorithm on
benchmark instances of the SPLP are also described in thjseh

4.1 Introduction

Given setd = {1,2,...,m} of sites in which plants can be locatdds {1,2,...,n}
of clients, a vectoF = (f;) of fixed costs for setting up plants at sites|, a matrix
C =[] of transportation costs frome | to j € J, and a unit demand at each
client site, the Simple Plant Location Problem (SPLP) isgheblem of finding a
setS, 0 C SC I, at which plants can be located so that the total cost offgaiis
all client demands is minimal. The costs involved in meeting client demands
include the fixed costs of setting up plants, and the tratafon cost of supplying
a given client from an open plant. We will assume that the ciapat each plant is
sufficient to meet the demand of all clients. We will furthesame that each client
has a demand of one unit, which must be met by one of the opdaatsplf a
client's demand is different from one unit, we can scale temand to a unit by
scaling the transportation costs accordingly.

A detailed introduction to this problem appears in Cornlsegt al. [35]. SPLP
forms the underlying model in several combinatorial proidelike set covering,
set partitioning, information retrieval, simplificatioflogical Boolean expressions,
airline crew scheduling, vehicle despatching (Christcii#2]), assortment (Beres-
nevet al.[14], Goldengorin [56, 64], Jonext al. [84], Pentico [116, 117], Tripathy
et al. [128]) and is a subproblem for various location analysisbfgms (ReVelle
and Laporte [124], ReVellet al.[123]).

The SPLP is NP-hard (Cornuejasal.[35]), and many exact and heuristic algo-
rithms to solve the problem have been discussed in thetliteraMost of the exact
algorithms are based on a mathematical programming fotioolaf the SPLP. Di-
rect approaches (Schrage [126], Morris [106]), use a BnBaggh and the strong
linear programming relaxation (SPLR) for computing bourtdswever such ap-
proaches cannot always output an optimal solution to aeesiged SPLP instances
in reasonable time. More efficient solution approachesd®&LP are based on La-
grangian duality (Helekt al. [83], Beresne\et al.[14]). Computational experience
of solving the Lagrangian dual using subgradient optinirahave been reported
in Cornuejolset al.[34] and Cornuejols and Thizy [36], and using Dantzig-Wolfe
decomposition in Garfinkedt al. [49]. Computer codes for solving medium sized
SPLP using a mixed-integer programming system are alsda@l@i(Martin and
Schrage [104], Van Roy and Wolsey [132]). Polyhedral rasiat the SPLP poly-
tope have been reported in Trubin [129], Balas and Padbérdvidkendi [107],
Cornuejolset al.[33], Krarup and Pruzan [95], Chet al.[30], and Cheet al.[31]. In
theory, these results allow us to solve the SPLP by applyiegimplex algorithm to
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SLPR, with the additional stipulation that a pivot to a nevireme point is allowed
only when this new extreme point is integral. Although soramputational expe-
rience using this method has been reported in the literdoéggnard and Spiel-
berg [77]), efficient implementations of this pivot rule arat available. Results of
computational experiments with Lagrangian heuristicaniedium sized instances
of the SPLP have been reported in Beasley [9]. Large-sizédP Sfstances can be
solved using algorithms based on refinements to a dual-ekeenistic procedure
to solve the dual of LP-relaxation of the SPLP (Korkel [93Jpmbined with the
use of the complementary slackness conditions to congpriroal solutions (Er-
lenkotter [44]). An annotated bibliography is availabld_abbé and Louveaux [98],
ReVelle aand Laporte [124], and ReVedeal.[123].

It is easy to see that any instance of the SPLP has an optirugiogoin which
each customer is satisfied by exactly one plant. We belieatdHhmmer (see Ham-
mer [80]) first used this fact to derive a pseudo-Booleanaggmtation of this prob-
lem. The pseudo-Boolean function developed in that workteass that contain
both a literal and its complement which can be replaced byffardint pseudo-
Boolean form containing terms with either only literals oyotheir complements.
This fact is clearly illustrated by an example in Hammer [80H has been gen-
eralized in Beresnev [13]. We find this form easier to mardpjland hence use
Hammer-Beresnev's formulation in this chapter.

The Hammer-Beresnev’s pseudo-Boolean representatidre @PLP facilitates
the construction of rules to reduce the size of SPLP ins&(i®eresneet al.[14],
Cornuejolset al.[35], Dearinget al.[38], Goldengoriret al.[69], Khumawala [91],
Veselovsky [133], and the references within). These ruiegtbeen used in Gold-
engorinet al.[67, 68] not only for preprocessing, but also as a tool toegittolve a
subproblem or reduce its size. They also use informatiam fi@ammer-Beresnev’s
pseudo-Boolean representation of the SPLP to computeesffibranching func-
tions (see Goldengoriat al. [67, 68]). For the sake of simplicity, we use a com-
mon depth first BnB scheme in our implementations and KhacbatMinoux (see
Khachaturov [89] and Minoux [105]) bound, but the concemsgaloped herein can
easily be implemented in any of the algorithms cited above.

The remainder of this chapter is organized as follows. IrtiSed.2 we describe
Hammer-Beresnev’s pseudo-Boolean approach to the SPURysanthis approach
to present Cherenin’s Preprocessing Rules 4.3. We themillesice ingredients of
Data Correcting Approach to the SPLP 4.4 and analyse thisapp by extensive
computational study 4.5 . We finally summarize this chapteBéction 4.6 with
concluding remarks.

4.2 A Pseudo-Boolean Approach to SPLP

An instance of the SPLP is described byraivectorF = (f;), and amx n matrix
C = [cij]. We assume thdt andC are finite, i.eF € O™, andC € 0™". We will use
themx (n+ 1) augmented matri¥~ |C] as a shorthand for describing an instance
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of the SPLP. The total codir|c;(S) associated with a solutio8 consists of two
components, the fixed cosfs.s fi, and the transportation costs. ; min{cj|i € S},

ie.
firic)(S Zsf.+zjm|n{c.,||68}
and the SPLP is the problem of finding
S e argmin{ fir () : 0 C SCI}. (4.1)

An mx n ordering matrix/T = [75;] is a matrix each of whose columig =
(raj,..., mn,-)T defines a permutation of 1., m. Given a transportation matri,
the set of all ordering matrice§ such thatCr;j < Crp;j < -+ < Cpj, for j =
1,...,n, is denoted byperm(C). A vector (aj,...,T;)", 1< k< m, is called a
sub-permutatiof the permutatiorfT;.

Defining

0ifieS .
| = { 1 otherwise,for eachi=1,....m (4.2)

we can indicate any solutid®by a vectory = (y1,Y2,...,Ym). The fixed cost com-
ponent of the total cost can be written as

m
=3 filt=w. (4.3)
i=
Given a transportation cost matx and an ordering matrikl € perm(C), we can
denote differences between the transportation costs &brjea J as

Ac[0, j] = cr,;j, and
Acll,j] = Crtyyayyi — Crijis [=1,.... m—1.

Then, for eachj € J,
min{cij|i € S} = Ac[0, j] + Ac[L, j] - Ym; + AC[2, ]] - Y, - Y
++Ac[m_1 J] 'yT[1j yﬂ(m 1)j

m_
Acl0, ]+ ZACKJ rlym,
so that the transportation cost component of the cost ofwdisoly corresponding
to an ordering matriX1 € perm(C) is
n { m-1 k }
Ten(y) =) (Acl0,j]+ 5 Ackj]-[]Ym; ;- (4.4)
Z kZl rﬂ :

=1

Lemma 4.1..% n(-) is identical for all[T € pern(C).
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Proof. Let T = [15;], ¥ = [¢);] € perm(C), and anyy € {0,1}™. It is sufficient to
prove that7c i (y) = Zcw(y) when

T = Yk 1)l (4.5)
Tks1)l = Y, (4.6)
o= if (i) # (k). (4.7)

Then

k k
Ten(y) — Zewly) = (Cry 1 — Crt) - 'l_lym — (Cypgesap! — Cpal) - _rl)hp” :
1= 1=

But (4.5) and (4.6) imply thactmm)” = Cry| andcw(
that7cn(y) = Zcw(y).

kil = Gyl whichin turnimply

Combining (4.3) and (4.4), the total cost of a solutipto the instancéF |C]
corresponding to an ordering matiik € permC) is

fieic.n(y) = Ze(y) + Zenly) =

m n { m-1 k }
=5 fil=y)+ > 14c0,j]+ 5 Aclk |- []ym (- (4.8)
i; JZl kgl rI:l :
Lemma 4.2.The total cost functiond c; 7 (-) is identical for all [T € perm(C).

Proof. This is a direct consequence of Lemma 4.1.

A pseudo-Boolean polynomiaf degreemis a polynomial of the form

= g

where 2" is the power set 0f1,2,...,m}, a constantit can assume arbitrary val-
ues, andy; is a Boolean variable. We call a pseudo-Boolean polynofig) a
Hammer-Beresnev functidfthere exists a SPLP instanffe|C] and /T € permC)
such thaP(y) = fiq,n(y) fory € {0,1}™. We denote a Hammer-Beresnev func-
tion corresponding to a given SPLP instafle(C] by /) (y) and define it as

e g (Y) = fiFic.n (y) wherell € perm(C). (4.9)

Theorem 4.1.A general pseudo-Boolean function is a Hammer-Beresnestifum
if and only if

(a) All coefficients of the pseudo-Boolean function exdeqséd of the linear terms
are non-negative, and

(b) The sum of the constant term and the coefficients of ali¢lyative linear terms
in the pseudo-Boolean function is non-negative.
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Proof. The “if” statement is trivial. In order to prove the “only ifStatement, con-
sider a SPLP instancé |C], an ordering matrix7 € permC), and a Hammer-
Beresnev function’Zjg ) (y) in which there is a non-linear term of degreevith

a negative coefficient. Since non-linear terms are corteibby the transportation
costs only, a non-linear term with a negative coefficientliegpthatAC[K, j] for
somej € {1,...,n} is negative. But this contradicts the fact th@ate permC).
Next suppose that it | (), the sum of the constant term and the coefficients
of the negative linear terms is negative. This implies that ¢oefficient of some
linear term in the transportation cost function is negatiet this also contradicts
the fact that'7 € perm(C). The logic above holds true for all memberspErmC)
as a consequence of Lemma 4.1.

Therefore we have shown (AlBdaivét al. [1]) that the total cost function
firic,n (+) is identical for allfT € perm(C). In other words

e g (Y) = firic.n (y) wherell € perm(C). (4.10)
We can formulate (4.1) in terms of Hammer-Beresnev funstas
y* € argmin{ g c)(y) 1y € {0,1}™y # 1}. (4.11)

Hammer-Beresnev functions assume a key role in the deveopaf the algo-
rithms described in the next sections.

Example 4.1Consider the SPLP instance:

77 15107 1
310174 112
31167 6 181
6(117 6 128

FIC] = (4.12)

Two of the four possible ordering matrices corresponding toe

13214 14214
24321 23421
41443 M=, 3,3|
32132 32132

My = (4.13)

The Hammer-Beresnev function i&frc)(y) = [7(1—y1) +3(1—y2) + 3(1—
Y3) 4+ 6(1 —ya)] + [7+ 3y1 + 1y1y2 + Sy1Y2ya] + [7 + Oyz + 8yaya + 2y1ysya] 4[4+
2y 4 0y2y3 + 4y2yaya] + [7 + 4y1 + 1y1y2 + 6y1yaya] + [8 + 2ya+ 4y1ya + 8y1ysya)
= 52—y — 3y3— 4Ya+ 2y1Y2 + 8YsYa + 4Ay1Ya + 11y1y2y4 + 10y1y3ya + 4y2ysYa.
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4.3 Cherenin’s Preprocessing Rules

Suppose that the given instance is not recognized to camesp a known polyno-
mially solvable special case. Then we have to use an exaarithlg for solving this
instance. The execution times of exact algorithms for theFS&re exponential in
the parametem. So any preprocessing rules, i.e. quick methods of redubmgize
of the given instance, are of much practical importancer& hee two preprocessing
rules available in the literature. The first one, due to Begeqd13], Cornuejolset
al. [35], Dearinget al.[38], and Veselovsky [133] states that if there are two dfen
that have the same sub-permutations of the transportaiiis o1 any ordering ma-
trix, then they can be aggregated into a single virtual tli€he second rule, due to
Cornuejolset al.[35], Dearinget al.[38] states that if the coefficien of the linear
term involvingyg is non-negative, theyy = 0 in an optimal solution, i.e, there exists
an optimal solution in which a plant will be opened in thag¢sit

The existing first rule is automatically applied and gerizeal when we construct
a Hammer-Beresnev function. In instance (4.12) we can ggtgeclients 1 and 4
by using the first rule. In the following example we see that$hme rule can be
used to further decrease the number of clients to three.

Example 4.2Consider the SPLP instance described in (4.12). Combitiaditst
and the fourth client we get the equivalent instance

71415101
3]12117 4 22
3347 6 14|
6|1237 6 8

[SIB] =

The Hammer-Beresnev function for both these instance#jisc)(y) = 52—
Yo — 3y3 — 4ya+ 2y1Y2 + 8yaya + Ay1ya + 11y1yoYa + 10y1yays + 4yoyaya. Since this
Hammer-Beresnev function can be represented/gsc)(y) = [1(1—y2) +3(1—
¥3) +4(1—Ya)] + [44-+0y1 +2y1y2 + 11y1Yoya] + [0+ Oyz -+ 8yaya + 4yzYays] + [0+

Oys + 4y1ya + 10y1y3Ya].
the following equivalent instance withreevirtual clients is also possible:

0144 120
1|44 8 14
[Sl|Dl]_ 3|1570 4

4460 O

The first virtual client is obtained by aggregating clientarid 4, the second by
aggregating clients 2 and 3, and the third by aggregatimgidi2 and 5 from the
original set of clients.

In the remainder of this section we will show that the secatelis equivalent to
the Khumawala’s “delta” rule (see Efroymson and Ray [43]uKtawala [91] and
Canelet al. [23]). In fact this rule is a special case of Cherenin’s Edahg Rules,
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and our Preservation Rules (see Chapter 2), developedperswdular functions
(see Cherenin [29]). In contrast to Khumawala [91] we use MamBeresnev func-
tions to justify the correctness of “delta” and “omega” 8jlsince such a justifica-
tion leads to an efficient implementation of these rules.

The pseudo-Boolean representation of the SPLP allows us/ab rules using
which we can peg certain variables in a solution by examithiegoefficients of the
Hammer-Beresnev functions. The rule that we use here isideddn Goldengorin
etal.[68] as a Pegging Rule. We assume, without loss of generaythe instance
is not separable, i.e. we cannot partitioimto setsl; andl,, andJ into setsJ; and
Jz, such that the transportation costs from sitek ito clients inJ,, and from sites
in I, to clients inJ; are not finite. We also assume without loss of generality, tha
the site indices are arranged in non-increasing ordér-efy j; cij values.

Theorem 4.2.(Cherenin’s Excluding Rules see also Khumawala’s “delta” and
“‘omega” rules [91] and Pegging Rule in Goldengorin et al. [p8Let 7 (y) be
the Hammer-Beresnev function corresponding to the SPLBnns[F|C] in which
like terms have been aggregated. bgt= (zj:nlj:kAc[l, i]) — fk be the coefficient
of the linear term corresponding yp and let

n m-1 _
t= > > Acp, j]
=1 =2
j:ke{;lj,...,npj}

be the sum of the coefficients of all non-linear terms comgirty, for each site
indexk. Then the following holds.

(a) RO: Ifa, > 0, then there is an optimal solutign in whichyy = 0, else
(b) RC:Ifa+t <0, then there is an optimal solutigtin whichyy = 1, provided
yi # 1 for somei # k.

Proof.

(a) Supposey > 0. Let us consider a solutignin whichyy = 1 and a solutioy’ in
whichy! =y; for eachi # k, andy, = 0. Now%’f,:‘q (y) — g (y') > a > 0.
Hencey' is preferable tg. This shows thay, = 0 is an optimal solution.

(b) Next suppose thai +tx < 0. Consider two solutiongandy’, such thay, =y,
for eachi #k, yx = 0, andy, = 1. Then

Ao (y') — Heg(y)

n m-1

:{iif (1-vY) +Z > Aclp, j] |j)/m}

=1p=1

n m-1

{if (1-yi +Z > Aclpj] rlym,

=1p=1
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= {~ Tk~ Zf>/+z Z Ac[p, ]] I_!)/rh

1ps+1
SiTsj=

{—fivk — Z fiyi + i z Acp, | rl)/m,

I#k j:ke{rglj ..... npj}
——
C
n m-1 p
Aclp, jI []ym;} (4.14)
2 goerle
kg {mj,. "pj}
D

Notice that the terms markédandC cancel each other singe=y, wheni #Kk,
as do the terms markdslandD. Canceling these terms and settipg= 0 and
Yi = 1in (4.14) we obtain

Hriq(Y) — e q(y)
n

m-1 P
=i 3 3 Acpl [V} o
=i p=1 r=
jtke{mj,...,myj}

which, on separating the linear and non-linear terms

n m-1
a3 3 ARk (4.16)
p= r=

An upper bound to (4.16) isk + tx, which is obtained by setting = 1 for
eachi € |, since all non-linear terms in the Hammer-Beresnev funchiave
non-negative coefficients. Thus

Heiq(Y) — A g (y) < (ax+1t) < 0. (4.17)

Hencey’ is preferable tg/. This shows thay, = 1 in an optimal solution. Of
course, ifyf =1 for all i # k, then settingy; to 1 would yield an infeasible
solution.

Note thatty > 0 for each index, since the non-linear terms of the Hammer-
Beresnev function are non-negative. Tlays-tx < 0 implies thatay < 0. If tx = 0O,
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then there is a possibility @& being equal to zero, but this possibility is taken care
of in the first part of the rule.

The importance of the ordering of the site indices is denratedd in the follow-
ing lemma.

Lemma 4.3.If ax < 0 and &+t < O for each ke | in g (g (y) for the SPLP
instance[F |C], then an optimal solution would b, 1,...,1,0) assuming that the
site indices are arranged in non-increasing order pf-fy ;. ; ij values.

Proof. Let us initially relax the constraint=# 1in (4.11). In such a case it is easy
to see that the optimal solution would pe=1 (from (4.17)). If we reimpose the
constraint, we need to set one or mgyevalues to 0. Changingx = O for any
variablek € | increases the value of the Hammer-Beresnev functiofg Byy ;< ; Cj.
Note that settingyk = 0 does not affect the non-positive natureapt-t;, i # k, since
this operation does not affeat and can only reduce the valuetpfAlso note that
setting any additional variablg, i # k to O cannot reduce the value of Hammer-
Beresnev function sincg < 0 anda; +t; < 0 for eachi # k. The result follows.

The lemma above is illustrated by the following example. §ider a SPLP in-
stancgF |C], m=n= 3, in whichF = (99,100,98) and

0 1013
C=]10 0 16
1316 O

The Hammer-Beresnev function for this instance is

H(r|c) = 297— 891 — 90y2 — 85y3+ 9y1y2 + 3y1Ys.

Itis clear thata, < 0 andax +tx < 0 fork= 1, 2, and 3. Therefore the Pegging Rule
will solve this instance completely, sgt = 1 the first two sites it encounters, and
setyx = 0 for the last site. However, the solution would be corredy d@finthe last
site encountered has the lowdst y ;;cij value, i.e., if site 1 is considered after
sites 2 and 3. In general therefore, the sitehould be ordered in non increasing
values offi + 3 jc; Gij.

Since there ar&(mn) terms in the Hammer-Beresnev function corresponding to
a SPLP instance witin candidate sites anuclients, the computational complexity
of the preprocessing rule stated abovéisnn).

Notice that if at any preprocessing step, we can determatgith= 1 for a certain
sitek, then we need not include the row corresponding toksiteour calculations,
and can therefore drop this row from the extended matrix énstincceeding steps.
This deletion of rows is not possibleyif = 0, since we do not know beforehand the
whole set of clients that be served by a plant located at tt@srsany equivalent
instance of the SPLP. The preprocessing rules also allow teduce the number
of clients in the problem. If there is a client, the cost ofisging whose demand
by a site determined to be open by RO is less than the costiefysag it by any
site whose status was not determined by preprocessing thiaémrlient could be
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removed from further consideration. We could also clusterdients based on the
Hammer-Beresnev function, as illustrated in the followihx@mple.

Example 4.3Consider the SPLP instance

77 15107 1
3(10178 112
316 7 6 181
6(117 6 128

[FIC] =

The Hammer-Beresnev function for this instance%%‘q((yl,yz, V3,Y4)) =
54+-0y1—3y2—3y3 —4ya+2y1Y2+ 4y1ya+ 10y3ys + 11y1y2ya+ 10y1y3ys + 2y2y3Ya.
Since the coefficient of; is zero we can sgt; = 0. The Hammer-Beresnev func-
tion then becomes#r ¢ ((0,Y2,Y3,Ya)) = 54— 3y> — 3y3 — 4ys + 10y3ya + 2yoYy3Ya.
The coefficient of the linear term involving is negative and its magnitude in the
revised Hammer-Beresnev polynomial is 3 while the sum ofeatihs containing
y» in the transportation cost component is 2. So we caryset1l. The Hammer-
Beresnev function then changesGr ¢ ((0,1,y3,Y4)) = 51— 3y3 — 4ys + 12y3ya.
One of the instances that such a Hammer-Beresnev functiwaspmnds to is the
following one (with rows corresponding ¥Q, y3 andya, respectively, since we have
deleted the row correspondingyg).

0|56
[SD] = | 3|44
4|44

It is easy to see that an optimal solution to this instangg is y3 = 0 andy, =
ya4 = 1. So an optimal solution to the SPLP instance is to set ugpkrsites 1 and
3.

Hence we have reduced the size of the instance at hand, dnd @ase, arrived at
an optimal solution to the original instance using the poepssing rules described
above.

We carried out some preliminary computation to check thensfth of our pre-
processing rule. We used 12 benchmark problems in the ORubyilonaintained by
Beasley [10]. The results are summarized in colummefter Procedure a” of Ta-
ble 4.1. Notice that the status of almost half of the numbsites could be predicted
using the preprocessing rule. In particular, the secontdgb#ne rule, that allows us
to predict sites which wilhot be opened in an optimal solution, is quite powerful
for these instances.

4.4 Ingredients of Data Correcting for the SPLP

Data correcting is a method in which we alter the data in alprolinstance to con-
vert it to an instance that is easily solvable. This methoggwas first introduced
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in [59]. In this subsection we illustrate the method for tH.8 when the instance
data is represented by the fixed cost vector and the trarsjportost matrix. How-

ever it can be applied to a wide variety of optimization pewbs, and in particular,
to the SPLP represented as a Hammer-Beresnev function.

Consider an instand€ |C] of the SPLP. The objective of the problem is to com-
pute a seP, 0 C P C I, that minimizesfg | (P). Also consider a SPLP instance
[SID] that is known to be polynomially solvable. LP@C and P[*SD} be optimal
solutions to[F|C] and [S|D], respectively. Let us define the proximity measure
p([F|C],[SD]) between the two instances as

p([FIC],[SD]) Z”I s|+zjmax{|c.J dij| :iel}. (4.18)

We use max|cij —dij| :i € I} in (4.18) instead of the expressigh,, |cij — dij],
since, in an optimal solution, the demand of each clienttisfead by a single facil-
ity, only one element in each column in the transportatiotravill contribute to
the cost of the optimal solution.

Notice thatp([F|C],[SD]) is defined only when the instancgqC| and[SD] are
of the same size. Also note that[F|C],[SD]) can be computed in time polynomial
in the size of the two instances. The following theorem, WwHmrms the basis for
data correcting, shows tha{([F|C],[SD]) is an upper bound to the difference be-
tween theunknownoptimal costs for the SPLP instand&3C] and[S|D].

Theorem 4.3.Let [F|C] and [S|D] be two SPLP instances of the same size, and let
P ) @nd Ry, be optimal solutions tfF |C] and[S|D], respectively. Then

1fir1c) (P o) — fisp) (Pigpp)| < P([FIC], [SD]).

Proof. There are two cases to consider.

Case Lifjr g ( [F\C]) < figp) (P [SD}) and

Case 2:fig|g( [F\C]) > figpj( [ao]) We only prove Case 1 here; the proof of Case
2 is similar to that of Case 1.

firic (Pie) = fiso)(PFspp) < firic(Rspp) — fisiol (o)

= Yiepg, [fi 8]+ Zjea(min{c i € Pgp } —

min{d;; :i € P@D]}).

Letci,(j); = min{cij :i € Bgp } andd;(j); = min{d;; : i € Bgp }. Then

f[F\c:](P[*F\c]) — fis0)(Pspy)

< Y [fi-s]+ 3 () — il
iePZ i J; ic(i)] ia(i)i
S +ch.d diyi

SD]
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< . [fi—s]+ Zj[max{cij —dij:ie P[*SD]}]
IEP[SD] IE

< Ifi—s|+ S [max{|cij —dij| :i €1}]
‘E%m J;

<> [fi—s[+ ij—dij il
;l s J;[maxﬂc, jlriel}]

= p([FIC],[SDJ).

Theorem 4.3 implies that if we have an optimal solution to BiSRstancdS D],
then we have an upper bound falt SPLP instancef~|C] of the same size. This
upper bound is actually the distance between the two inegmlistances being de-
fined by the proximity measure (4.18). Also if the solution$®] can be computed
in polynomial time, (i.e[S D] belongs to a polynomially solvable special case) then
an upper bound to the cost of as yet unknowmptimal solution toF |C] can be
obtained in polynomial time. If the distance between théginses is not more than
a prescribed accura@y then the optimal solution dB|D] is, in fact, a solution to
[F|C] within the prescribed accuracy. This theorem forms theshafsilata correct-
ing.

In general, the data correcting procedure works as folldiassumes that we
know a class of polynomially solvable instances of the peobllt starts by choos-
ing a polynomially solvable SPLP instan@D] from that class of instances, prefer-
ably as close as possible to the original instaffg€]. If p([F|C],[SD]) < ¢, the
procedure terminates and returns an optimal solutid$|id] as an approximation
of an optimal solution tdF |C]. The instancéF|C] is said to be ‘corrected’ to the
instance[S|D], which is solved polynomially to generate the solution otitpy the
procedure. Otherwise, the set of feasible solutions forpitedlem is partitioned
into two subsets. For the SPLP, one of these subsets is caedmf solutions that
locate a plant at a given site, and the other is comprisedofisos that do not. The
two new instances thus formed are perturbed in a way thatlibdy change into
instances that are within a distanedrom a polynomially solvable instance. The
procedure is continued until an instance with a proximityaswge not more thasn
is obtained for all the subsets generated.

4.4.1 The Reduction Procedure

The Data Correcting Algorithm (DCA) that we propose in tHiapter is the one that
uses a strong Reduction Procedure (RP) to reduce the diiigtence into a smaller

‘core’ instance, and then uses a data correcting proce@€e,(see Figure 3.1 in

Section 3.2) to obtain a solution to the original instandeg®e cost is not more than
a pre-specified amougtmore than the cost of an optimal solution.
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The first preprocessing RO and RC rules (see Theorem 4.2 seStibn 4.3) for
the SPLP involving both fixed costs and transportation aggteared in Cherenin [29],
Khachaturov [89], Khumawala [91], Frieze [46], AlcouffecaMuratet [3].

Notice that RO and RC primarily try to either open or closesitf it succeeds, it
also changes the Hammer-Beresnev function for the instaedacing the number
of non-linear terms therein. In the remaining portion ofthilbsection, we describe
a completely newReduction ProceduréRP), whose primary aim is to reduce the
coefficients of terms in the Hammer-Beresnev function, dmekican reduce it to
zero, to eliminate the term from the Hammer-Beresnev foncfrhis procedure is
based on fathoming rules of BnB algorithms and data corrggtiinciples.

Let us assume that we have an upper bolhd)(on the cost of an optimal so-
lution for the given SPLP instance. This can be obtained bying a heuristic on
the problem data. Now consider any non-linear tesqnf:lymj, in the Hammer-
Beresnev function. This term will contribute to the cost aidution, only if plants
arenotlocated in any of the sites, ..., 7§;. Let|b be a lower bound on the op-
timal solution of the SPLP with respect to the subspace fdackvho facilities are
located in sitesgj, ..., 7§;. If Ib <UB, then we cannot make any judgement about
this term. On the other hand,|lf > UB, then we know that there cannot be an opti-
mal solution withyr; = ... =y, = 1. In this case, if we reduce the coefficierty
Ib—-UB-—¢, (¢ > 0, small), then the new Hammer-Beresnev function and thg-ori
nal one have identical sets of optimal solutions. Note thatalues of uppey B and
lowerlb bounds are calculated not necessarily for the same subspteasible so-
lutions. If after the reductiors is non-positive, then the term can be removed from
the Hammer-Beresnev function. Such changes in the HammesBev function
alter the values df, and can possibly allow us to use Cherenin’s Excluding Rules
to close certain sites. Once some sites are closed, some théar terms in the
Hammer-Beresnev function change into constant terms, ame ®f the quadratic
terms change into linear ones. These changes cause chargeh theay and the
tk values, and can make further application of Cherenin’sidiolg Rules, thus pre-
processing some other sites, and making further changég iHdammer-Beresnev
function. A pseudocode of the reduction procedure RR(c;(y)) is provided be-
low.

Let us consider the application of all preprocessing ruethe following SPLP

instance:
9|7 122213

48 9 1817
3|16 17 10 2
6|9 131011

Two possible ordering matrices correspondin@Gtare

[F|C] = (4.19)

1234 1244
2141 2131
M=\ andlla=|,,55|

3313 3313

(4.20)
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Procedure RP(fg c(Y))
begin
repeat
Compute an upper bourdlB for the instance;
for each nonlinear termﬂ'r‘:lyrﬂ in g c)(y) do

begin
Compute lower bountb on the cost of solutions in
which plants are not located in siteg;, . . ., 7kj;
if Ib >UB then

Reduce the coefficient of the term by
max{s,Ib—UB—¢};
end
Apply Khumawala’s rules until no further preprocessing
is possible;
Recompute the Hammer-Beresnev functisffi ) (y);
until no further preprocessing of sites was achieved
in the current iteration;
end;

The Hammer-Beresnev function i c;(y) = [9(1—y1) +4(1—y2) + 3(1—
y3) +6(1—ya)] +[7+ 1y1 + Ly1yo + 7y1y2ya] +[9+ 3y2 + 1y1y2 + 4y1yaya] + [10+
Oy3 -+ 8yaya + 4y2YaYa] 4 [11+4 2y4+ 4y1ys + 10y1y2Ya

= 59— 8y1 — Y2 — 3y3 — 4y4+ 2y1Y2 + 4Y1Ya + 8yaya + 21y1Y2Ya + 4y2y3Ya.
The values ofy, ty anday +tx are as follows:

k- 1 2 3 4
a: 81 3 4
t : 27 27 12 37

a+t: 19 26 9 33

It is clear that neither RO nor RC is applicable here, sineectiefficient of the
term 23y,y,y4 is too large. Therefore, we try to reduce this coefficient pglging
RP.

The upper bound) B = 51 to the original problem can be obtained by setting
y1 =Y4 =1 andy, = y3 = 0. A lower bound to the subproblem under the restriction
Y1 =Y2=Ya=1is 73, since/frc)(1,1,0,1) = 73. In virtue of RP, we can reduce
the coefficient of 2§;1y,y4 by 73— 51— € = 20, so that the new Hammer-Beresnev
function, with the same set of optimal solutions as the aggfunction becomes,
H'(Y) = 59— 8y1 — Y2 — 3y3 — 4ya + 2y1Y2 + 4y1Ya + 8ysya + 1y1y2ya + 4y2Yaya.
The updated values af;, tx, anday + tx are presented below.

k: 1 2 3 4
ay -8-1-3-4
t 7 7 12 17

att:—-1 6 9 13
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RC can immediately be applied in this situation toyset 1. Updating7#” (y), we
can apply RO and seb = y4 = 0. This allows us to apply RC again to sgt= 1,
yielding the optimal solutioril, 0, 1,0) with cost 48.

4.4.2 The Data Correcting Procedure

We have used our data correcting procedRnezedureDC(S, T, €; A, ¥) from Chap-
ter 2 in which we sed™ = max{ax | ke S\ T} andd™ = min{ax+tx | ke S\ T}.
Let us suppose that the DC procedure is applied to the SPt&hicejF [C]. On ter-
mination, it outputs two subse®andT, 0 C SC T C . If S=T, then the instance
is said to have been solved by this procedure, an8 sein optimal solution. Since
the PP procedure is a polynomial time algorithm, instanbasit solves to opti-
mality constitute a class of algorithmically defined polymially solvable instances.
We have called such instandeR-solvableWe use this class of polynomially solv-
able instances in our algorithm, since it is one of the besirgnthe polynomially
solvable cases discussed in Goldengorin [64].

Next suppose that the given instance is not PP-solvabldndindase we try to
extend the idea of the PP procedure to obtain a solution saththe difference
between its cost and the cost of an optimal solution is bodryea pre-defined
valuee. This is the basic idea behind the data correcting procedure

In cased = min(d,d") > ¢, then data correction cannot guarantee a solution
within the prescribed allowable accuracy, and hence we teede a branching
procedure.

The data correcting procedure (DCP, see below) in our dlguoriakes two sets
STCI(@cScT Cl)ande as input. It outputs a solutioh and a boung, such
that fig i (A) — fir i (P*) < v < €, whereP* is an optimal solution t¢F|C]. Itis a
recursive procedure that first tries to reduce theTses by applying Lemma 3.1b
and Lemma 3.1a. If Lemma 3.1b and Lemma 3.1a cannot be aptilien it tries
to apply Lemma 3.1d and Lemma 3.1c to rediicgS (see Section 3.2). We do
not use the reduction procedure at this stage since it isesethe computational
times substantially without reducing the core problem epiably. If even these
lemmas cannot be applied, then the procedure branches omberiec T \ Sand
invokes two instances of DCP, one with sBts{k} andT, and the other with sets
SandT \ {k}. Notice that the solutions searched by the two invocatidri3@P
are mutually exclusive and exhaustive. A bound is used toovenunpromising
subproblems from the solution tree. The choice of the briamgctariablek € T\ S
in DCP is motivated by the observation tlaat< 0 andt, + ax > 0 for each of these
indices. (These are the preconditions of the branching.rdlelant would have
been located in this site in an optimal solution if the codédfit of the linear term
involving yk in the Hammer-Beresnev function had been increaseéddyyWe could
have predicted that a plant would not be located there if #mescoefficient had
been decreased hy-+ ay. Therefore we could usg = averagé—ay, tx +ax) = %k
as a measure of the chance that we wil be able to predict the fate of sikein
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any subproblem of the current subproblem. If we want to redhbe size of the BnB
tree by assigning values to such variables, then we can ttiakranching function
(see Goldengoriet al.[67]) that branches on the indé&e R, \ B with the largest
@ value.

4.5 Computational Experiments

The execution of the DCA can be divided into two staggstegrocessingtage in
which the given instance is reduced to a core instance by i and aolution
stage in which the core instance is solved using DCP.

In the preprocessing stage we experimented with the fotigwiree reduction
procedures.

(&) The “delta” and “omega” rules from Khumawala [91];

(b) Procedure RP with the combinatorial Khachaturov-Mbaund to obtain a
lower bound, and

(c) Procedure RP with the LP dual-ascent Erlenkotter bosee Erlenkotter [44])
to obtain a lower bound.

The Khachaturov-Minoux bounid is a combinatorial bound for general super-
modular functions (see Lemma 3.2 due to Khachaturov [89]Mimdux [105]).

We also experimented with the Khachaturov-Minoux boundtaedErlenkotter
bound in the implementation of the DCP.

The effectiveness of the reduction procedure can be medsitheer by comput-
ing the number of free locations in the core instance, or bygmating the number
of non-zero nonlinear terms present in the Hammer-Berekmeation of the core
instance. Note that the number of non-zero nonlinear temesent in the Hammer-
Beresnev function is an upper bound on the number of unasgigastomers in
the core instance. Tables 4.1 and 4.2 show how the variousoaebf reduction
perform on the benchmark SPLP instances in the OR-Libraea¢iey [10]). The
existing preprocessing rules due to Cherenin [29] and Khuatea[91] (i.e. proce-
dure (a), which was used in the SPLP example in Goldenggral. [66]) cannot
solve any of the OR-Library instances to optimality. Howg\tke variants of the
new RP (i.e. procedures (b) and (c)) solve a large numberesktinstances to op-
timality. Procedure (c), based on the Erlenkotter bound ésgmally better than
procedure (b) in terms of the number of free locations (Tdkl¢, but substantially
better in terms of the number of non-zero nonlinear termiénHammer-Beresnev
function (Table 4.2).

The information in Tables 4.1 and 4.2 can be combined to shatvwsome of the
problems that are not solved by these procedures can achégadiolved by inspec-
tion of the core instances. For example, consider cap74.e&/i¢hat the core prob-
lem (using procedure (a)) has two free variables and ondinear term. Therefore
the Hammer-Beresnev function of the core instance looles lik
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A+ PYu+ Q¥+ M'YuYw,

wherep,q< 0,r >0, min{p+r,p+q} > 0 andAis a constant. The minima of such
functions are easy to obtain by inspection.

In addition, Tables 4.1 and 4.2 demonstrate the superiofithe new prepro-
cessing rule over the “delta” and “omega” rules. Consideef@ample the problem
capl32. The “delta” and “omega” rules reduce the problem 8@mm = 50 and
2389 non-zero nonlinear termsid = 27 and 112 non-zero nonlinear terms. How-
ever, the new preprocessing rule reduces the same problemetbavingn' = 5
and 3 non-zero nonlinear terms.

Problemm n mafter

Procedure

a b c
cap7l 1650 4 0 O
cap72 1650 6 0 O
cap73 1650 6 3 3
cap74 1650 2 0 O
caplol 2550 9 0 O
capl02 255013 3 0
caplo3 255014 0 O
caplo4 255012 0 O

capl31 505034 32 8
capl32 50502725 5
capl33 50 50 25 19 10
capl34 505019 0 O

Table 4.1 Number of free locations after preprocessing SPLP instaimcthe OR-Library.

Problem # of non-zero terms
before preprocessing after Procedure
a b c
cap71 699 6 O 0
cap72 699 12 0 O
cap73 699 13 2 2
cap74 699 1 0 O
capl01 1147 24 0 0
capl102 1147 33 2 0
capl03 1147 38 0 0
capl04 1147 29 0 O
cap131 2389 163 135 8
capl32 2389 112 92 3
capl33 2389 101 60 11
capl34 2389 62 0 O

Table 4.2 Number of non-zero nonlinear terms in the Hammer-Beresngetion after prepro-
cessing SPLP instances in the OR-Library.
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In order to test the effect of bounds in the DCA, we comparectttecution times
of DCA using the two bounds on some difficult problems of theetguggested in
Korkel [93] (see Subsection 4.5.4 for more details). Théopmms were divided into
seven sets. Each set consists of five problems, each havisige85and 65 clients
(see Subsection 4.5.4 for more details regarding thesdégmmsh. From Table 4.3 we
see that the Erlenkotter bound reduces the execution tkee tay the Khachaturov-
Minoux bound (that was used in the SPLP example in Goldengural. [66]) by
a factor of more than 100. This is not surprising, since thadfiaturov-Minoux
bound is derived for a general supermodular function, whiéeErlenkotter bound
is specific to the SPLP.

Problem Execution time of the DCP (sec)
Set  Khachaturov-Minoux bound Erlenkotter Bound
Set 1 119.078 0.022
Set 2 290.388 0.040
Set 3 458.370 0.056
Set 4 158.386 0.054
Set 9 428.598 0.588
Setl0 542.530 0.998
Setll 479.092 2.280

Table 4.3 Comparison of bounds used with the DCA on Korkel-type insés withm=n = 65.

We report our computational experience with the DCA on savieenchmark
instances of the SPLP in the remainder of this section. Thi@mpeance of the al-
gorithm is compared with that of the algorithms describethachapters that sug-
gested these instances. We implemented the DCA in PASCAhpited it using
Prospero Pascal, and ran it on a 733 MHz Pentium Il machihe.cbmputation
times we report are in seconds on our machine.

4.5.1 Bilde and Krarup-Type Instances

These are the earliest benchmark problems that we congderfhe exact instance
data is not available, but the process of generating thdgmoinstances is described
in Bilde and Krarup [15]. There are 22 different classes efances, and Table 4.4
summarizes their characteristics.

In our experiments we generated 10 instances for each ofjples bf problems,
and used the mean values of our solutions to evaluate therpeahce of our algo-
rithm with the one used in Bilde and Krarup [15]. In our implemtation, we used
the reduction procedure (b) and the Khachaturov-Minouxlddn the DCP.

The reduction procedure was not useful for these instacgdhe DCA could
solve all the instances in reasonable time. The results o&rperiments are pre-
sented in Table 4.5. The performance of the algorithm impleted in Bilde and
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Typem n f Cij
B 50 100 Uniform(1000, 10000) Uniform(0, 1000)
C 50 100 Uniform(1000, 2000) Uniform(0, 1000)
Dgt 30 80 Identical, 1008q  Uniform(0, 1000)
Eq' 50 100 Identical, 1000q Uniform(0, 1000)
tq=1,...,10.

Table 4.4 Description of the instances in Bilde and Krarup (1977).

Problem DCA Bilde and Krarup [15]
Type Branching CPU time Branching CPU Tife
B 11.72 0.67 43.3 4.33
Cc 17.17 14.81 * >250
D1 13.80 0.65 216 11
D2 12.13 0.38 218 24
D3 10.87 0.19 169 19
D4 10.25 0.15 141 17
D5 9.24 0.07 106 14
D6 8.99 0.09 101 15
D7 8.79 0.09 83 13
D8 8.60 0.09 55 11
D9 8.15 0.07 47 11
D10 7.29 0.03 43 11
El 18.66 35.28 1271 202
E2 16.14 8.64 1112 172
E3 14.59 3.81 384 82
E4 13.65 2.74 258 65
E5 12.73 2.01 193 53
E6 11.82 0.90 136 43
E7 10.82 0.53 131 42
E8 10.79 0.68 143 48
E9 10.62 0.76 117 44
E10 10.36 0.69 79 37

T IBM7094 seconds.
* could not be solved in 250 seconds.

Table 4.5 Results from Bilde and Krarup-type instances.

Krarup [15] was measured in terms of the number of branchipeyations per-
formed by the algorithm and its execution time in CPU secamnds IBM 7094
machine. We estimate the number of branching operationsibglgorithm as the
logarithm (to the base 2) of the number of subproblems it ggad. From the table
we see that the DCA reduces the number of subproblems geddnathe algorithm
in Bilde and Krarup [15] by several orders of magnitude. Tikiespecially inter-
esting because Bilde and Krarup use a bound (discoveredsin) i@entical to the
Erlenkotter bound in their algorithm (see Korkel [93]) and use the Khachaturov-
Minoux bound. The CPU time required by the DCA to solve thesdblems was
too low to warrant the use of argy> 0.
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4.5.2 Gahao and Raggi-Type Instances

Galvao and Raggi [47] developed a general 0-1 formulaticthe@ SPLP and pre-
sented a 3-stage method to solve it. The benchmark instanggssted in this work

are unique, in that the fixed costs are assumed to come fromradldistribution
rather than the more commonly used Uniform distributiore Tlansportation costs

for an instance of sizen x n with m= n are computed as follows. A network, with

a given arc density is first constructed, and the arcs in the network are assigned
lengths sampled from a uniform distribution in the rafe] (except fom = 150,
where the range i§l,500). The transportation cost fromto j is the length of

the cheapest path froirto j. The problem characteristics provided in Galvao and
Raggi [47] are summarized in Table 4.6.

Problem Size Density Fixed costs’ parameters

(m=n) 0 mean standard deviation
10 0.300 4.3 2.3
20 0.150 9.4 4.8
30 0.100 13.9 7.4
50 0.061 25.1 14.1
70 0.043 423 20.7
100 0.025 51.7 28.9
150 0.018 186.1 101.5
200 0.015 149.5 94.4

Table 4.6 Description of the instances in Galvao and Raggi (1989).

As with the data in Bilde and Krarup [15], the exact data far thstances are
not known. So we generated 10 instances for each problenesidaised the mean
values of the solutions for comparison purposes. In our D@plémentation, we
used reduction procedure (b) and the Khachaturov-Minouxtdan the DCP. The
comparative results are given in Table 4.7. Since the coenpuised are different,
we cannot make any comments on the relative performancesafdlution proce-
dures. However, since the average number of subproblenesajed by the DCA is
always less than 10 for each of these instances, we can claritiat these problems
are easy for our algorithm. In fact they are too easy for théD@warrante > 0.

Note that the average number of opened plants in the optiohatiens to the
instances we generated is quite close to the number of ogdaets in the opti-
mal solutions reported in Galvao and Raggi [47]. Also obsehat the reduction
procedure was quite effective — it solved 35 of the 80 instargenerated.
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Problem DCA Galvao and Raggi [47]
Size  #solved #ofsub- CPU #ofopen CPU # of open
by pre-
(m=n) processing problenfs time'  plantd time* plants
10 6 23 <0.001 47 <1 3
20 5 2.4 <0.001 9.0 <1 8
30 7 1.8 0.002 13.6 1 11
50 7 2.6 0.002 20.3 2 20
70 2 3.8 0.004 28.8 6 31
100 3 35 0.011 41.1 6 44
150 1 7.8 0.010 64.4 25 74
200 4 29 0.158 81.8 63 84

T Average over 10 instances.
* IBM 4331 seconds.

Table 4.7 Results from Galvao and Raggi-type instances.

4.5.3 Instances from the OR-Library

The OR-Library ([10]) has a set of instances of the SPLP. &hiestances were
solved in Beasley [9] using an algorithm based on the Ladaanbeuristic for
the SPLP. Here too, we used reduction procedure (b) and theh&turov-Minoux
bound in the DCP. We solved the problems to optimality usirg@CA. The re-
sults of the computations are provided in Table 4.8. The @i@t times suggest
that the DCA is faster than the Lagrangian heuristic desedrib Beasley [9]. The
reduction procedure was also quite effective for theseaimtsts, solving 4 of the
16 instances to optimality, and reducing the number of fites appreciably in the
other instances. Once again the useaf 0 cannot be justified, considering the
execution times of the DCA.

DCA

Problem m after pre- # of sub- CPU CPU time # of open
name m n processing problems time ([9]) plants
cap71 16 50 * 0 <0.01 0.11 11
cap72 16 50 * 0 <0.01 0.08 9
cap73 16 50 * 0 <0.01 0.11 5
cap74 16 50 * 0 <0.01 0.05 4
capl01 25 50 9 6 <001 0.18 15
capl102 25 50 13 16 <0.01 0.16 11
capl103 25 50 14 16 <0.01 0.14 8
capl04 25 50 12 7 0.01 0.11 4
cap131 50 50 34 196 0.01 0.31 15
capl32 50 50 27 183 0.02 0.28 11
cap133 50 50 25 71 <0.01 0.29 8
cap134 50 50 19 25 <0.01 0.15 4

* instance solved by preprocessing only.
T Cray-X-MP/28 seconds.

Table 4.8 Results from OR-Library instances.
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4.5.4 Korkel-Type Instances with 65 sites

Korkel [93] described several relatively large EuclidedlB instancesni=n =
100, andm = n = 400) and used a BnB algorithm to solve these problems. The
bound used in that work is an improvement on a bound basedeoduél of the
linear programming relaxation of the SPLP due to Erlenk¢#t4] and is extremely
effective. The bound due to Erlenkotter [44] is very effeethecause, for a large ma-
jority of SPLP instances, the optimal solution to the dugheflinear programming
relaxation of the SPLP is integral. In this subsection, weinstances that have the
same cost structure as the ones in Korkel [93] but for wiich n = 65. Instances
of this size were not dealt with in Korkel [93]. We used redoiciprocedure (b) for
the RP, and the Khachaturov-Minoux bound in the DCP.

In Korkel [93], 120 instances of each problem size are desdriThese can be
divided into 28 sets (the first 18 sets contain 5 instances, @l the rest contain 3
instances each). We solved all the 120 instances we gedeaatkfound out that the
instances in Sets 1, 2, 3, 4, 10, 11, and 12 are more difficstilice than others. We
therefore used these instances in the experiments in ttti®seThe transportation
cost matrix for a Korkel instance of sizex nis generated by distributingpoints in
random within a rectangular area of size 200300 and calculating the Euclidean
distances between them. The fixed costs are computed asl&n4lab

Problem Set # of instances Fixed costif8rinstance
Set 1l 5 Identical, set at 1446.6i

Set 2 5 Identical, set at 1446.6i

Set 3 5 Identical, set at 2676.6i

Set4 5 Identical, set at 14466

Setl0 5 Identical, set at 7140660

Setll 5 Identical, set at 7120+ 333 3i
5

Setl2 Identical, set at 87873333

Table 4.9 Description of the fixed costs for instances in Korkel (1989

The values of the results that we present for each set is #rage of the values
obtained for all the instances in that set. Interestindly,fireprocessing rules were
found to be totally ineffective for all of these problemsn& the fixed costs are
identical for all the sites, the sites are distributed ranlyoover a region, and the
variable cost matrix is symmetric, no site presents a distilvantage over any
other. This prevents our reduction procedure to open oedoy site. Table 4.10
shows the variation in the costs of the solution output byDEA with changes in
€, and Table 4.11 shows the corresponding decrease in exedimies.

The effect of varying the acceptable accura@n the cost of the solutions output
by the DCA is also presented graphically in Figure 4.1. Wendetheachieved
accuracyp as
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Problem Optimal Acceptable accuracy
Set 1% 2% 3% 5% 10%
Setl 6370.0 6404.8 6450.6 6480.6 6569.2 6781.0
Set2 6920.6 6952.2 6971.4 7028.4 7123.8 7320.2
Set3 7707.4 7738.0 7770.2 7797.6 7854.6 8053.8
Set4 9601.2 9642.4 9680.2 9698.4 9786.6 9932.0
Setl0 146691.2 146896.6 146909.6 147543.6 148062.0 121542
Setll 168598.4 168858.2 169655.0 170341.6 170597.0 128913
Setl2 186386.3 186729.7 187112.0 188002.7 188854.2 192528

* As a percentage of the optimal cost.

Table 4.10 Costs of solutions output by the DCA on Korkel-type inseswith 65 sites.

Problem Optimal Acceptable accuracy
Set 1% 2% 3% 5% 10%

Set1l 119.078 90.948 70.758 55.494 43.200 20.426
Set2 290.388 225.108 172.422 145.828 96.240 36.966
Set3 458.370 339.420 259.022 203.036 150.216 50.378
Set4 158.386 129.694 109.754 89.666 65.548 30.058
Setl0 428.598 370.120 319.804 283.832 230.078 142.090
Setll 542.530 476.350 418.628 408.594 290.338 160.744
Setl2 479.092 416.472 370.832 326.572 261.835 149.038

* As a percentage of the optimal cost.

Table 4.11 Execution times for the DCA on Korkel-type instances wikhsites.

__cost of solution output by the DCA cost of optimal solution
N cost of optimal solution

B

and therelative timet as

_execution time for the DCA for acceptable accuracy
~ execution time for the DCA to compute an optimal solution

Note that the achieved accuraByvaries almost linearly witte, with a slope
close to 0.5. Also note that the relative tim®f the DCA reduces with increasing
€. The reduction is slightly better than linear, with an ageralope of -8.

4.5.5 Korkel-Type Instances with 100 Sites

We solved the benchmark instances in Korkel [93] with= n = 100 to optimal-
ity and observed that the instances in Sets 10, 11, and 1Zedqelatively longer
execution times. So we restricted further computations$tances in those sets.
The fixed and transportation costs for these problems argetad in the proce-
dure described in Subsection 4.5.4. Tables 4.12 and 4.1 tteoresults obtained
by running the DCA on these problem instances. In our DCA @n@ntation for
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Achieved Accuracy Vs Acceptable Accuracy
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Fig. 4.1 Performance of the DCA for Korkel-type instances with G8si

solving these instances, we used reduction procedure ddharErlenkotter bound
in the DCP.

Problem Optimal Acceptable accuracy
Set 1% 2% 3% 5% 10%
Setl0 190782.0 191550.8 192755.4 192080.6 195983.2 208934
Setll 219583.4 220438.8 222393.6 221947.2 228467.2 236963
Setl2 240402.4 241609.6 243336.8 244209.4 247417.6 259168
+ As a percentage of the optimal cost.

Table 4.12 Costs of solutions output by the DCA on Korkel-type inseswwith 100 sites.
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Problem Optimal Acceptable accuracy
Set 1% 2% 3% 5% 10%
Setl0 133.746 91.774 65.99 65.908 44.2 32.074
Setll 81.564 55.356 39.554 38.348 33.628 17.598
Setl2 111.272 85.858 65.608 55.928 61.758 33.014
* As a percentage of the optimal cost.

Table 4.13 Execution times for the DCA on Korkel-type instances wi@i® sites.

Achieved Accuracy Vs Acceptable Accuracy
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Figure 4.2 illustrates the effect of varying the acceptauleuracye on the cost
of the solutions output by the DCA for the instances menticaigove. The nature of
the graphs is similar to those in Figure 4.1. However, in s the instances we
noticed thap3 reduced whem is increased, and in some other instancegreased
whene was increased.

4.6 Concluding Remarks

In this chapter we tailor the general data correcting atbori(DCA) for super-
modular functions (see Chapter 3 and Goldengetial. [66]) to the simple plant
location problem (SPLP). This algorithm consists of twoqadures, a reduction
procedure to reduce the original instance to a smaller *dostance, and a data
correcting procedure to solve the core instance.

Theorem 4.3 can be considered as the basis of data correlttitgtes that for
two differentinstances of the SPLP of the same size, theraiffce between the costs
of theunknownoptimal solutions for these instances is bounded by a pohyalty
calculated distance between these instances. This désteinsed taorrectone of
these instances in an implicit way by jusirrectingthe value of the given accuracy
parameter in the DCA.

An important contribution of this chapter is a new ReductiRnocedure (RP),
which when implemented in the DCA yields to a substantialioidn in the size
of the original instance. This reduction procedure is muchenpowerful than the
“delta” and “omega” reduction rules in Khumawala [91]. Isalincorporates the
Erlenkotter bound specific to the SPLP (see Erlenkotter)[44hich is more com-
putationally efficient than the Khachaturov-Minoux boursd in Goldengoriret
al. [66]. The strength of the new RP based on the Erlenkottert@umade obvious
by the observation that none of the instances in the OR-bylmauld be solved by
the “delta” and “omega” rules to optimality, but the new retion procedure solves
75% of them to optimality, and preprocesses at least twieatimber of sites as the
“delta” and “omega” rules for the remaining 25% of the ingtas1 Another contri-
bution of the chapter is the incorporation of the Erlenkoltteund to the recursive
BnB type data correcting procedure.

We have compared the performance of the Erlenkotter bouptémrented in an
usual BnB type algorithm (see Bilde and Krarup [15]) and tia&haturov-Minoux
bound implemented in the DCP for the new RP and for fathomibgpsoblems cre-
ated by the DCP. On the instances in Bilde and Krarup [15] nin@ber of sub-
problems created by the BnB type algorithm with Erlenkadbieund is found to be
more than 1000 times the number of subproblems created yGikebased on the
Khachaturov-Minoux bound.

We have tested the DCA on a broad range of different classestaices avail-
able in the literature (Bilde and Krarup [15], Galvao andyBig47], OR-Library,
Korkel [93]). The striking computational result is the atlyibf the DCA to find exact
solutions for many relatively large instances within frans of a second. For exam-
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ple, an exact global optimum of the 20Q00 instances from Galvao and Raggi [47]
was found within 0.2 seconds on a PC with a 733 MHz processor.

In all of our implementations for the DCA with Khachaturoviidux and Er-
lenkotter bounds we have used data structures induced lhylpggoolean repre-
sentations of the SPLP due to Hammer [80]. These data stascane conducive to
efficient updating for the current subproblems in the DCA smichetimes show that
a current subproblem remaining after application of the R&xhas relatively small
numbers of linear and non-linear terms in the correspondiagnmer-Beresnev
function and therefore can be solved by any BnB type algorfibr the SPLP.

We have found that for all instances in Korkel [93] the “délénd “omega”
reduction rules were totally ineffective since none of titesspresented any dis-
tinct advantage over any other (the fixed costs are almostigd for all sites,
the sites are distributed randomly over a region, and thmsprartation costs matrix
is symmetric). Anyway, the DCA has solved to optimality dlketinstances with
m = n = 100 within fractions of a second except for the instancesets 30, 11
and 12 which required relatively longer execution times.tlese sets of instances
we have studied the behavior of the execution time and ctledlithe accuracy for
acceptable values @&f. When the acceptable value efincreases, we see that the
costs of the solutions output by the DCA generally worsenftoel execution times
also decrease.

In summary, our computational experience with the DCA oresgvbenchmark
instances known in the literature suggests that the algoritompares well with
other algorithms known for the problem. However, like anlgestBnB algorithm,
DCA depends heavily on the quality of the bounds used. Weelihat this algo-
rithm merits serious consideration as a solution tool fer$fPLP.



SUMMARY

In this book we study a class of algorithms for solving NPehanoblems calledata
correctingalgorithms. A data correcting (DC) algorithm is a brancl-ound type
algorithm, in which the data of a given problem is “heurialig corrected” at the
various stages in such a way that the new instance will benpotyally solvable and
its optimal solution is within a pre-specified deviationl(ed prescribed accuragy
from the optimal solution to the original problem.

The DC approach is applied to determining exact and apprateigiobal optima
of NP-hard problems. A DC algorithm consists of the followingredients:

(a) apolynomially solvable special cageSC) related to the original problem;

(b) aproximity measurbetween two problem instances, being a polynomially com-
putable measure for the distance between the two instafb&smeasure pro-
vides an upper bound for the difference between the obgftinction values
of the optimal solutions to the two instances.

The DC approach is based on the well-known in the literatohgrmmially solv-
able special cases. In the DC approach we can directly sifrcamputational ex-
periments based on the well-known in the literature polyiatiynsolvable special
cases. The choice of a branching element in the data-comgesgpproach is based
on an elemeng € st \ sg with the maximum contribution into the current value of
a proximity measure, and hence leads to the reducing of threrdwalue of prox-
imity measure. Moreover, the values of proximity measunagoted for different
subproblems made useful any additional heuristic includedDC algorithm. For
example, the patching heuristic finds a feasible solutioéATSP and provides
an upper bound for the optimal value in any DC algorithm. BEC algorithm the
patching operation is used not only for finding a feasibleisoh to the ATSP but
helps us to form a corrected instance (which has the pataieticn as an optimal
solution). We then use this corrected instance not only topzde an upper bound
(see Theorem 1.2) of the cost difference between the pawtiation and theet
unknowroptimal solution to the original problem but also to decigentich arc to
branch so that we will try to reduce the value of the curremrfound as much as
possible. If this upper bound is less than the allowed acguvee can stop the algo-
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rithm here. This bound computation (using expression 1s®) grants us an insight
into the arc that is most likely to cause infeasibility of thié solution for the ATSP,
so that we can use that arc as our branching variable. ThidGhregorithm, using
both necessary and sufficient conditions for optimalityraots much more infor-
mation out of the lower bound computation than any B&B altjon, which only
uses necessary conditions, and normally leads to smallérwotrees.

DC algorithms stand to gain from good lower bounds, whiclphelprune the
solution trees. Such lower bounds allow us to discard gaaiations that are man-
ifestly suboptimal.

Efficientimplementations of DC algorithms depend on thestarction of branch-
ing rules based on specific properties of the original NRHpaoblem, the choice of
the class of the polynomially solvable special case, andulheent optimal solution
to the special case. Two different approaches for creatoignpmially solvable
special cases are known in the literature, namely algori@tfand analytic. In the
algorithmic approach, heuristic for solving the NP-hardigem is chosen, and suf-
ficient conditions for this heuristic to return an optimaligimn is formulated. In the
analytic approach, sufficient conditions are given on tassbf instances such that
any instance can be solved to optimality, and recognizedlynomial time.

DC algorithms are designed for various classes of NP-harbl@ms including
the Quadratic Cost Partition (QCP), Simple Plant Locati®RL), and Traveling
Salesman problems based on the algorithmically definedhpatyally solvable spe-
cial cases. Results of computational experiments on théghuvailable bench-
mark instances as well as on random instances are preséhtdtriking compu-
tational result is the ability of DC algorithms to find exaotigions for many rela-
tively difficult instances within fractions of a second. Fexample, an exact global
optimum of the QCP problem with 80 vertices and 100% densig found within
0.22 seconds on a PC with 133 Mhz processor, and for the SRilepnowith 200
sites and 200 clients within 0.2 seconds on a PC with 733 Mbegssor.

An interesting direction of research is to develop DC aldponis based on analyt-
ically defined polynomially solvable special cases. We ptaexperiment with DC
algorithms for the SPL problem based on the concept of etprivinstances (see
AlBdaiwi et al.[1]). An interesting research direction tsetformulation of com-
putationally efficient branching rules based on the progef upper and lower
tolerances for different classes of combinatorial optatian problems and their
polynomially solvable special cases (see, Goldengorinsaexksma [70]).
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