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Preface

The goal of this book is to develop methodological principles of Data Correcting
(DC) algorithms for solving NP-hard problems in combinatorial optimization. We
consider two large classes of NP-hard problems defined either on the set of all sub-
sets of a finite set (see the Maximization of Submodular Functions, Quadratic Cost
Partition, and Simple Plant Location Problems), or on the set of all permutations of
a finite set (see the Traveling Salesman Problem).

The book is organized as follows. In Chapter 1 we motivate theDC approach
by its application to a single real-valued function defined on a continuous domain,
that has a finite range, and describe how this approach might be applied to a general
combinatorial optimization problem including its implementation for the Asymmet-
ric Traveling Salesman Problem (ATSP).

The first purpose of Chapter 2 is to make more accessible to theWestern com-
munity some long-standing theoretical results about the structure of local and global
maxima of submodular functions due to Cherenin [29] and Khachaturov [89] in-
cluding Cherenin’s excluding rules and his Dichotomy Algorithm (see Petrov and
Cherenin [118], Cherenin [27], [28]). We use Cherenin’s Dichotomy Algorithm for
determining a polynomially solvable class of submodular functions (PP-functions)
and show that PP-functions contain precisely one componentof strict local max-
ima. The second purpose of Chapter 2 is to present a generalization of Cherenin’s
excluding rules. This result is a base of DC algorithms for the maximization (mini-
mization) of submodular (supermodular) functions presented in Chapter 3.

In Chapter 3 we present the DC algorithm for maximization of submodular func-
tions; it is a recursive Branch-and-Bound (BnB) type algorithm (see e.g., Balas
and Toth [6]). In the DC algorithm the values of a given submodular function are
“heuristically” corrected at each branching step in such a way that the new (cor-
rected) submodular function will be as close as possible to apolynomially solvable
instance from the class of submodular PP-functions (instances), and the result satis-
fies a prescribed accuracy parameter. The working of the DC algorithm is illustrated
by means of an instance of the Simple Plant Location Problem (SPLP). Computa-
tional results, obtained for the Quadratic Cost Partition Problem (QCP), show that
the computing results of the DC algorithm in general are better than the computa-
tional results known in the current literature (see e.g., Barahonaet al. [8], Gloveret
al. [55], Leeet al. [102], Pardalos and Rodgers [114], Pardaloset al. [115], Poljak
and Rendl [119], [120]), not only for sparse graphs but also for nonsparse graphs
(with density more than 40%) often with speeds 100 times faster. We further im-
prove the DC algorithm for submodular functions by introducing an extended PP-
function. Our computational experiments with the improvedDC algorithm on QCP
instances, similar to those in Leeet al. [102], allow us to solve QCP instances on
dense graphs with number of vertices up to 500 within 10 minutes on a standard
personal computer.

In Chapter 4 we deal with a pseudo-Boolean representation ofthe SPLP (see e.g.,
Beresnev [13], Dearinget al. [38], and Hammer [80]).
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We improve the class of Branch and Peg algorithms (see Goldengorinet al. [67,
68]) by using SPLP-specific bounds (suggested in Erlenkotter [44]) and preprocess-
ing rules (coined in Khumawala [91]) in Chapter 4. We furtherincorporate a new
reduction procedure based on data correcting, which is stronger than the preprocess-
ing rules from Khumawala [91], to reduce the original instance to a smaller ‘core’
instance, and then solve it using a procedure based on DC algorithm developed in
Chapter 3. Computational experiments with the DC algorithmadapted to the SPLP
on benchmark instances suggest that the algorithm compareswell with other algo-
rithms known for the SPLP (see Goldengorinet al. [69]).

In the summary of this book we discuss future research directions for DC ap-
proach based on the main results presented in the conclusions of the chapters.

Nizhny Novgorod, Russia; Boris Goldengorin
Groningen, The Netherlands
Gainsville, Florida Panos M. Pardalos
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Chapter 1
Introduction

Combinatorial optimization problems are those where one has to choose among
a countable number of alternatives. Managerial applications of such problems are
often concerned with the efficient allocation of limited resources to meet desired
objectives, for example, increasing productivity when theset of solutions (variants)
is finite. Constraints on basic resources, such as labor, facilities, supplies, or capital,
restrict the possible alternatives to those that are consideredfeasible. Applications
of these problems include goods distribution, production scheduling, capital bud-
geting, facility location, the design of communication andtransportation networks,
the design of very large scale integration (VLSI) circuits,the design of automated
production systems, artificial intelligence, machine learning,and software engineer-
ing.

In mathematics there are applications to the subject of combinatorics, graph the-
ory, probability theory, auction theory, and logic.

Statistical applications include problems of data analysis and reliability. The
number and variety of applications of combinatorial optimization models are so
great that we only can provide references for some of them (see e.g., Dell’Amicoet
al. [40], Korte and Vygen [94]).

Combinatorial optimization is a part of mathematical optimization that is related
to operations research, algorithm theory, and computational complexity theory. It
has important applications in several fields, including artificial intelligence, machine
learning, mathematics, auction theory, energy, biomedicine, and software engineer-
ing.

The combinatorial nature of the above mentioned problems arises from the fact
that in many real-world problems, activities and resources, for instance machines
and people, are indivisible. Also, many problems have only afinite number of alter-
native choices and consequently can be formulated as combinatorial optimization
problems - the word “combinatorial” refers to the fact that afeasible solution to a
combinatorial optimization problem can be constructed as acombination of indi-
visible objects. It is relatively easy to construct an algorithm which computes the
cost of each feasible solution and keeps the best in mind. Unfortunately, such an ex-
haustive enumeration algorithm is usually impractical when there are more than 20
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2 1 Introduction

objects, since there are simply too many feasible solutions. For example, the Trav-
eling Salesman Problem (TSP) defined on the set ofn cities has(n−1)! different
feasible solutions (tours). Even assuming that we have a very fast computer that can
evaluate one million tours per second, and we have 20-cities, an enumerative algo-
rithm would take over 750 centuries to evaluate all possibletours (see e.g., Dolan
and Aldous [41]).

Computer scientists have found that certain types of problems, called NP-hard
problems, are intractable (see e.g., Garey and Johnson [48]). Roughly speaking
this means that the time it takes to solve any typical NP-hardproblem seems to
grow exponentially as the amount of input data (instance) increases (see e.g., Cook
et al. [37], Nemhauser and Wolsey [111]). On the other hand, for many NP-hard
problems we can provide provable analytic or algorithmic characterizations of the
instances input data that guarantee a polynomial time solution algorithm for the
corresponding instances. These instances are calledpolynomially solvable special
casesof the combinatorial optimization problem (see e.g., Burkard et al. [22]).

Polynomially solvable special cases of combinatorial optimization problems
have long been studied in the literature (see, e.g., for the Traveling Salesman Prob-
lem Gilmoreet al. [52] and Kabadi [85]). Apart from being mathematical curiosi-
ties, they often provide important insights for serious problem-solving. In fact, the
concluding paragraph of Gilmoreet al. [52] states the following, regarding polyno-
mially solvable special cases for the TSP.

“ · · ·We believe, however, that in the long run the greatest importance of these special cases
will be for approximation algorithms. Much remains to be done in this area.”

This book is a step in the direction of incorporating polynomially solvable special
cases into approximation and exact algorithms (see Ghoshet al. [53]). We propose
a Data Correcting (DC) algorithm— an approximation algorithm that makes use
of polynomially solvable special cases to arrive at high-quality solutions. The basic
insight that leads to this algorithm is the fact that it is often easy to compute an upper
bound on the difference in cost between an optimal solution of a problem instance
and any feasible solution to the instance. The results obtained with this algorithm
are very promising (see the computational results in the corresponding sections of
this book).

The approximation in the DC algorithm is in terms of anaccuracy parameter,
which is an upper bound on the difference between the objective value of an optimal
solution to the instance and that of a solution returned by the DC algorithm. Note
that this is not expressed as a fraction of the optimal objective value for this instance.
In this respect, the algorithm is different from commonε-optimal algorithms, in
which ε is defined as a fraction of the optimal objective function value.

Even though the algorithm is meant mainly for NP-hard combinatorial optimiza-
tion problems, it can be used for functions defined on a continuous domain too. We
will, in fact, motivate the DC algorithm in the next section using a function defined
on a continuous domain that has a finite range. We then show in Section 1.2, how
this approach can be adapted for NP-hard optimization problems, using the Asym-
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metric TSP as an illustration. We conclude the introductorychapter with a summary
of the remaining chapters of this book.

1.1 Data Correcting (DC) Approach for Real-Valued Functions

Consider a real-valued functionf : D → ℜ, whereD is the domain on which the
function is defined. Here we discuss a minimization problem,the maximization ver-
sion of the problem can be dealt with in a similar manner (see Ghoshet al. [53]).
We assume that function values off are easy to compute, but finding the minimum
of f over a subdomain takes more than a reasonable amount of computing time. We
concern ourselves with the problem of findingα-minimal solutions to the function
f overD , i.e. the problem of finding a member of{x|x ∈ D , f (x) ≤ f (x⋆)+α},
wherex⋆ ∈ argminx∈D{ f (x)}, andα is a predefinedaccuracy parameter.

Let us assume that{D1, . . . ,Dp} is a partition of the domainD . Let us further
assume that for each of the sub-domainsDi of D , we are able to find functions
gi : Di →ℜ, which are easy to minimize overDi , and such that

| f (x)−gi(x)| ≤
α
2
∀x∈Di . (1.1)

We call such easily minimizable functionsregular (see Goldengorin [59]).
Theorem 1.1 provides an interesting approximationf (xα ) of the unknown global

optimum f (x⋆), where f (xα ) is the minimum of all valuesf (xα
1 ), ..., f (xα

p ) andxα
i

is the minimum of a functiongi onDi satisfying (1.1).

Theorem 1.1.For i = 1, . . . , p, let xα
i ∈ argminx∈Di{gi(x)}, and

xα ∈ argmini{ f (xα
i )}. Moreover, let x⋆ ∈ argminx∈D{ f (x)}. Then

f (xα )≤ f (x⋆)+α.

Proof. Let x⋆i ∈ argminx∈Di{ f (x)}. Then for i = 1, . . . , p, f (xα
i )−

α
2 ≤ gi(xα

i ) ≤
gi(x⋆i )≤ f (x⋆i )+

α
2 , i.e. f (xα

i )≤ f (x⋆i )+α. Thus mini{ f (xα
i )} ≤mini{ f (x⋆i )}+α,

which proves the result.

Notice thatx⋆ andxα do not need to be in the same sub-domain ofD . Theo-
rem 1.1 forms the basis of the DC algorithm to find an approximate minimum of a
function f over a certain domainD . The procedure consists of three steps. In the
first step the domainD of the function is partitioned into several sub-domains. In
the second stepf is approximated in each of the sub-domains by regular functions
satisfying the condition in Expression (1.1) and a minimum point of the regular
function is obtained. Finally, the third step, in which the minimum points computed
in the second step are considered and the best among them is chosen as the out-
put. This procedure can be further strengthened by using lower bounds to check if
a given sub-domain can possibly lead to a solution better than any found thus far.
The approximation off by regular functionsgi is calleddata correcting, since an
easy way of obtaining the regular functions is by altering the data that describef .
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A pseudocode of the algorithm, which we callProcedure DC, is provided in Fig-
ure 1.1.

Procedure DC
Input: f , D , α .
Output: xα ∈D such thatf (xα)≤min{ f (x)|x∈D}+α .
Code:

1 begin
2 bestvalue:= ∞;
3 create a partition{D1, . . . ,Dn} of D ;
4 for each sub-domainDi

5 begin
6 fi := a lower bound tof (x), x∈Di ;
7 if fi ≥ bestvalue
8 then fathomDi

9 else
10 if the constructed regular functiongi(x)
11 satisfies (1.1)
12 then calculatexα

i ∈ argminx∈Di {gi (x)}; and
13 go to line 15
14 else go to line 3;
15 if f (xα

i )< bestvalue;
16 then begin
17 xα := xα

i ;
18 bestvalue:= f (xα

i );
19 end;
20 end;
21 return xα ;
22 end.

Fig. 1.1 A DC algorithm for a real-valued function.

Lines 6 through 8 in the code carry out the bounding process, and lines 9 and 14
implement the process of computing the minimum of the regular function over this
sub-domain. The code in lines 15 through 19 remembers the best minimum. By The-
orem 1.1, the solution chosen by the code in lines 15 through 19 is anα-minimum
of f , and therefore, this solution is returned by the algorithm in line 21. The differ-
ence between this algorithm and the usual Branch-and-Bound(BnB) method is, that
in the DC-algorithm in each domainDi , the original function is approximated by a
regular function, as can be seen in line 9. Note that a regularfunction should not be
either a lower or an upper bound to the unknown optimal value on D.

We will now illustrate the DC algorithm through an example. The example that
we choose is one of a real-valued function of one variable, since these are some of
the simplest functions to visualize.

Consider the problem of finding anα-minimum of the functionf shown in Fig-
ure 1.2. The function is defined on the domainD and is assumed to be analytically
intractable.
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f(x)

D

f

x

Fig. 1.2 A general functionf .

The DC approach can be used to solve the problem above, i.e. offinding a solu-
tion xα ∈D such thatf (xα )≤min{ f (x)|x∈D}+α.

Consider the partition{D1,D2,D3,D4,D5} of D shown in Figure 1.3. Let us
suppose that we have a regular functiong1(x) such that|g1(x)− f (x)| ≤ α

2 , ∀x∈D1.
Assume also, thatx1 is a minimum point ofg1(x) in D1. Since this is the best solution
that we have so far, we storex1 as anα-minimal solution to f (x) in the domain
D1. We then consider the next interval in the partition,D2. We construct a regular
functiong2(x) with |g2(x)− f (x)| ≤ α

2 , ∀x∈D2, and findx2, its minimum point over
D2. Sincef (x2)> f (x1) (see Figure 1.3), we retainx1 as ourα-optimal solution over
D1∪D2. Proceeding in this manner, we examinef (x) in D3 throughD5, compute
regular functionsg3(x) throughg5(x) for these domains, and computex3 through
x5. In this example,x3 replacesx1 as ourα-minimal solution after consideration of
D3, and remains so until the end. At the end of the algorithm,x3 is returned as a
value ofxα .

There are four points worth noting at this stage. The first is that we need to
examine all the sub-domains in the original domain before wereturn a near-optimal
solution using this approach. The reason for this is very clear. The correctness of the
algorithm depends on the result in Theorem 1.1, and this theorem only concerns the
bestamong the minima of each of the sub-domains. For instance, inthe previous
example, if we stop as soon as we obtain the firstα-optimal solutionx1 we would
be mistaken, since Theorem 1.1 applies tox1 only overD1∪D2. The second point
is that there is no guarantee that the near-optimal solutionreturned by DC will be in
the neighborhood of a true optimal solution. There is in fact, nothing preventing the
near-optimal solution existing in a sub-domain different from the sub-domain of an
optimal solution, as is evident from the previous example. The true minimum off
lies in the domainD5, but DC returnsx3, which is inD3. The third point is that the
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f(x)

x

f(x)+

α

α

f(x)-

D

D1

Original Function

x1

/2

/2

Regular Function

g1 g2 g3 g4 g5

D2 D3 D4 D5

x2 x3 x4 x5

Fig. 1.3 Illustrating the DC approach onf .

regular functionsgi(x) approximatingf (x) do not need to have the same functional
form, and are not induced by the form off (x) in that domain. In this Example,
g1(x) is quadratic, whileg2(x) is linear. In general it is not always the case that
for each specific domainDi and a fixed class of regular functions we can satisfy the
required quality of approximation expressed by (1.1). In such a case we continue the
splitting process of the domainDi into subdomains such that the required quality of
approximation will be achieved. It is not necessarily thatαi = α for i = 1, . . . ,n. In
this case based on differentαi an optimal approximation value ofα = γ might be
computed (see Theorems 3.2 and 3.3). Finally, for the proof of Theorem 1.1, it is
sufficient for{D1, . . . ,Dn} to be a cover ofD (as opposed to a partition).

1.2 DC for NP-Hard Combinatorial Optimization Problems

The DC methodology described in the previous section can be incorporated into an
implicit enumeration scheme (like BnB) and used to obtain near-optimal solutions
to NP-hard combinatorial optimization problems. In this section we describe how
this incorporation is achieved for a general combinatorialoptimization problem. A
combinatorial optimization problem (COP)(G ,C,S , fC) is the problem of finding

S∗ ∈ argOPT{ fC(S) | S∈S },

whereC : G → ℜ is the instance of the problem with ground setG satisfying
|G |= n (n≥ 1), S ⊆ 2G the set of feasible solutions, andfC : S →ℜ the objective
function. In this section it is assumed thatOPT = min, so that we only consider
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minimization problems. In case of the Traveling Salesman Problem (TSP) (see e.g.,
Lawler et al. [100], Gutin and Punnen [78]), i.e. the problem of finding a shortest
tour visiting a given set{1, . . . ,m} covering them locations,G is the set of edges
connecting these locations,S the set of possible tours (also calledHamiltonian
tours) along them locations,C is them×mdistance matrix onG with n= m2, and
fC(S) = ∑s∈Sc(s) with C= {c(s)} for eachs∈ S∈ G is the cost of the tour.

Different entries ofC define different instances of the same COP. Let(G ,C1,S , fC1)
and(G ,C2,S , fC2) define two instancesC1 andC2 of the same COP. The function
ρ(·, ·) is called aproximity measurefor the COP(G ,C,S , fC), if for each pair of
instancesC1 = {c1(s)} andC2 = {c2(s)} of this COP, it holds that

| fC1(S
∗
1)− fC2(S

∗
2)| ≤ ρ(C1,C2), (1.2)

for eachS∗i ∈ argmin{ fCi (S) | S∈S } for i = 1,2. Heres∈ Sand in case of the TSP
s is an edge (arc) of a Hamiltonian cycleS.

Theorem 1.2.Let (G ,C,S , fC) be a COP with ground setG .
Then,

ρ1(C1,C2) = ∑
s∈G

|c1(s)− c2(s)| (1.3)

is a proximity measure, if either fC = ∑c, or fC = maxc, where for each S∈S it
holds that∑c(S) = ∑s∈Sc(s), andmaxc(S) = maxs∈Sc(s).

Proof. Take any two instancesC1 andC2 of the COP(G ,C,S , fC), and anyS∗i ∈
argmin{ fCi (S) | S∈S }; i = 1,2. Assume thatfC1(S

∗
1)− fC2(S

∗
2)≥ 0. Then,

| fC1(S
∗
1)− fC2(S

∗
2)|= fC1(S

∗
1)− fC2(S

∗
2)≤ fC1(S

∗
2)− fC2(S

∗
2) =

∑s∈S∗2
[c1(s)− c2(s)]≤ ∑s∈S∗2

|c1(s)− c2(s)| ≤ ∑s∈G |c1(s)− c2(s)|.
The other case can be shown along similar lines.

Note that the complexity of computing the proximity measureρ1(C1,C2) in The-
orem 1.2 is polynomial, although, in general, that of computing fC(S⋆) is not.

Corollary 1.1. Let (G ,C1,S , fC1) and(G ,C2,S , fC2) be two instances C1 and C2

of the same COP with the corresponding proximity measureρ(C1,C2), optimal so-
lutions S∗1 and S∗2, respectively. There are two virtual bounds for fC1(S

∗
1) as follows:

fC2(S
∗
2)−ρ(C1,C2)≤ fC1(S

∗
1), (1.4)

fC1(S
∗
1)≤ fC2(S

∗
2)+ρ(C1,C2). (1.5)

Proof. The proof is straightforward from (1.2).

Both virtual bounds might be useful within a branch-and-bound type algorithm
either to discard a subproblem by means of the lower virtual bound (1.4) or to im-
prove the value of the best currently found feasible solution by means of a feasible
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solution related to the upper virtual bound (1.5). It means that tight proximity mea-
sures might be used as a new source of lower and upper virtual bounds in combina-
torial optimization (see e.g., Korte and Vygen [94]).

One way of implementing the DC step as formulated in Section 1.1 for COP
(G ,C,S , fC) is illustrated by means of the Asymmetric TSP (ATSP), i.e. the TSP
in which the distanceci j from location i to j is not necessarily equal to the dis-
tancec ji from j to i. In order to execute the DC step, we construct a polynomially
solvable relaxation(G ,C,SR, fC) of the original problem(G ,C,S , fC) with the op-
timal solutionSR∈SR, namely, the Assignment Problem (AP) defined on the same
ground setG with the same distance matrixC, and the set of feasible solutionsSR

being (not necessary cyclic) permutations of 1, . . . ,m, i.e. SR ⊃S . It means that
SR∈SR need not be feasible to(G ,C,S , fC). We next construct a “good” solution
SF to (G ,C,S , fC) based onSR. To that end, we apply a patching operation onSR

to obtain the cyclic permutation (tour)SF (see e.g., Karp [88]). We also construct
an instanceCF for which (G ,CF ,S , fC) will have SF as an optimal solution. Note
that, in general,CF 6= C. CF is called thecorrected instancebased onC. Clearly,
thecorrectedCOP(G ,CF ,S , fC) is polynomially solvable. The proximity measure
ρ(C,CF) = ∑m

i=1 ∑m
j=1 |ci j − cF

i j | then is an upper bound to the difference between
the costs ofSF and of an optimal solution to(G ,C,S , fC). The following example
illustrates this technique.

Consider the 6-city ATSP instance with the distance matrixC = [ci j ] shown be-
low.

C 1 2 3 4 5 6
1 - 10 16 19 25 22
2 19 - 10 13 13 10
3 10 28 - 22 16 13
4 19 25 13 - 10 19
5 16 22 19 13 - 11
6 13 22 15 13 10 -

Solving the AP onC by means of the Hungarian method (see e.g., Kuhn [97]) results
in the following reduced distance matrixCH = [cH

i j ].

CH 1 2 3 4 5 6
1 - 0 6 7 16 12
2 9 - 0 1 4 0
3 0 18 - 10 7 3
4 8 14 2 - 0 8
5 5 11 8 0 - 0
6 2 11 4 0 0 -

Recall that the Hungarian method is based on the following two observations. If we
add (subtract) an arbitrary finite constantA to all entries of either rowi or column j
of the distance matrixC then the set of feasible solutions to the AP is not changed.
Hence, any distance matrix can be reduced into a distance matrix with non-negative
entries. Therefore, an optimal solution to the original AP can be represented by a
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set ofn “independent” zeros in a reduced distance matrix. We call a set of n zeros
independentif each pair of them is located in a set of pairwise distinct rows and
columns. Note that the value of an optimal solution to the original AP will differ
from the optimal solution of the reduced AP by the sum of all added (subtracted)
constants leading to the reduced matrix.

In this example,SR= {(1231),(4564)}.Using patching techniques (see, Karp [88]),
we obtain the solutionSF = (1245631). Here, the patching technique involves the
deletion of an arc(i1, j1) from (1231) and an arc(i2, j2) from (4564), and inser-
tion of the arcs(i1, j2) and(i2, j1) into the remaining set of arcs such that the value
of ci1 j2 + ci2 j1 is minimal. In this example(i1, j1) = (2,3) and(i2, j2) = (6,4) (see
Figure 1.4).

1

�

I

2

?
3

-

�

4

6

6

5
R

	

Fig. 1.4 A patching operation.

Notice that the patched solution(1245631) would be an optimal solution to the
AP if cH

24 andcH
63 had been set to zero inCH , and that would have been the case, if

c24 andc63 had been initially reduced by 1 and 4, respectively, i.e. if the distance
matrix in the original ATSP instance had beenCF , as shown below.

CF 1 2 3 4 5 6
1 - 10 16 19 25 22
2 19 - 10 12 13 10
3 10 28 - 22 16 13
4 19 25 13 - 10 19
5 16 22 19 13 - 11
6 13 22 11 13 10 -

ThereforeCF is the corrected distance matrix. The proximity measure satisfies
ρ1(C,CF ) = ∑6

i=1 ∑6
j=1 |ci j − cF

i j |= |c24− cF
24|+ |c63− cF

63|= 4+1= 5.

Since a proximity measure is an upper bound for the difference between the
optimal value of the original instance (in our exampleC) and the corrected instance
(in our exampleCF ), it may be clear that the stronger the bound, the better would
be the performance of enumeration algorithms depending on such bounds. In this
sense,ρ2, as defined below, is a stronger proximity measure for ATSP instances:
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ρ2(C,CF) = min
{ m

∑
i=1

max
1≤ j≤n

|ci j − cF
i j |,

m

∑
j=1

max
1≤i≤n

|ci j − cF
i j |
}

. (1.6)

Note that both measures,ρ1 andρ2, use a set of corrected entries ofC which are
located in pairwise distinct rows and columns on each correcting step. Hence, the
values ofρ1 andρ2 will be the same and equal to the cost of patching the solution
SF for each correcting step. Consider the ATSP instance in the above example. The
costc24+ c63− cF

23− cF
64 of patching the solution{(1231),(4564)} to (1245631)

is exactly equal to the values ofρ1(C,CF) and ρ2(C,CF ). Actually, after two or
more correcting steps, the set of corrected entries does notnecessary contain entries
located in pairwise distinct rows and columns. This means that the values of the
proximity measuresρ1 andρ2 become different, actually they will satisfyρ2 < ρ1.
It means that, using the proximity measureρ2, one can save execution time. In case
of the ATSP, the values ofρ1 andρ2 become available as by-products of computing
the best patching at thefirst correcting step.

1.3 The DC Approach in Action

The correcting step in DC algorithms can be represented as the following approxi-
mation problem:

min{ρ(C,CF) |CF ∈R}= ρ(C,C0
F) (1.7)

for any COP(G ,C,S , fC). In (1.7),R is a set of regular or polynomially solvable
instances of the same size asC. Actually,C0

F is an instance as close as possible to
the given instanceC, andρ(·, ·) is a proximity measure as defined in the previous
section. It is clear that the computational complexity of problem (1.7) depends both
on the structure of the setR and the proximity measureρ(C,CF). For many classes
R the approximation problem (1.7) is NP-hard (see e.g., Goldengorin [64]). In the
DC approach we therefore just use a heuristic for solving (1.7), say with solution
Ca

F ∈R, so thatρ(C,C0
F)≤ ρ(C,Ca

F). Recall that Theorem 1.2 enables us to decide
‘how far’ the solution of(G ,Ca

F ,S , fCa
F
) is ‘away’ from(G ,C,S , fC). Let α be the

accuracy parameter. In fact, ifρ(C,Ca
F)≤ α, we have found anα-optimal solution

to the original problem with cost vectorC, so we are done. Ifρ(C,Ca
F) > α, we

partition (branch) the setS of feasible solutions into a number of new sets. Like in
usual BnB, the partition is obtained with so-called branching rules. These rules are
problem specific. However, in case of DC, it turns out that a branching rule based
on upper tolerances(being bounds on the values of the input parameters, whereas
within these bounds the same optimal solution holds; see e.g., Van der Poort [131])
on the entries in the currently best solution is the best choice for the givenR (see
Dechter and Pearl [39]). This fact will not be elaborated here (see Goldengorin and
Sierksma [70]). More details about upper tolerances based branching rules might
be found in Turkensteenet al. [130] and Germset al. [51]. Figure 1.5 presents the
pseudocode of a recursive version of the DC method for combinatorial optimization
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problems with minimization objective. The input is the costvectorC, with its sizen,
the feasible solutions setS , and the accuracy parameterα. Notice that lines 2 and
3 refer to the DC step discussed earlier in this section. Line4 returns anα-optimal
solution defined in the postcondition of the algorithm.

Algorithm DC (C, n, S, fC, α)
Input: C, S , α .
Output: Sα ∈S such thatfC(Sα)≤min{ fC(S) |S∈S }+α .
Code:

1 begin
2 find a feasible instanceCa

F to approximation
problem (1.7);

3 if ρ(C,Ca
F )≤ α

4 return Sα ;
5 else
6 begin
7 partitionS into subsetsSi for i = 1, ...,k;
8 Sα

i := DC(C, n, Si , fC, α) for i = 1, ...,k;
9 return the best solution amongSα

i for i = 1, ...,k;
10 end;
11 end.

Fig. 1.5 A Data-correcting algorithm for combinatorial optimization problems with a minimiza-
tion objective.

Recall that, in the ATSP example, the setR of polynomial instances, used in
the DC algorithm, is the set of distance matrices for which the Hungarian Algo-
rithm returns a tour (cyclic permutation). As a proximity measure we useρ2 from
formula (1.6). The branching rule makes use of an arce, yielding a maximum con-
tributionce towards the value of the proximity measure, i.e.

ce∈ argmax{|ci j − cF
i j | : i, j = 1, ...,m}, (1.8)

with [ci j ] the current input instance and[cF
i j ] its ‘polynomially solvable co-worker’.

Let K(h) andK(t) be subtours from the AP optimal solution that contains either
the headh or the tail t of an arce= (h, t) used for patchingK(h) andK(t) (see
Figure 1.4). The current set of Hamiltonian toursS is partitioned into subsets
S (e) = {S∈ S |e /∈ S} for all arcse from the shortest (in terms of the number
of arcs) subtour amongK(h) andK(t). A motivation why branching by excluding
arcs is better than branching by including arcs is presentedin Germset al. [51] and
Goldengorin and Sierksma [70].

For example (see Figure 1.4), the maximum contributionc24 towards the value
of the proximity measureρ(C,CF) is found on the arc(2,4). Since the lengths of
both subtoursK(2) = (1231) andK(4) = (4564) are the same we may branch by
deleting all arcs either fromK(2) or fromK(4).
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The current matrixC is adapted accordingly. Namely, including an arce= (i, j)
in any feasible solution is equivalent to deleting the rowi and columnj fromC, and
excluding an arce= (i, j) from any feasible solution is equivalent to settingci j to
infinity.

We illustrate the execution of the DC algorithm in case of the8-city instance
from Table 1.1 with accuracy parameterα = 0 (see Goldengorinet al. [71]) . This
instance is considered in Balas and Toth [6].

C1 =

1 2 3 4 5 6 7 8

1 – 2 11 10 8 7 6 5
2 6 – 1 8 8 4 6 7
3 5 12 – 11 8 12 3 11
4 11 9 10 – 1 9 8 10
5 11 11 9 4 – 2 10 9
6 12 8 5 2 11 – 11 9
7 10 11 12 10 9 12 – 3
8 7 10 10 10 6 3 1 –

Table 1.1 8-city ATSP instance.

C1 =

1 2 3 4 5 6 7 8

1 – 0 9 8 6 5 4 3

2 3 – 0 7 7 3 5 6

3 0 9 – 8 5 9 0 8

4 8 8 9 – 0 8 7 9

5 7 9 7 2 – 0 8 7

6 8 6 3 0 9 – 9 7

7 5 8 9 7 6 9 – 0

8 4 9 9 9 5 2 0 –

Table 1.2 ATSP instance after subtracting the row and column minima.

The original problem is the problem at the root node of the solution tree in Fig-
ure 1.6. We call this: subproblem 1. The nodes are labeled according to the order in
which the problems are evaluated. The Hungarian Algorithm starts with subtracting
its smallest entry from each row (see e.g., Nering and Tucker[112]). Similarly, for
the columns. We obtain the matrixC1 in Table 1.2. Its optimal AP solution is given
by the entries that are boxed in, namelyS1

R = (1231)(4564)(787). The subtours are
patched and result in the tourS1

F = (123786451)with fC(S1
F) = 26. The superindex

of Si
F corresponds to the label of the subproblem. The cost of patching these sub-

tours is 9, so that the cost of the patched tour exceeds the cost of the AP optimal
solution by 9 (see Table 1.4). We next construct the corrected matrix that hasS1

F as
its optimal solution. This is done by decreasing the cost of the arc(5,1) by 7 units
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and the cost of the arc(8,6) by 2 units, and leaving all other arc costs unchanged.
This leads to the corrected matrixCF

1 (see Table 1.3). Clearly,ρ2(C,CF
1 ) = 7+2= 9,

CF
1 =

1 2 3 4 5 6 7 8

1 – 2 11 10 8 7 6 5
2 6 – 1 8 8 4 6 7
3 5 12 – 11 8 12 3 11
4 11 9 10 – 1 9 8 10

5 4 11 9 4 – 2 10 9
6 12 8 5 2 11 – 11 9
7 10 11 12 10 9 12 – 3

8 7 10 10 10 6 1 1 –

Table 1.3 The corrected matrix at the root node.

which is more than the prescribed accuracyα = 0. Thus we need to branch.
The largest contribution towards the value ofρ2(C,CF

1 ) is the correction of the
cost of arc(5,1). So we branch on all arcs from subtour(4564) and obtain three
subproblems, namelyS2 = S (4,5), S3 = S (5,6), andS4 = S (6,4). (Note that
subtour(4564) corresponds to the head of arc(5,1), and subtour(1231) to the tail
of arc(5,1). Since the lengths of both subtours(1231) and(4564) are the same, an
alternative choice is subtour(1231).) It is clear thatS2∪S3∪S4 = S1, although
not each pair of subsets has nonempty intersection. A nonoverlapping representation
of a set of subproblems can be found in Murty [108].

Now we solve the AP for each of the three subproblems, and find that fC(S2
R) =

29, fC(S3
R) = 25, andfC(S4

R) = 25. Subproblem 2 can be fathomed, sincefC(S2
R) =

29> fC(S1
F) = 26. The three subtours of the solutionS3

R = (12631)(454)(787) are
patched, yieldingS3

F = (126453781)with fC(S3
F) = 31, and the cost of patching de-

creased from 9 to 6. For subproblem 4 the same solutionsS4
R= (12631)(454)(787),

S4
F = (126453781)are found, withfC(s4

F) = 31 and patching cost 6. Now the largest
contribution towards the value ofρ2(C,CF

3 ) is the cost correction of the arc(8,1).
The DC algorithm branches on the arcs of subtour(787), giving rise to subprob-
lemsS5 =S (7,8) andS6 =S (8,7). The AP solution of subproblems 5 and 6 are
fC(S5

R) = 31 andfC(S6
R) = 26, respectively. Both are fathomed. SinceS3

R = S4
R, the

DC algorithm creates for subproblem 4 two subproblems 7 and 8with fC(S7
R) = 31

and fC(S8
R) = 27, respectively. So both are fathomed. Therefore, the DC algorithm

has found the optimal solutionfC(Sα) = fC(S1
F) = 26 with α = 0. Note that 8 sub-

problems are solved. The results are listed in Table 1.4; thecorresponding tree of
solutions is shown in Figure 1.6.

Note that ifα = 1, then we could stop the solution process after solving the first
four problems, since the value of the current lower bound wasequal to fC(S3

R) =
fC(S4

R) = 25.
As we have seen the optimal solutionsS3

R = S4
R = (12631)(454)(787) ∈ S3∩

S4 6= /0 are the same for subproblems 3 and 4 because their sets of feasible so-
lutions have a nonempty intersection. A set of mutually disjoint solutions (sub-
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Fig. 1.6 The DC Algorithm tree with non-disjoint subproblems.

i Si
R fC(Si

R) Si
F fC(Si

F ) ρ2(C,CF )
1 (1231)(4564)(787) 17 (123786451) 26 9
2 (1231)(478564) 29 fathomed
3 (12631)(454)(787) 25 (126453781) 31 6
4 (12631)(454)(787) 25 (126453781) 31 6
5 (12371)(45864) 31 fathomed
6 (123786451) 26 fathomed 0
7 (1231)(456874) 31 fathomed
8 (121)(37863)(454) 27 fathomed

Table 1.4 The DC solutions for the 8-city ATSP.

problems) (see e.g., Zhang and Korf [136]) can be constructed as follows (see
Figure 1.7):A2 = {S : (5,6) /∈ S}, A3 = {S : (5,6) ∈ Sand(4,5) /∈ S}, and
A4 = {S : (5,6),(4,5) ∈ Sand(6,4) /∈ S} with the corresponding optimal solu-
tions fC(S2

R) = fC[(12631)(454)(787)] = 25, fC(S3
R) = fC[(1231)(478564)] = 29,

fC(S4
R) = fC[(1245631)(787)] = 27, the same patched solutionfC(S1

F) = 26, and
the same corrected matrixCF

1 . Hence, subproblems 3 and 4 are fathomed. Ifα = 1,
then we could stop the solution process after solving the first four subproblems,
otherwise (ifα = 0) we patch the solutionS2

R into fC(S2
F) = fC(127964531) =

31 and split subproblem 2 into two subproblems 5 and 6 with thecorrespond-
ing A5 = {S : (5,6),(7,8) /∈ S}, A6 = {S : (7,8) ∈ Sand(5,6),(8,7) /∈ S}, and
fC(S5

R) = fC[(12371)(45864)] = 31, fC(S6
R) = fC[(123786451)] = 26. Therefore,
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Fig. 1.7 The DC Algorithm tree with disjoint subproblems.

the DC algorithm has found the optimal solution by solving 6 subproblems. Note
that in both implementations (with and without overlappingsets of feasible solu-
tions) the DC algorithm has the largest contribution 4 towards the values ofρ(C,CF

3 )
andρ(C,CF

2 ) for the corresponding inserted arcs(8,1) and(2,8), respectively, and
indicates for branching the same shortest subtour(787).

The previous example shows that the DC algorithm can be an attractive alter-
native to usual BnB algorithms (see e.g., Balas and Toth [6]). In the next section
we report computational experiences with the data correcting algorithm on ATSP
instances.

1.4 Preliminary Computational Experience with ATSP Instances

In this section we demonstrate the effectiveness of the DC algorithm on some bench-
mark ATSP instances from TSPLIB [121]. TSPLIB has twenty seven ATSP in-
stances, out of which we have chosen twelve which could be solved to optimality
within five hours using a basic BnB algorithm. Eight of these belong to the ‘f tv’
class of instances, while four belong to the ‘rbg’ class. We implemented the DC
algorithm in C and ran it on an Intel Pentium computer with 666MHz and 128MB
RAM.

The results of our experiments are presented graphically inFigures 1.8 through
1.11. In computing accuracies, (Figures 1.8 and 1.10) we have plotted the accuracy
and deviation of the solution output by the data correcting algorithm from the opti-
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Achieved Accuracy Vs Alpha for 'rbg' problems
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mal (called ‘achieved accuracy’ in the figures) as a fractionof the cost of an optimal
solution to the instance. We observed that for each of the twelve instances that we
studied, the achieved accuracy is consistently less than 80% of the pre-specified
accuracy.

There was a wide variation in the CPU time required to solve the different in-
stances. For example,f tv70 required 17206 seconds to solve to optimality, while
rbg323 required just 5 seconds. Thus, in order to maintain uniformity while demon-
strating the variation in execution times with respect to changes inα values, we
represented the execution times for each instance for eachα value as a percentage
of the execution time required to solve that instance to optimality. Notice that for all
the f tv instances whenα was 5% of the cost of the optimal solution, the execution
time was reduced to 20% of that required to solve the respective instance to opti-
mality. The reductions in execution times forrbg instances were equally steep, with
the exception ofrbg323 which was anyway an easy instance to solve.

1.5 Concluding Remarks

In this chapter we provide an introduction to the concept of Data Correcting (DC),
a method in which our knowledge of polynomially solvable special cases in a
given problem domain is utilized to obtain near-optimal solutions with the pre-
specified performance guarantees within relatively short execution times. The al-
gorithm makes use of the fact that even if the cost of an optimal solution to a given
instance is not known, it is possible to compute a bound on thecost of the solution
based on the cost of an optimal solution to another instance.

In Section 1.1, we describe the DC process on a single variable real-valued func-
tion. Most of the terminology used in data correcting is defined in this section. We
also provide a pseudocode for a DC algorithm for a general real valued function and
an example demonstrating the algorithm. In Section 1.2, we show how the DC ap-
proach can be used to solve NP-hard combinatorial optimization problems. It turns
out that it fits nicely into the framework of BnB. We also provide a pseudocode for
an algorithm applying DC, on a combinatorial optimization problem with min-sum
objective, and show, using an example, how the algorithm works on the Asymmetric
Traveling Salesman Problem in Section 1.3.

In Section 1.4 we describe computational experiences with benchmark Asym-
metric Traveling Salesman Problems from the TSPLIB (see Reinelt [121]). We show
that the deviation in cost of the solutions output by our datacorrecting implementa-
tion from the optimal is about 80% of the allowable deviation, and the time required
to solve the problem at hand to 95% optimality is about 20% of the time required to
solve the problem to optimality.

We have used DC primarily for solving some of the NP-hard combinatorial op-
timization problems. Our choice among many examples of combinatorial optimiza-
tion problems is motivated as follows:
One of the chosen problems should represent a wide range of problems defined
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on the set of all permutations and another one – on the set of all subsets of a
finite set, i.e. we have chosen the Asymmetric Traveling Salesman Problem [54]
and maximization (minimization) of a general submodular (supermodular) function
[66] specified by means of the Quadratic Cost Partition [72],Simple Plant Loca-
tion [1, 60, 69], assortment problem [56, 57, 61, 62, 63],p-Median Problem [2, 74],
and its application to the Cell Formation Problem [75]. In particular, we have studied
the performance of this algorithm on general supermodular and submodular func-
tions, applied it to Quadratic Cost Partition and Simple Plant Location Problems (see
Chapter 3 of this book), and in this chapter, on the Asymmetric Traveling Salesman
Problem. Much research remains to be done on testing the performance of this ap-
proach on other hard combinatorial problems.





Chapter 2
Maximization of Submodular Functions: Theory
and Algorithms

2.1 Introduction

In this chapter we give some theoretical results fundamental to the problem of
finding a global maximum of a general submodular (or, equivalently, global min-
imum of a general supermodular) set function (see Goldengorin [73] which we call
the Problem of Maximization of Submodular Functions (PMSF)(following Leeet
al. [102]). By a set function we mean a mapping from 2N to the real numbers,
whereN = {1,2, . . . ,n}. Another well-known term for an arbitrary set function is
a pseudo-Boolean function(see [19, 20, 81]) which is a mapping from{0,1}n to
the real numbers. PMSF is known to be NP-hard, though the corresponding mini-
mization problem is known to be polynomially solvable (see e.g., Schrijver[127]).
Enormous interest in studying PMSF arises from the fact thatseveral classes of im-
portant combinatorial optimization problems belong to PMSF, including the Simple
or “Uncapacitated” Plant (Facility) Location Problem (SPLP) and its competitive
version (see Benati [12]), the Quadratic Cost Partition Problem (QCP) with non-
negative edge weights, and its special case – the Max-Cut Problem, the generalized
transportation problem (Nemhauseret al. [109], [110]). Many models in mathemat-
ics (Lovasz[103]), including the rank function of elementary linear algebra, which is
a special case of matroid rank functions (see Edmonds [42] and Frank [45]) require
the solution of a PMSF.

Although the general problem of the maximization of a submodular function is
known to be NP-hard, there has been a sustained research effort aimed at developing
practical procedures for solving medium and large-scale instances of the PMSF.
Often the approach taken has been problem specific, and supermodularity of the
underlying objective function has been only implicit to theanalysis. For example,
Barahonaet al. [7] have addressed the Max-Cut Problem from the point of view
of polyhedral combinatorics and developed a branch and cut algorithm, suitable
for applications in statistical physics and circuit layoutdesign. Beasley [9] applies
Lagrangean heuristics to several classes of location problems including SPLPs and
reports results of extensive experiments on a Cray supercomputer. Leeet al. [102]

21
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have made a study of the quadratic cost partition problem(QCP) of which max-
cut with nonnegative edge weights is a special case, again from the standpoint of
polyhedral combinatorics.

There have been fewer published attempts to develop algorithms for minimiza-
tion of a general supermodular function. We believe that theearliest attempt to ex-
ploit supermodularity is the work of Petrov and Cherenin [118], who identified a
supermodular structure in their study of railway timetabling. Their procedure was
subsequently published by Cherenin [29] as the “method of successive calcula-
tions”. Their algorithm however is not widely known in the West (Babayev [4])
where, as far as we are aware of, the only general procedures that have been stud-
ied in depth are the greedy approximation algorithm from Nemhauseret al. [109],
and the algorithm for maximization of submodular functionssubject to linear con-
straints from (Nemhauser and Wolsey [110]). In a comment to anote by Frieze [46],
Babayev [4] demonstrated that Frieze’s two rules: OP1 and OP2, developed to ac-
celerate a BnB algorithm for the SPLP were a consequence of Cherenin’s theorem
for PMSF [29]. Note that Alcouffe and Muratet’s [3] algorithm is based on a special
case of Cherenin’s [29] “method of successive calculations”.

Indeed the only practical algorithmic implementation known in the West appears
to be the ”accelerated greedy” (AG) algorithm of Minoux [105], which has been ap-
plied to optimal planning and design of telecommunication networks. We note that
the AG algorithm has also been applied to the problem of D-optimal experimental
design (Robertazzi and Schwartz [125]); see also Koet al. [92] and Lee [101] for
further examples of “hard” D-optimal design problems in environmental monitor-
ing. In Genkin and Muchnik [50] an optimal algorithm is constructed with exponen-
tial time complexity for the well-known Shannon max-min problem. This algorithm
is applied to the maximization of submodular functions subject to a convex set of
feasible solutions, and to the problem of - what is known as - decoding monotonic
Boolean functions [19].

In this chapter we present an elegant key theorem of Cherenin, which provides
the basis of excluding rules, and in particularly, for the justification of the Prelimi-
nary Preservation (Dichotomy) algorithm. We generalize Cherenin’s excluding rules
in the form of “preservations rules” which will be used in Chapter 3. Moreover, our
preservations rules can be used for implicit enumeration ofsubproblems in a BnB
approach for solving PMSF.

The chapter is organized as follows. In Section 2.2 we motivate a theoretical de-
velopment of these rules by presenting some important results on the structure of lo-
cal and global maxima for submodular functions by Cherenin [29] and Khachaturov
[89], [90]. In this section a fundamental theorem of Cherenin is stated, which pro-
vides the basis of “the method of successive calculations”.Section 2.2 also contains
an important characterization of local maxima as disjoint components of “strict”
and “saddle” vertices which greatly assists the understanding of the difference be-
tween the properties of Cherenin’s “excluding rules” and our “preservation rules”
discussed in Section 2.3. In Section 2.4 we present our main Theorem 2.8 from
which generalized bounds for implicit enumeration can be derived, and allow the
rules of Section 2.3 to be extended to other cases (ε-optimality). We present the two
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different representations (a) and (b) of the partition of the current set of feasible so-
lutions (vertices) defined by a strictly inner vertex with respect to this set. By using
our main Theorem 2.8 and representations (a) and (b) we provethe correctness of
Cherenin’s excluding rules in the form of our preservation rules. These rules are
the basis of Cherenin’s Preliminary Preservation Algorithm (PPA) [118]. We intro-
duce the so callednon-binary branching rules, based on Theorem 2.8 in Section 2.6.
Non-binary branching rules are illustrated by an instance of the SPLP. In Section 2.5
we outline the main steps of the PPA and illustrate how our newpreservation rules
(see Corollary 2.6) can be applied to a small example of the SPLP. We show that if
the PPA terminates with a global maximum then the given submodular function has
exactly one strict component. Section 2.7 gives a number of concluding remarks.

2.2 The Structure of Local and Global Maxima of Submodular
Set Functions

In this section we present results of Cherenin-Khachaturov(see Cherenin[29] and
Khachaturov[89]) which are hardly known in the Western literature (see also Babayev[4]).

Letzbe a real-valued function defined on the power set 2N of N= {1,2, . . . ,n}; n≥
1. For eachS,T ∈ 2N with S⊆ T, define

[S,T] = {I ∈ 2N | S⊆ I ⊆ T}.

Note that[ /0,N] = 2N. Any interval [S,T] is, in fact, asubintervalof [ /0,N] if /0 ⊆
S⊆ T ⊆ N; notation[S,T] ⊆ [ /0,N]. In this book we mean by an interval always a
subinterval of[ /0,N]. Throughout this book we consider a set of PMSFs defined on
any interval[S,T]⊆ [ /0,N] as follows:

max{z(I) | I ∈ [S,T]}= z∗[S,T], for all [S,T]⊆ [ /0,N].

The functionz is calledsubmodularon [S,T] if for eachI ,J ∈ [S,T] it holds that

z(I)+ z(J)≥ z(I ∪J)+ z(I ∩J).

Expressions of the formS\ {k} andS∪{k} will be abbreviated toS− k andS+ k.
The following theorem presented in Nemhauseret al. [109] gives a number

of equivalent formulations for submodular functions whichis useful for a clearer
understanding of the concept of submodularity. Since sometime we use the in-
cremental or decremental value ofz(S), we defined+

j (S) = z(S+ j)− z(S) and
d−j (S) = z(S− j)− z(S).

Theorem 2.1.All the following statements are equivalent and define a submodular
function.
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(i) z(A)+ z(B)≥ z(A∪B)+ z(A∩B), ∀A,B⊆ N.

(ii) d+
j (S)≥ d+

j (T), ∀S⊆ T ⊆ N and j∈ N\T.

(iii ) d+
j (S)≥ d+

j (S+ k), ∀S⊆ N and j∈N\ (S+ k)
and k∈ N\S.

(iv) z(T)≤ z(S)+ ∑
j∈T\S

d+
j (S), ∀S⊆ T ⊆ N.

(v) z(S)≤ z(T)+ ∑
j∈T\S

d−j (T), ∀S⊆ T ⊆ N.

As an example consider the Quadratic Cost Partition Problem(QCP), for which
it is well known that the objective functionz(Q) is a submodular function (see
e.g., Leeet al. [102]). For given real numberspi and nonnegative real numbers
qi j with i, j ∈ N, the QCP is the problem of finding a subsetQ of N such that
the weightz(Q) = ∑i∈Q pi −

1
2 ∑i, j∈Q qi j is as large as possible. LetN be the

vertex set,E ⊆ N×N the edge set of an edge-weighted graphG = (N,E), and
wi j ≥ 0 are edge weights. For eachQ ⊆ N, the cutδ (Q) is defined as the edge
set for which each edge has one end inQ and the other one inN\Q. It is easy
to see that the Max-Cut Problem with nonnegative edge weights is a QCP where
pi = ∑ j∈N wi j andqi j = 2wi j , for i, j ∈ N.

Lemma 2.1.The objective z(S) of the Quadratic Cost Partition problem is submod-
ular.

Proof. According to Theorem 2.1(iii ) a function is submodular if

d+
l (S)≥ d+

l (S+ k), ∀S⊆ N and l∈ N\ (S+ k) and k∈ N\S.

Substitutingd+
l (S) = z(S+ l)− z(S) we get

z(S+ l)− z(S)≥ z(S+ k+ l)− z(S+ k)

Substitutingz(S) = ∑i∈Spi−
1
2 ∑i, j∈Sqi j gives

∑
i∈S+l

pi−
1
2 ∑

i, j∈S+l

qi j − (∑
i∈S

pi−
1
2 ∑

i, j∈S

qi j )≥

≥ ∑
i∈S+k+l

pi−
1
2 ∑

i, j∈S+k+l

qi j − ( ∑
i∈S+k

pi−
1
2 ∑

i, j∈S+k

qi j )

Canceling out terms involvingpi we obtain
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− ∑
i, j∈S+l

qi j + ∑
i, j∈S

qi j ≥− ∑
i, j∈S+k+l

qi j + ∑
i, j∈S+k

qi j

This result, after some bookkeeping, implies

qkl +qlk ≥ 0

Sinceqi j is nonnegative for alli, j ∈ N, the proof is completed.

Hence, the QCP problem is a special case of the problem of maximizing a sub-
modular function.

A subsetL ∈ [ /0,N] is called alocal maximumof z if for eachi ∈N,

z(L) ≥max{z(L− i),z(L+ i)}.

A subsetS∈ [ /0,N] is called aglobal maximumof z if z(S) ≥ z(I) for eachI ∈
[ /0,N]. We will use the Hasse diagram (see e.g., Grimaldi [76] and Figure 2.1) as the
ground graphG = (V,E) in which V = [ /0,N] and a pair(I ,J) is an edge if either
I ⊂ J or J⊂ I , and|I \ J|+ |J\ I |= 1.

The graphG = (V,E) is calledz-weightedif the weight of each vertexI ∈ V
is equal toz(I); notationG = (V,E,z). In terms ofG = (V,E,z) the PMSF means
finding a vertexS∈V of the weightz(S) which is as large as possible. An example
of the weightedG with N = {1,2,3,4} is depicted in Figure 2.2, where the weight
z(I) is indicated inside the corresponding vertexI .

Here among others the vertices{1,2,3} and{4} are local maxima, and{4} is a
global maximum (see Figure 2.2).

A sequenceΓ = (I0, I1, . . . , In) of subsetsI t ∈ 2N, t = 0,1, . . . ,n such that|I t |= t
and

/0= I0⊂ I1 ⊂ I2 ⊂ . . .⊂ I t ⊂ . . .⊂ In−1⊂ In = N

is called achain in [ /0,N]. An example of the chain /0⊂ {2} ⊂ {2,4} ⊂ {1,2,4} ⊂
{1,2,3,4} in Figure 2.3 is shown.

Similarly, a chain of any interval[S,T] can be defined. A submodular functionz
is nondecreasing (nonincreasing)on the chainΓ if z(I l ) ≤ z(Im) ( z(I l ) ≥ z(Im) )
for all l , msuch that 0≤ l ≤m≤ n; concepts ofincreasing, decreasing and constant
(signs, respectively,<,>,=) are defined in an obvious manner (see, for example,
Figure 2.4).

The following theorem (see Cherenin [29]) shows the quasiconcavity of a sub-
modular function on any chain that includes a local maximum (see Figure 2.5).

Theorem 2.2.Let z be a submodular function on2N and let L be a local maximum.
Then z is nondecreasing on any chain in[ /0,L], and nonincreasing on any chain in
[L,N].

Proof. We show thatz is nondecreasing on any chain in[ /0,L]. If either L = /0 (we
obtain the nonincreasing case) or|L| = 1, the assertion is true, sinceL is a local
maximum ofz. So, let|L|> 1 andI ,J ∈ [ /0,L] such thatJ = I + k, k∈ L\ I .
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{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4}

/0

Fig. 2.1 The Hasse diagram of{1,2,3,4}.

Note that /0⊆ ...⊆ I ⊂ J⊆ ...⊂ L. The submodularity ofz impliesz(J)+ z(L−
k)≥ z(I)+z(L), orz(J)−z(I)≥ z(L)−z(L−k). SinceL is a local maximum,z(L)−
z(L−k)≥ 0. Hencez(J)≥ z(I), and we have finished the proof of the nondecreasing
case. The proof for[L,N] is similar.

Corollary 2.1. Let z be a submodular function on2N and let L1 and L2 be local
maxima with L1 ⊆ L2. Then z is a constant on[L1,L2], and every L∈ [L1,L2] is a
local maximum of z.

Proof. First we show thatz is a constant function on[L1,L2]. Let us apply Theo-
rem 2.2 to a chain including /0⊆ . . .⊆ L1⊆ L2⊆ . . .⊆N, first to the single (isolated)
local maximumL2 and second to the single local maximumL1. For the first case we
obtain z( /0) ≤ . . . ≤ z(L1) ≤ . . . ≤ z(I) ≤ z(L2). For any subchain of the interval
[L1,L2] we havez(L1)≤ . . .≤ z(L2). By the same reasoning for the second case we
havez(L1)≥ . . .≥ z(L2). Combining both sequences of inequalities we have proved
the constancy ofz.

Now we show that everyL ∈ [L1,L2] is a local maximum ofz. Assume the con-
trary that there existsL ∈ [L1,L2] that is not a local maximum ofz. Then either
there is aL− i /∈ [L1,L2] with z(L) < z(L− i) or there is aL+ i /∈ [L1,L2] with
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{1,2,3,4}3

{1,2,3}10 {1,2,4}7 {1,3,4}8 {2,3,4}6

{1,2}10 {1,3}10 {1,4}9 {2,3}10 {2,4}10 {3,4}10

{1}7 {2}5 {3}10 {4}11

/00

Fig. 2.2 Example of local maxima{1,2}, {1,2,3}, {1,3}, {2,3}, {3}, and the global maximum
{4} on the Hasse diagram.

z(L) < z(L+ i). In the first case we get accordingly the definition of submodularity
z(L)+ z(L2− i) ≥ z(L− i)+ z(L2) or z(L)− z(L− i) ≥ z(L2)− z(L2− i) ≥ 0. This
contradictsz(L)< z(L− i). In the second case a similar argument holds by usingL1

instead ofL2.

In Corollary 2.1 we have indicated two important structuralproperties of a
submodular function considered on intervals whose end points are local maxima.
Namely, on such an interval a submodular function preservesa constant value and
every point of this interval is a local maximum. It will be natural to consider the
widest intervals with the above mentioned properties.

A local maximumL ∈ 2N ( L ∈ 2N ) is called alower (respectively,upper) max-
imumif there is no other local maximumL such thatL ⊂ L ( respectively,L ⊂ L ).
For example, in Figure 2.6 the vertex{1,2,3} is an upper local maximum and the
vertices{1,2}, {3} are lower local maxima. Note that the vertex{3,4} is not a lo-
cal maximum. If an interval [L, L] with L⊆ L has as its end points lower and upper
maxima then it is the widest interval on which the submodularfunction is a constant
and each point is a local maximum. We call a pair of intervals [Li , Li ] with Li ⊆ Li ,
i = 1,2 connectedif [ L1, L1] ∩ [L2, L2] 6= /0. The intervals of local maxima form a
set ofcomponents of local maxima. Two intervals belong to the same component if
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{1,2,3} {1,3,4} {2,3,4}

{1,2} {1,3} {1,4} {2,3} {3,4}

{1} {3} {4}

{1,2,3,4}

{1,2,4}

{2,4}

{2}

/0

Fig. 2.3 Example of the chain /0⊂ {2} ⊂ {2,4} ⊂ {1,2,4} ⊂ {1,2,3,4} in the Hasse diagram of
{1,2,3,4}.

6
z(I)

- I
/0⊂ {2} ⊂ {2,4} ⊂ {1,2,4} ⊂ {1,2,3,4}

nonincreasing

	 nondecreasing

R

Fig. 2.4 Example of a nondecreasing (nonincreasing) function on thechain in the Hasse diagram
of {1,2,3,4}.



2.2 The Structure of Local and Global Maxima of Submodular Set Functions 29

6
z(I)

- I
/0⊆ ... ⊆ I ⊆ ... ⊆ L⊆ ... ⊆ J⊆ ... ⊆N

.........................................................

Fig. 2.5 A quasiconcave behaviour of a submodular function on the chain with a local maximum
L (Cherenin’s theorem).

{1,2,3,4}3

{1,2,3}10 {1,2,4}7 {1,3,4}8 {2,3,4}6

{1,2}10 {1,3}10 {1,4}9 {2,3}10 {2,4}10 {3,4}10

{1}7 {2}5 {3}10 {4}11

/00

Fig. 2.6 Lower local maxima:{1,2}, {3}; upper local maximum:{1,2,3}; SDC (shadowed);
global maximum:{4}.
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they are connected. Hence, two local maximaL1 andL2 are in the same component
if there is a path inG = (V,E,z) with end verticesL1 andL2, and all intermediate
vertices of this path are local maxima.

By the following definitions Khachaturov [89] (see also Goldengorin [64]) intro-
duced two kinds of components of subgraphs of local maxima.

Let V0 be the subset ofV corresponding to all local maxima ofz and letH0 =
(V0,E0,z) be the subgraph ofG induced byV0. This subgraph consists of at least one
component. We denote the components byH j

0 =(V j
0 ,E

j
0,z), with j ∈ J0 = {1, . . . , r}.

Note that ifL1 andL2 are vertices in the same component thenz(L1) = z(L2).
A componentH j

0 is called astrict local maximum component(STC) if for each

I /∈V j
0 , for which there is an edge(I ,L) with L ∈V j

0 , we havez(I) < z(L). A com-

ponentH j
0 is called asaddle local maximum component(SDC) if for someI /∈V j

0 ,

there exists an edge(I ,L) with L∈V j
0 such thatz(I) = z(L). An example of the SDC

defined by two intervals[{1,2},{1,2,3}] and[{3},{1,2,3}] is shown in Figure 2.6.
The values of a submodular function in Figure 2.6 are printedinside the vertices.
Here a trivial STC by the vertex{4} is defined. Note that{3,4} is not a local maxi-
mum because its neighbor{4} is the global maximum with valuez({4}) = 11.

All vertices in a componentH j
0 are local maxima of the same kind. Therefore,

the index setJ0 of these components can be split into two subsets:J1 being the index
set of the STCs, andJ2 being the index set of the SDCs.

The following theorem of Khachaturov [89] is an applicationof Theorem 2.2 to
the case of a nontrivial STC (see Figure 2.7).

6z(I)

- I
/0⊆ ... ⊆ L⊆ ... ⊆ L⊆ ... ⊆N

...

...

...

...

...

...

...

...
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...

...

...

...

...

...

...

...

...

...

...

...
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...

...

...

...

...

...

...

...

...

...

Fig. 2.7 The behavior of a submodular function on a chain with lower and upper local maxima
(Khachaturov’s theorem).

Theorem 2.3.Let z be a submodular function on2N and let LandL be lower and
upper maxima with L⊆ L, both located in an STC. Then z is strictly increasing on
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each subchain/0⊆ . . . ⊆ L of [ /0,L], constant on[L,L], and strictly decreasing on
each subchainL⊆ . . .⊆ N of [L,N].

Proof. We first show thatz is strictly increasing on[ /0,L]. The proof of the strictly
decreasing case is similar. If eitherL = /0 (we obtain the decreasing case) or|L|= 1,
the assertion is true, sinceL is a local maximum ofz. So, let|L|> 1 andI ,J∈ [ /0,L]
such thatJ = I +k, k∈ L\ I . Note that /0⊆ I ⊂ J⊆ . . .⊆ L. The submodularity ofz
impliesz(J)+z(L−k)≥ z(I)+z(L), or z(J)−z(I)≥ z(L)−z(L−k). SinceL ∈V j

0
for some j ∈ J1, z(L)− z(L− k) > 0. Hencez(J) > z(I), and we have finished the
proof of the strictly increasing case.

The property thatz is constant on[L,L] follows from Corollary 2.1.

Note thatL andL need not be lower and upper maxima in Theorem 2.3. It is
clear from the proof of Theorem 2.3 that any pair of embedded local maximaL1

andL2 located on a chain /0⊆ . . .⊆ L1− i ⊂ L1 ⊆ . . .⊆ L2⊂ L2+k⊆ . . .⊆ N such
thatz(L1− i) < z(L1) andz(L2+ k) < z(L2) will imply that z is strictly increasing
on each subchain /0⊆ . . . ⊆ L1− i ⊂ L1 and strictly decreasing on each subchain
L2 ⊂ L2+ k⊆ . . . ⊆ N. We call such a local maximumboundary local maximum.
In other words, a boundary local maximum is connected with vertices outside the
component.

Lemma 2.2.Let L∈V j
0 for some j∈ J1, and let I satisfy z(I) = z(L) with (I ,L) ∈E.

Then I∈V j
0 for the same j∈ J1.

Proof. Let L ∈ V j
0 for somej ∈ J1. If I /∈V j

0 , thenz(I) < z(L), since(I ,L) ∈ E and
L is a local maximum of the STC.

Khachaturov [89] has observed that any global maximum belongs to a STC.

Theorem 2.4.Let S be a global maximum of the submodular function z defined on
2N. Then S∈V j

0 for some j∈ J1.

Proof. Suppose, to the contrary, thatS∈ V i
0 with i ∈ J2. Then there exists anI ∈

V \V0, adjacent to someJ ∈V i
0 with z(I) = z(J). This I is not a local maximum and

hence,I has an adjacent vertexM with z(M)> z(I). Thusz(S) = z(J) = z(I)< z(M),
contradicting the assumption thatS is a global maximum ofz.

Theorem 2.4 implies that we may restrict the search for a global maximum of a
submodular functionz to STC’s. Based on Corollary 2.1, and definitions of strict and
saddle components we can represent each component of local maxima as a maximal
connected set of intervals whose end points are lower and upper local maxima.
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2.3 Excluding Rules: an Old Proof

There are two “excluding rules” (see Petrov and Cherenin [118], Frieze [46], Al-
couffe and Muratet [3]), that can be used to eliminate certain subsets from[ /0,N]
when determining a global maximum of a submodular function.

Theorem 2.5.Let z be a submodular function on[ /0,N] and Vj
0 with j ∈ J0 be the

components of local maxima. Then the following assertions hold.
a. First Strict Excluding Rule (FSER).
If for some T1 and T2 with /0⊆T1⊂T2⊆N we have z(T1)> z(T2), thenVj

0 ∩ [T2,T] =
/0 for all j ∈ J0.
b. Second Strict Excluding Rule (SSER).
If for some S1 and S2 with /0⊆S1⊂S2⊆N we have z(S1)< z(S2), then Vj

0 ∩ [S,S1] =
/0 for all j ∈ J0.

Proof. We prove case (a) because a proof of case (b) is similar. Let usconsider a
chain /0⊆ . . .⊆ T1⊂ T2⊆ L⊆ T ⊂ . . .⊂N with L∈V j

0 ∩ [T2,T] 6= /0 for somej ∈ J0.
Applying Theorem 2.2 to the subchain /0⊆ . . .⊆ T1⊂ T2 ⊆ L we havez( /0)≤ . . .≤
z(T1)≤ z(T2)≤ z(L) which contradictsz(T1)> z(T2).

This theorem states that by applying the strict rules we do not exclude any local
maximum. In other words, we preserve all local maxima. In thefollowing theorem
of Khachaturov [89] we will see that applying excluding rules with nonstrict in-
equalities (nonstrict rules) will preserve at least one local maximum of each STC.
We will call such a maximum arepresentativeof the STC.

Theorem 2.6.Let z be a submodular function on[S,T] ⊆ [ /0,N] and for every j∈
J1,V

j
0 ∩ [S,T] 6= /0. Then the following assertions hold.

a. First Excluding Rule (FER).
If for some T1 and T2 with S⊆ T1 ⊂ T2 ⊆ T holds that z(T1) ≥ z(T2), then Vj

0 ∩
([S,T]\ [T2,T]) 6= /0 for all j ∈ J1.
b. Second Excluding Rule (SER).
If for some S1 and S2 with S⊆ S1 ⊂ S2 ⊆ T holds that z(S1) ≤ z(S2), then Vj

0 ∩
([S,T]\ [S,S1] 6= /0 for all j ∈ J1.

Proof. We prove case (a) because the proof of case (b) is similar. Letus consider
two cases:
Case 1:z(T1) > z(T2). Theorem 2.5 implies thatV j

0 ∩ [T2,T] = /0 for all j ∈

J0 = J1∪ J2. Since for everyj ∈ J1,V
j

0 ∩ [S,T] 6= /0 and [T2,T] ⊂ [S,T] we have

([S,T]\ [T2,T])∩V j
0 6= /0 for all j ∈ J1.

Case 2:z(T1) = z(T2). If we can construct a chain through two boundary local max-
imaL1 andL2 that also containsT1 andT2, then we have just two possibilities:
(1) L1⊆ T1⊂ T2⊆ L2;
(2) all others.
Each case of the possibility (2) contradicts Theorem 2.3. Therefore,L1⊆ T1⊂ T2⊆
L2, andL1 ⊆ T1 ∈ ([S,T]\ [T2,T])∩V j

0 6= /0 for all j ∈ J1.
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In Section 2.6 we will give an example of the SPLP in which by application of a
nonstrict excluding rule we discard the local minimum{2,4} of the corresponding
supermodular function. This local minimum is an analogue ofthe trivial SDC for
the corresponding supermodular function.

By applying Theorem 2.6a (respectively, 2.6b) we can discard 2|T\T2| (respec-
tively, 2|S1\S|) subsets of interval[T2,T] (respectively,[S,S1]) because this interval
does not include a local maximum of any STC from[S,T]. If T1 = SandT2 = S+ i
then in case of Theorem 2.6a the interval[S+ i,T] can be discarded. IfS1 = T− i
andS2 = T then in case of Theorem 2.6b the interval[S,T− i] can be discarded.
These two special cases are important because we may excludea half subinterval
of the current interval while we preserve at least one representative from each STC.
The rules excluding a half subinterval are calledprime rules.

Based on the last special cases of excluding rules, we present Cherenin’s Pre-
liminary Preservation (Dichotomy) Algorithm for the maximization of submodular
functions in Section 2.5. Before we present the Dichotomy Algorithm we give in
Theorem 2.7 an alternative proof of the correctness of thesespecial cases of exclud-
ing rules which is based only on Lemma 2.2, the definitions of aSTC and a submod-
ular functionz. This proof shows that in case of submodular functions the definition
of a STC is an insightful notion for understanding the correctness of Cherenin’s Di-
chotomy Algorithm. Therefore, it is not necessary to use allthe statements of the
previous section in order to justify both prime rules. In thenext section we present
a generalization and a simple justification of the same rules.

Theorem 2.7.Let z be a submodular function on2N. Suppose that for/0⊆ S⊂ T ⊆
N and for every j∈ J1, V j

0 ∩ [S,T] 6= /0. Then the following assertions hold.
a. First Prime Excluding Rule (FPER).
If for some i∈ T \S it holds that z(S+ i) ≤ z(S), then [S,T− i]∩V j

0 6= /0 for all
j ∈ J1.
b. Second Prime Excluding Rule (SPER).
If for some i∈ T \S it holds that z(T − i) ≤ z(T), then[S+ i,T]∩V j

0 6= /0 for all
j ∈ J1.

Proof. We prove only part (a). The proof of part (b) is similar.
a. Letz(S+ i)≤ z(S) for somei ∈ T \Sand letG∈V j

0 ∩ [S,T] for any j ∈ J1. Then
S⊂G.
Case 1:i ∈ G. From the definition of submodularity applied to the setsG− i and
S+ i
z(G− i)+ z(S+ i)≥ z(G∪S+ i)+ z(S)⇒
z(G− i)− z(G∪S+ i)≥ z(S)− z(S+ i)≥ 0⇒
z(G− i)≥ z(G∪S+ i) = z(G)⇒ ( G is a local maximum )
z(G− i) = z(G). G∈V j

0 ⇒ (by Lemma 2.2)

G− i ∈V j
0 ⇒G− i ∈V j

0 ∩ [S,T− i]⇒ V j
0 ∩ [S,T− i] 6= /0.

Case 2:i /∈G.
i /∈G⇒G∈V j

0 ∩ [S,T− i]⇒V j
0 ∩ [S,T− i] 6= /0.
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Theorem 2.7a states that ifz(S+ i)−z(S)≤ 0 for somei ∈ T \S, then by preserv-
ing the interval[S,T− i] we preserve at least one strict local maximum from each
STC, and hence we preserve at least one global maximum from each STC containing
a global maximum. Therefore, in this case it is possible to exclude exactly the whole
interval [S+ i,T] of [S,T] from consideration when searching for a global maxi-
mum of the submodular functionzon [S,T]⊆ [ /0,N]. For example, see Figure 2.8, if
z( /0)−z( /0+1)≥ 0, then the interval[{1},{1,2,3,4}] can be excluded, i.e., the inter-
val [ /0,{2,3,4}] will be preserved (FPER). Ifz({1,2,3,4})− z({1,2,3,4}−1)≥ 0,
then the interval[ /0,{2,3,4}] can be excluded, i.e., the interval[{1},{1,2,3,4}]will
be preserved (SPER).

{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4}

{1,2} {1,3} {1,4}

{1}

{2,3,4}

{2,3} {2,4} {3,4}

{2} {3} {4}

/0

Fig. 2.8 Example of Prime Excluding Rules.

If the prime rules are not applicable it will be useful to discard less than a half
subinterval of the current interval[S,T] ⊆ [ /0,N]. In the following section we fur-
ther relax most of the theoretical results presented in the previous sections of this
chapter with the purpose to show the correctness of all excluding rules and their
generalizations (preservation rules) based only on the definitions of submodularity
and the maximum valuez∗[S,T] of the functionz on the interval[S,T]⊆ [ /0,N].
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2.4 Preservation Rules: Generalization and a Simple
Justification

In the following theorem we give an important interpretation of the submodularity
property which is based on two pairs of submodular function values. For this pur-
pose we introduce anupper (respectively, lower) partitionof the current interval
[S,T] by an inner vertexQ : S⊂ Q⊂ T into two parts[Q,T] and[S,T]\ [Q,T] (re-
spectively,[S,Q] and[S,T]\ [S,Q]). In terms of the maximum values of the function
z defined on each of two parts of the above mentioned partitionsa special case of
submodularity can be read as eitherz∗([S,T] \ [Q,T]) + z(Q) ≥ z(S)+ z∗[Q,T] or
z∗([S,T]\ [S,Q])+ z(Q)≥ z∗[S,Q]+ z(T).

Here, the both maximal values of a submodular function and their arguments
(vertices) involved in each of the above indicated inequalities areunknown. In
other words, Theorem 2.8 establishes a relationship of the difference between
the unknown optimal values ofz on the two parts of the partition, for example,
([S,T] \ [Q,T]) and [Q,T] of [S,T] and the corresponding differencez(S)− z(Q)
(see the FER in Theorem 2.6); a symmetrical result is obtained for the SER.

Theorem 2.8.Let z be a submodular function on the interval[S,T] ⊆ [ /0,N]. Then
for any Q such that S⊂Q⊂ T the following assertions hold.
a. z∗([S,T]\ [Q,T])− z∗[Q,T]≥ z(S)− z(Q).
b. z∗([S,T]\ [S,Q])− z∗[S,Q]≥ z(T)− z(Q).

Proof. We prove only case (a) because the proof of case (b) is similar. Letz∗[Q,T] =
z(Q∪ J) with J ⊆ T \Q. DefineI = S∪ J. ThenI ∈ [S,T] \ [Q,T] sinceQ\S 6⊆ I .
We have thatz∗([S,T] \ [Q,T])− z(S) ≥ z(I)− z(S) = z(S∪ J)− z(S). From the
submodularity ofzwe havez(S∪J)−z(S)≥ z(Q∪J)−z(Q). Therefore,z∗([S,T]\
[Q,T])− z(S)≥ z∗[Q,T]− z(Q).

Theorem 2.8 is a generalization of Cherenin-Khachaturov’srules stating that the
difference of values of a submodular function on any pair of embedded subsets is
a lower bound for the difference between the optimal values of z on the two parts
of the partition defined by this pair of embedded subsets. Thetheorem can be used
to decide in which part of the partition([S,T]\ [Q,T ]) and[Q,T] of [S,T] a global
maximum ofz is located.

We may represent the partition of interval[S,T] from Theorem 2.8 by means of
its proper subintervals as follows:

(a) upper partition[S,T]\ [Q,T] =
⋃

i∈Q\S

[S,T− i]

and
(b) lower partition[S,T]\ [S,Q] =

⋃

i∈T\Q

[S+ i,T].
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discarded interval

R

{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4}

/0

Fig. 2.9 A representation of the upper partition of the interval[S,T] = [ /0,{1,2,3,4}] with Q\S=
{1,2,3}.

Examples of upper and lower partitions in Figure 2.9 and Figure 2.10 are shown.
A disadvantage of representations(a) and (b) is a non-empty overlapping of

each pairwise distinct intervals involved in these representations. As easy to see
in Figure 2.11 and Figure 2.12 we can avoid such an overlapping by represent-
ing the remaining parts([S,T] \ [Q,T]) and ([S,T] \ [S,Q]) with a sequence of
“parallel” non-overlapping intervals. For example, the difference[ /0,{1,2,3,4}]\
[{1,2,3},{1,2,3,4}] = [{1,2},{1,2,4}]∪ [{1},{1,3,4}]∪ [ /0,{2,3,4}] (see Fig-
ure 2.9 and Figure 2.10), and the difference[ /0,{1,2,3,4}]\ [ /0,{1,2}] = [{3},{1,2,3}]∪
[{4},{1,2,3,4}] (see Figure 2.11 and Figure 2.12).

The sequence of non-overlapping intervals can be created bythe following itera-
tive procedure. We will use the valued = dim([U,W]) of thedimensionof an inter-
val [U,W] interpreted as the corresponding subspace of the Boolean space{0,1}n

which is another representation of the interval[ /0,N].
If we have discard thek-dimensional subinterval[Q,T] in the upper parti-

tion of the interval[S,T], then the first non-overlapping interval[U1,W1] is the
k-dimensional subinterval of the(k+ 1)-dimensional interval[U1,T] = [Q,T] ∪
[U1,W1]. In other words, the first non-overlapping interval[U1,W1] is thek-dimensional
complement to the(k+1)-dimensional interval[U1,T] such that[U1,W1] = [U1,T]\
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{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,3} {1,4} {2,3} {2,4} {3,4}

{3} {4}

{1,2}

{1} {2}

/0discarded interval

�

Fig. 2.10 A representation of the lower partition byQ = {1,2} for the interval [S,T] =
[ /0,{1,2,3,4}] with T \Q= {3,4}.

[Q,T]. The second non-overlapping interval[U2,W2] is the (k+ 1)-dimensional
subinterval of the(k+ 2)-dimensional interval[U2,T] = [U1,T] ∪ [U2,W2], and
[U2,W2] = [U2,T]\ [U1,T], etc. Finally,[Uq,Wq] = [Uq,T]\ [U(q−1),T]. The number
q of the non-overlapping intervals in the upper partition is equal ton− k, where
k = dim[Q,T]. The representation of a lower partition by the sequence of non-
overlapping intervals can be described in similar lines. Note that the above indicated
representation of lower (upper) partition by a sequence of non-overlapping intervals
has theminimum number of mutually disjoint intervals.

For example (see Figure 2.12), the complement interval to[{1,2,3},{1,2,3,4}]
is [{1,2},{1,2,4}]since[{1,2},{1,2,4}]∪[{1,2,3},{1,2,3,4}] = [{1,2},{1,2,3,4}],
and the complement to[{1,2},{1,2,3,4}] is [{1},{1,3,4}]. Finally, the comple-
ment to[{1},{1,2,3,4}] is [ /0,{2,3,4}].

If, in Theorem 2.8, we replaceQ by S+ k in part (a), andQ by T− k in part (b),
we obtain the following generalization of the prime rules stated in Theorem 2.7.

Corollary 2.2. Let z be a submodular function on the interval[S,T]⊆ [ /0,N] and let
k∈ T \S. Then the following assertions hold.
a. z∗[S,T− k]− z∗[S+ k,T]≥ z(S)− z(S+ k).
b. z∗[S+ k,T]− z∗[S,T− k]≥ z(T)− z(T− k).
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{1,2,3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,3} {1,4} {2,3} {2,4} {3,4}

{3} {4}

{1,2}

{1} {2}

/0discarded interval

�

Fig. 2.11 The non-overlapping representation of the lower partitionby parallel intervals
[{3},{1,2,3}] and[{4},{1,2,3,4}].

By adding the conditionz(S)− z(S+ k)≥ 0 to part (a) and the conditionz(T)−
z(T−k)≥ 0 to part (b) of Corollary 2.2 we obtain another form (see Corollary 2.3)
of two prime rules from Theorem 2.7 for preserving subintervals containing at least
one global maximum ofzon [S,T].

Corollary 2.3. Let z be a submodular function on the interval[S,T] ⊆ [ /0,N] and
k∈ T \S. Then the following assertions hold.
a. First Preservation (FP) Rule.
If z(S)≥ z(S+ k), then z∗[S,T] = z∗[S,T− k]≥ z∗[S+ k,T].
b. Second Preservation (SP) Rule.
If z(T)≥ z(T− k), then z∗[S,T] = z∗[S+ k,T]≥ z∗[S,T− k].

Proof. a. From Corollary 2.2a we havez∗[S,T− k]− z∗[S+ k,T]≥ z(S)− z(S+ k).
By assumptionz(S)− z(S+ k)≥ 0. Hence,z∗[S,T] = z∗[S,T− k]≥ z∗[S+ k,T]. b.
The proof is similar.

From the calculation point of view these rules are the same asin Theorem 2.6
but Theorem 2.7 is more powerful than Corollary 2.3. In Theorem 2.7 we preserve
at least one strict local maximum from each STC, and hence oneglobal maximum
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discarded interval

R

{1,2,4} {2,3,4}

{1,2} {2,3} {2,4} {3,4}

{2} {3} {4}

/0

{1,2,3,4}

{1,2,3} {1,3,4}

{1,3} {1,4}

{1}

Fig. 2.12 The nonoverlapping representation of the upper partition by the parallel intervals
[{1,2},{1,2,4}], [{1},{1,3,4}], and[ /0,{2,3,4}].

from each STC that contains global maxima. Corollary 2.3 only states that we pre-
serve at least one global maximum. However, we can use Corollary 2.3 for con-
structing some extension of the preservation rules.

For ε ≥ 0, we may consider the problem of finding an approximate solution
J ∈ [S,T] such thatz∗[S,T] ≤ z(J) + ε; J is called anε−maximumof z on [S,T].
The following corollary presents an extension of the rules from Corollary 2.3 which
is appropriate to the problem ofε-maximization.

Corollary 2.4. Let z be a submodular function on the interval[S,T] ⊆ [ /0,N], and
k∈ T \S. Then the following assertions hold.
a. First θ -Preservation (θ -FP) Rule.
If z(S)−z(S+k) = θ <0, then z∗[S,T]−z∗[S,T−k]≤−θ , which means that[S,T−
k] contains a|θ |-maximum of[S,T].
b. Secondη-Preservation (η-SP) Rule.
If z(T)− z(T − k) = η < 0, then z∗[S,T]− z∗[S+ k,T ] ≤ −η , which means that
[S+ k,T] contains a|η |-maximum of[S,T].

Proof. The proof of part (a) is as follows.
Case 1. Ifz∗[S,T] = z∗[S,T− k] thenz∗[S,T− k]− z∗[S,T− k] ≤ −θ or z∗[S,T]−
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z∗[S,T− k]≤−θ .
Case 2. Ifz∗[S,T] = z∗[S+k,T], then from Theorem 2.7a follows thatz∗[S,T−k]−
z∗[S+ k,T] ≥ θ or z∗[S,T− k]− z∗[S,T] ≥ θ . Hencez∗[S,T]− z∗[S,T− k] ≤ −θ .
The proof of (b) is similar.

2.5 The Preliminary Preservation Algorithm (PPA)

By means of Corollary 2.3 it is often possible to exclude a large part of[ /0,N] from
consideration when determining a global maximum ofz on [ /0,N]. The so called
Preliminary Preservation Algorithm (PPA)(see Goldengorinet al.,[66]) determines
the smallest subinterval[S,T] of [ /0,N] containing a global maximum ofz, by using
the preservation rules of Corollary 2.3.

We call the PPA thedichotomy algorithmbecause in every successful step it
halves the current domain of a submodular function.

Let [S,T] be an interval. For eachi ∈ T \S, defineδ+(S,T, i) = z(T)− z(T− i)
andδ−(S,T, i) = z(S)− z(S+ i); moreover, defineδ+

max(S,T) = max{δ+(S,T, i) |
i ∈ T \S}, r+(S,T) = min{r | δ+(S,T, r) = δ+

max(S,T)}. Similarly, for δ−(S,T, i))
defineδ−max(S,T) = max{δ−(S,T, i)) | i ∈ T \S}, r−(S,T) = min{r | δ−(S,T, r) =
δ−max(S,T)}. If no confusion is likely, we briefly writer−, r+, δ−, δ+ instead of
r−(S,T), r+(S,T), δ−max(S,T), andδ+

max(S,T) respectively.

Each time that eitherS or T are updated during the execution of the PPA, the
conditions of Corollary 2.3 remain satisfied, and thereforez∗[S,T] = z∗[U,W] with
[U,W]⊆ [S,T] remains invariant at each step of the PPA. At the end of the algorithm
we have that max{δ+,δ−} < 0, and thereforez(S) < z(S+ i) andz(T) < z(T −
i) for eachi ∈ T \S. Hence Corollary 2.3 cannot be applied to further reduce the
interval[S,T] without violatingz∗[S,T] = z∗[U,W]. Note that this remark shows the
correctness of the procedure PP(.).

If we replace in the PPA the rules of Corollary 2.3 by those of Corollary 2.4
we obtain anε-maximization variant of the PPA. In this case the output of the ε-
PPA will be a subinterval[S,T] of [U,W] such thatz∗[U,W]− z∗[S,T] ≤ ε with
postconditionsz(S)+ ε < z(S+ i) andz(T)+ ε < z(T− i) for eachi ∈ T \S.

The following theorem can also be found in [58, 66]. It provides an upper bound
for the worst case complexity of the PPA; the complexity function is dependent only
on the number of comparisons of pairs of values forz.

Theorem 2.9.The time complexity of the PP algorithm procedure is at most O(n2).

Note that if the PPA terminates withS= T, thenS is a global maximum ofz.
Any submodular functionz on [U,W] for which the PP algorithm returns a global
maximum forz is called aPP-function.

An example of a set of PP-functionsP is shown in Figure 2.14. Here, for all
vertices without prespecified values ofz(I) can be assigned an arbitrary value ofz(I)
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Procedure PP(U,W,S,T)
Input: A submodular functionzon the subinterval

[U,W] of [ /0,N]
Output: A subinterval[S,T] of [U,W] such that

z∗[S,T] = z∗[U,W], z(S) < z(S+ i) and
z(T)< z(T− i) for eachi ∈ T \S.

begin
S←U ; T←W;
Step 1:if S= T

then goto Step 4;
Step 2: Calculateδ+ andr+;

if δ+ ≥ 0 (Corollary 2.3b)
then begin call PP(S+ r+,T;S,T)

goto Step 4
end;

Step 3: Calculateδ− andr−;
if δ− ≥ 0 (Corollary 2.3a)
then begin call PP(S,T− r−;S,T)

goto Step 4
end;

Step 4:
end;

Fig. 2.13 The Dichotomy (Preliminary Preservation) Algorithm

such that each corresponding set functionz(I) ∈P defined on the whole weighted
graphG will be submodular. For example, if for all vertices withoutprespecified
values ofz(I) in Figure 2.14 we setz(I) = a, then for each real valued constant
a : 2≤ a≤ 3 the corresponding functionz is a submodular PP-function. It means
that by applying the Dichotomy algorithm we have found an optimal solution to the
PSMF for all PP-functions defined by a constanta.

Corollary 2.5 describes in terms of STCs some properties of the variablesSand
T during the iterations of the PPA. A representativeL j

1 ∈ V j
0 with j ∈ J1 which

will be preserved through all iterations during the execution of the PPA by FPER
(L j

1 ∈V j
0 ∩ [S,T− i] 6= /0 with j ∈ J1) or SPER (L j

1 ∈ V j
0 ∩ [S+ i,T] 6= /0 with j ∈ J1)

is called aPP-representativeof STCH j
0 with j ∈ J1 (see Theorem 2.7).

Corollary 2.5. If z is a submodular PP-function on[U,W] ⊆ [ /0,N], then at each
iteration of the PPA S⊆ ∩ j∈J1L j

1 and T⊇ ∪ j∈J1L j
1.

Proof. Theorem 2.7a says that ifz(S+ i)− z(S) ≤ 0 for somei ∈ T \S, then by
preserving the interval[S,T − i] we preserve at least one PP-representativeL j

1

from each STCH j
0, and hencei /∈ L j

1. In case of Theorem 2.7b we preserve PP-

representativesL j
1 such thati ∈ L j

1 for all STCs in[S,T]. Therefore,i ∈ S⊆ ∩ j∈J1L j
1

andT ⊇ ∪ j∈J1L j
1.

The following theorem gives a property of PP-functions in terms of STCs.
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FPER,r−4 = 4
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Fig. 2.14 The idea of the Dichotomy algorithm:z({1,3}) = 4 is the global maximum for all sub-
modular functions from the subclass ofP.

Theorem 2.10.If z is a submodular PP-function on[U,W] ⊆ [ /0,N], then [U,W]
contains exactly one STC.

Proof. From∩ j∈J1L j
1 ⊇ S= T ⊇ ∪ j∈J1L j

1 we obtain∩ j∈J1L j
1 = ∪ j∈J1L j

1 or L j
1 = L

for all j ∈ J1.

Note that not each submodular function with exactly one STC on [ /0,N] is a PP-
function. For example, letN = {1,2,3} and consider the submodular functionz
defined byz(I) = 2 for any I ∈ [ /0,{1,2,3}] \({ /0}∪{1,2,3}) and z(I) = 1 for
I ∈ ({ /0}∪{1,2,3}). The vertex set of the unique STC defined by this function
can be represented by[{1},{1,2}]∪ [{1},{1,3}]∪ [{2},{1,2}] ∪ [{2},{2,3}]∪
[{3},{1,3}]∪ [{3},{2,3}]. The PPA terminates with[S,T] = [ /0,{1,2,3}] and so,
z is not a PP-function.
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2.6 Non-Binary Branching Rules

Usually in BnB type algorithms we use abinarybranching rule by which the original
set [S,T] of feasible solutions will be split by an elementk into two subsets[S+
k,T] and[S,T− k]. Let us consider an interval[S,T] for which the postconditions
of the PPA are satisfied, i.e.,z(S) < z(S+ i) andz(T) < z(T − i) for eachi ∈ T \
S. Thus the PPA cannot make the interval[S,T] smaller. By using Corollary 2.6
we can sometimes find two subintervals[S,T − k1] and [S,T − k2] such that the
postconditions of the PPA algorithm for each of these intervals are violated.

Corollary 2.6. Let z be a submodular function on the interval[S,T]⊆ [ /0,N] and let
k1,k2 ∈ T \S with k1 6= k2. Then the following assertions hold.
a. max{z∗[S,T− k1],z∗[S,T− k2]}− z∗[S+ k1+ k2,T]≥
z(S)− z(S+ k1+ k2).
b. max{z∗[S+ k1,T],z∗[S+ k2,T]}− z∗[S,T \ {k1,k2}]≥
z(T)− z(T \ {k1,k2}).

Proof. We prove only part (a) because the proof of part (b) is similar. ReplaceQ by
S+ k1+ k2 in Theorem 2.8a. Then,z∗([S,T]\ [Q,T])− z∗[Q,T] = z∗(

⋃

i∈Q\S[S,T−
i])− z∗[Q,T] =
z∗([S,T− k1]∪ [S,T− k2])− z∗[S+ k1+ k2,T] =
max{z∗[S,T− k1],z∗[S,T− k2]}− z∗[S+ k1+ k2,T]≥
z(S)− z(Q) = z(S)− z(S+ k1+ k2).

In the case thatz(S)− z(S+ k1+ k2) ≥ 0 we can discard the interval[S+ k1+
k2,T] and continue the search for an optimal solution by applying the PPA sep-
arately to each remaining interval[S,T − k1] and [S,T − k2], which are obtained
by subtracting an elementki from T. The symmetrical case will be obtained if
z(T)− z(T \ {k1,k2}) ≥ 0. Corollary 2.6 can easily be generalized to the case of
m-ary branching by elementsk1,k2, ...,km with m≤ |T \S|.

We conclude this section with a simple plant location example borrowed from
Boffey[18]. The data are presented in Table 2.1.

Location Delivery cost to site
i fi j = 1 j = 2 j = 3 j = 4 j = 5
1 7 7 15 10 7 10
2 3 10 17 4 11 22
3 3 16 7 6 18 14
4 6 11 7 6 12 8

Table 2.1 The data of the SPLP.

For solving the SPLP it suffices to solve the problem min{z(I) | I ∈ [ /0,N]} =
z∗[ /0,N] = z(G) with N = {1,2,3,4}, m= 5 and
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z(I) = ∑
i∈I

fi +
m

∑
j=1

min
i∈I

ci j .

As usual for the SPLP,fi is the fixed cost of opening a plant at locationi, ci j

is the cost of satisfying the demand of customerj by plant i, andz(I) is a super-
modular function. Note that if in the definition of a submodular function we change
the sign “≥” to the opposite sign “≤” then we obtain the definition of a supermod-
ular function. For the sake of completeness, let us show thatz(I) of the SPLP is
supermodular.

Lemma 2.3.The objective z(I) of the SPLP is supermodular.

Proof. According to Theorem 2.1(i) a function is supermodular if

z(A)+ z(B)≤ z(A∪B)+ z(A∩B), ∀A,B⊆ N.

We use the following representation of this definition

z(A)+ z(B)− z(A∪B)+ z(A∩B)≤ 0, ∀A,B⊆N.

Substituting

z(I) = ∑
i∈I

fi +
m

∑
j=1

min
i∈I

ci j

gives

∑
i∈A

fi +
m

∑
j=1

min
i∈A

ci j +∑
i∈B

fi +
m

∑
j=1

min
i∈B

ci j−

∑
i∈A∪B

fi−
m

∑
j=1

min
i∈A∪B

ci j − ∑
i∈A∩B

fi −
m

∑
j=1

min
i∈A∩B

ci j =

[∑
i∈A

fi +∑
i∈B

fi− ∑
i∈A∪B

fi − ∑
i∈A∩B

fi ]+

m

∑
j=1

[(min
i∈A

ci j − min
i∈A∪B

ci j )+ (min
i∈B

ci j − min
i∈A∩B

ci j )].

Note that
[∑
i∈A

fi +∑
i∈B

fi− ∑
i∈A∪B

fi− ∑
i∈A∩B

fi ] = 0,

hence it is enough to show that for eachj = 1, . . . ,m

[(min
i∈A

ci j − min
i∈A∪B

ci j )+ (min
i∈B

ci j − min
i∈A∩B

ci j )]≤ 0.

Let us consider two cases. Case 1: mini∈A∪Bci j = ca j for some a ∈ A. Then
mini∈Aci j = mini∈A∪Bci j and mini∈Bci j ≤mini∈A∩Bci j .
Case 2: mini∈A∪Bci j = cb j for someb ∈ B. Then mini∈Bci j = mini∈A∪Bci j and
mini∈Aci j ≤mini∈A∩Bci j .
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{1,2,3,4}52

{1,2,3}48 {1,2,4}49 {1,3,4}51 {2,3,4}52

{1,2}53 {1,3}47 {1,4}48 {2,3}52 {2,4}49 {3,4}53

{1}56 {2}67 {3}64 {4}50

/0∞

discarded by non-

binary branching rule

�

discarded by SP rule

I

Fig. 2.15 The SPLP example: illustration of non-binary branching rule.

We use this example for illustrating that the supermodular function defined by
data from Table 2.1 is not a PP-function. Of course, here we mean the corresponding
definition of a PP-function obtained by replacing the definitions of local, global
maxima of a submodular function by the local, global minima of a supermodular
function. It is easy to check that this supermodular function has two trivial analogues
of STCs:{1,4}, {1,3} and one trivial analogue of SDC:{2,4} (see Figure 2.15).

After the first execution of Step 3 of the PPA, we have that[S,T] = [{1},{1,2,3,4}],
becauseδ+ = z({1,2,3,4})− z({2,3,4}) = 0 andr+ = 1. Together with interval
[{ /0},{2,3,4}] the PPA has discarded the trivial SDC{2,4}. After the second exe-
cution of Steps 2 and 3 the PPA terminates with interval[S,T] = [{1},{1,2,3,4}],
because all postconditions of the PPA are satisfied. Hence, this function is not a
PP-function. A global minimum of this SPLP can be found by application of the
following analogue of the inequality from Corollary 2.6b:

min{z∗[S+ k1,T],z∗[S+ k2,T]}− z∗[S,T \ {k1,k2}]≤
z(T)− z(T \ {k1,k2}).

Let us substitute all possible pairs{k1,k2} into the right-hand side of this in-
equality withS= {1} andT = {1,2,3,4}. Then, we have that onlyz({1,2,3,4})−
z({1,2,3,4}−{3,4})= 52−53< 0.Hence, we can discard the interval[{1},{1,2,3,4}−
{3,4}] and we may continue to findz∗[{1},{1,2,3,4}] by solving two remaining
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subproblemsz∗[{1,3},{1,2,3}] andz∗[{1,4},{1,2,3,4}] defined on “parallel” in-
tervals[{1,3},{1,2,3}] and [{1,4},{1,2,3,4}] (with disjoint set of feasible solu-
tions) instead of two corresponding subproblemsz∗[S+k1,T] = z∗[{1,3},{1,2,3,4}]
andz∗[S+ k2,T] = z∗[{1,4},{1,2,3,4}] which have the non-empty intersection on
[{1,3,4},{1,2,3,4}]. Each of these subproblems can be solved by the correspond-
ing analogue of the PPA.

2.7 Concluding Remarks

We have considered a submodular functionz defined on the Boolean hypercube
to which we can apply a classic theorem of Cherenin thatz is quasiconcave on
any chain that intersects a local maxima component. This result enables a clearer
understanding of the structure of a submodular function in terms of components of
the graph of local maxima. Specifically we may state that eachcomponent of the
graph of local maxima is a maximal connected set of intervalswhose end points are
lower and upper local maxima. Cherenin’s theorem provides ajustification of “the
method of successive calculations”. This method was successfully applied to solve
problems arising in railway logistics planning (see Cherenin [27], [28], Petrov and
Cherenin [118]), and for constructing BnB type algorithms (see Khachaturov [89,
90], Frieze [46], Alcouffe and Muratet [3], Goldengorin [56, 57, 60, 61, 62, 63, 64],
Goldengorinet al. [66], Goldengorin and Ghosh [72]) for solving a number of NP-
hard problems.

We have shown that if the Dichotomy algorithm (PPA) terminates withS= T
then the given submodular function has exactly one strict component of local max-
ima (STC). Hence the number of subproblems created in a branch without bounds
type algorithm, which is based on the Dichotomy algorithm, can be used as an upper
bound for the number of the STCs. In a similar way, an upper bound for the number
of all components (STCs and SDCs) by using strict excluding rules can be calcu-
lated. This information can be used for complexity analysisin terms of the number
of local optima for a specific class of problems arisen in practice (computational
experiments).

We next proposed a generalization of Cherenin’s excluding rules given by Theo-
rem 2.8 which provides implicit enumeration bounds for a recursive implementation
of any BnB procedure incorporating the Dichotomy algorithm. This generalization
is useful in two respects. Firstly it is suitable for use inε-optimalprocedures which
obtain an approximate global maximum within specified bounds. Secondly the the-
orem allows the derivation of alternatives to the prime excluding rules by which
we are able to discard subintervals of smaller cardinality than half original subin-
terval. We show that the remaining part of the current interval can be represented
by a set of subintervals, some of which may include just one strict component. In
other words, we try to prepare the necessary conditions for the Dichotomy algo-
rithm to terminate on each subinterval. Moreover, Theorem 2.8 is based only on
the definition of the maximum value of PMSF for an interval of[ /0,N], and relaxed
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Cherenin-Khachaturov’s theory presented in Sections 2.2 and 2.3 (which is based
on notions of monotonicities on a chain, local and global maxima, strict and saddle
components in the Hasse diagram).

Corollary 2.2 can be considered as the basis of our Data Correcting (DC) algo-
rithm presented in the next chapter. It states that if an interval [S,T] is split into
[S,T−k] and[S+k,T], then the difference between the submodular function values
z(S) andz(S+ k), or between the values ofz(T) andz(T − k) is an upper bound
for the difference of the (unknown!) optimal values on the two subintervals. This
difference is used for ‘correcting’ the current data (values of a submodular function
z) in the DC algorithm. In the next chapter our computational experiments with the
Quadratic Cost Partition Problem show that we can substantially reduce the calcu-
lation time for data correcting algorithms [59, 66] by recursive application of our
main theorem.

An interesting subject for future research is the investigation of the computational
efficiency ofm-ary branching rules (see Corollary 2.6) for specific problems which
can be reduced to the maximization of submodular functions.

Another purpose of this chapter is to present our main result[73] which can
be stated as follows. For any partition of the current Hasse subdiagram[S,T]
spanned on a pair of embedded subsets /0⊆ S⊂ Q⊂ T ⊆ N = {1,2, . . . ,n} into
two parts either[S,T] \ [Q,T] and [Q,T] or [S,T] \ [S,Q] and [S,Q] defined by an
inner subsetQ from this subdiagram, the difference of two corresponding func-
tion values eitherz(S)− z(Q) or z(T)− z(Q) is a lower bound for the difference
between the unknown(!) optimal values eitherz∗([S,T] \ [Q,T])− z∗([Q,T]) or
z∗([S,T]\ [S,Q])− z∗([S,Q]), respectively, of the submodular functionz. The main
result was successfully used as a base of Data Correcting (DC) algorithms for the
maximization of general submodular functions and its special cases, for example,
the quadratic cost partition and simple plant location problems (which is a special
case of minimization a supermodular function). Cherenin’sExcluding Rules, the
Dichotomy Algorithm and its generalization with the new branching rules are easy
corollaries of our main result. The usefulness of our new branching rules is illus-
trated by means of a numerical Simple Plant Location Problemexample.





Chapter 3
Data Correcting Approach for the Maximization
of Submodular Functions

The Data Correcting(DC) Algorithm is a recursive BnB type algorithm, in which
the data of a given problem instance are ‘heuristically corrected’ at each branching
in such a way that the new instance will be as close as possibleto polynomially
solvable and the result satisfies a prescribed accuracy (thedifference between op-
timal and current solution). The main idea of the data correcting approach for an
arbitrary functionzdefined on a setScan be described as follows (see e.g., Golden-
gorinet al. [66]). Let y belongs to a polynomially solvable class of functions which
is a subclass of a given class of functionszdefined also onS, and let

ρ(z,y) = max{|z(s)− y(s)| : s∈ S}

be the proximity measure. If we denote the maximal values ofz and y on S by
z∗(S) = z(sz) andy∗(S) = y(sy) then an analogue of Theorem 1.2 is read as follows.

Theorem 3.1.

|z∗(S)− y∗(S)| ≤ ρ(z,y).

Proof. If z∗(S)≥ y∗(S) thenz∗(S)−y∗(S)= |z∗(S)−y∗(S)|= z(sz)−y(sy)≤ z(sz)−
y(sz) = |z(sz)−y(sz)| ≤ ρ(z,y). Otherwise,z∗(S)< y∗(S), we havey∗(S)−z∗(S) =
|y∗(S)− z∗(S)|= |z∗(S)− y∗(S)|= y(sy)− z(sz) ≤ y(sy)− z(sy) = |y(sy)− z(sy)| =
|z(sy)− y(sy)| ≤ ρ(z,y).

Let us remind that we assume an efficient (polynomial) computing of the value of
ρ(z,y). In general if the problem of findingz∗(S) is intractable then the computing
of ρ(z,y) is also intractable. In this chapter we replace the computing of intractable
value ofρ(z,y) by computing an upper bound ofρ(z,y) which is tractable and based
on the so calledcorrecting rules.

In this chapter the Data Correcting (DC) algorithm is applied to determining
exact or approximate global maxima (respectively, minima)of submodular (respec-
tively, supermodular) functions. The algorithm is illustrated by an instance of the

49
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Simple Plant Location Problem (SPLP). The computational results, obtained for the
Quadratic Cost Partition Problem (QCP), show that the DC algorithm outperforms a
branch-and-cut algorithm, not only for sparse graphs but also for nonsparse graphs
(with density more than 40%) often with speeds 100 times faster.

3.1 The Main Idea of the Data Correcting (DC) algorithm; an
extension of the PPA

Recall that if a submodular functionz is not a PP-function, then the PP algorithm
terminates with a subinterval[S,T] of [ /0,N] with S 6= T that contains a maximum of
zwithout knowing its exact location in[S,T]. In this case, the conditions

δ+ < 0 for i ∈ T\S, (3.1)

δ− < 0 for i ∈ T\S, (3.2)

are satisfied at termination of the PP algorithm. The basic idea of the DC algorithm
is that if a situation occurs for which both (3.1) and (3.2) hold, then the data of the
current problem will be ‘corrected’ in such a way that acorrectedfunctiony violates
at least one of the conditions (3.1) or (3.2).

In this section we will restrict ourselves to the situation for which the submod-
ularity of the corrected function is easy to prove (see Goldengorin et al. [66]).
Hence a situation is studied for which there is an elementi ∈ T\S such that, ei-
ther y(T − i) ≤ y(T), or y(S+ i) ≤ y(S) holds. Now Corollary 2.3 can be applied
again, and we are in the situation that the PP algorithm can beapplied. For all pos-
sible elementsi we try to choose one for which the correction procedure maintains
a solution within the prescribed boundε0. If such an elementi does not exist, we
choose an arbitraryi ∈ T\Sand branch the current problem into two subproblems,
one on[S+ i,T] and one on[S,T− i]. We should in any case find answers to the
following questions:

- How should the difference between the values of a global maximum of the
corrected and the uncorrected functions be estimated, and,how does this difference
depend on the specific corrections?

- How should the above mentioned difference be decreased in case it does not
satisfy the prescribed accuracyε0?

The answers to these questions can be found below. In order topreserve the
submodularity we will use the following correcting rules.

Let /0⊆S⊆T ⊆N, andr+, r− ∈T\S. Moreover, lety be a supermodular function
on [ /0,N]. For eachI ∈ [S,T] define the following two correcting rules.
Correcting Rule 1:

y(I) =

{
z(I)+ δ+, if I ∈ [S,T− r+];
z(I), otherwise
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Correcting Rule 2:

y(I) =

{
z(I)+ δ−, if I ∈ [S+ r−,T];
z(S), otherwise

It can be easily seen that ifz is submodular on a certain interval, then so isy.
An extension of the PP algorithm is based on the statements ofthe following

lemma.

Lemma 3.1.Let z be a submodular function on the interval[S,T] ⊆ [ /0,N] and let
i ∈ T\S. Then
a. If δ− = z(S)−z(S+ i)≥ 0 and z∗[S,T− i]−z(λ )≤ γ ≤ ε, then z∗[S,T]−z(λ )≤
γ ≤ ε.
b. If δ+ = z(T)−z(T− i)≥ 0 and z∗[S+ i,T]−z(λ )≤ γ ≤ ε, then z∗[S,T]−z(λ )≤
γ ≤ ε.
c. If −ε ≤ δ− = z(S)− z(S+ i) < 0 and z∗[S,T − i]− z(λ ) ≤ γ ≤ ε + δ−, then
z∗[S,T]− z(λ )≤ γ− δ− ≤ ε.
d. If −ε ≤ δ+ = (T)− z(T − i) < 0, and z∗[S+ i,T]− z(λ ) ≤ γ ≤ ε + δ+, then
z∗[S,T]− z(λ )≤ γ− δ+ ≤ ε.

Proof. The proof of (a) is as follows. Fromδ− ≥ 0 and Corollary 2.3a we obtain
z∗[S,T] = z∗[S,T− i]. Hencez∗[S,T]− z∗(λ ) = z∗[S,T− i]− z∗(λ ) ≤ γ ≤ ε. Since
the proof of (b) is similar to that of (a) we conclude with a proof of (c).
Fromδ− < 0 and Corollary 2.4a we obtainz∗[S,T]−z∗[S,T− i]≤ δ− or z∗[S,T]≤
z∗[S,T− i]−δ− or z∗[S,T]−z(λ )≤ z∗[S,T− i]−δ−−z∗(λ )≤ γ−δ− ≤ ε +δ−−
δ− = ε.

The following theorem defines the branching step, and shows how a current value
of γ can be decreased.

Theorem 3.2.Let z be an arbitrary function defined on a finite set S and let S=
∪t∈PSt with max{z(λ ) | λ ∈ St}= z∗(St), for t ∈ P= {1, ..., p}. Then for anyε ≥ 0
the following assertion holds.
If z∗(St)− z(λt)≤ γt ≤ ε for someλt ∈ S and for all t∈ P,
then z∗(S)−max{z(λt) | t ∈ P} ≤max{z(λt)+ γt | t ∈ P}−max{z(λt) | t ∈ P} =
γ ≤max{γt | t ∈ P} ≤ ε.

Proof. z∗(S)−max{z(λt) | t ∈ P} = max{z∗(St) | t ∈ P}−max{z(λt) | t ∈ P} ≤
max{z(λt)+γt | t ∈P}−max{z(λt) | t ∈P} = γ ≤max{z(λt) | t ∈P}+max{γt | t ∈
P}−max{z(λt) | t ∈ P} = max{γt | t ∈ P} ≤ ε.

Note thatz need not be submodular in Theorem 3.2. It is clear from the proof
of Theorem 3.2 thatγ is independent on the order in which we combine pairs of
{z(λt),γt}.

Let us show now thatγ may attain max{γt | t ∈ P}. For the sake of simplicity, in
the case of binary branching, Theorem 3.2 can be formulated as follows. Ifz∗[S,T−
k]− z(λ−)≤ γ− ≤ ε, andz∗[S+ k,T]− z(λ+)≤ γ+ ≤ ε, for someλ−,λ+ ∈ [ /0,N]



52 3 Data Correcting Approach for the Maximization of Submodular Functions

and someγ− andγ+, then max{z(λ−)+ γ−,z(λ+)+ γ+}−max{z(λ−),z(λ+)} =
γ ≤ max{γ−,γ+} ≤ ε.

Now we can construct an example for whichz∗[S,T] =max{z(λ−)+γ−,z(λ+)+
γ+}, and therefore we can assert that theγ in Theorem 3.2 is the best possi-
ble. For example, suppose thatε = 12, z(λ−) = 15, γ− = 8, z∗[S,T − k] = 23,
z(λ+) = 13,γ+ = 9, andz∗[S+ k,T] = 21. Then,z∗[S,T− k]− z(λ−) = 23−15=
8 ≤ γ− = 8 < ε, and z∗[S+ k,T]− z(λ+) = 21− 13= 8 < γ+ = 9 < ε. More-
over,z∗[S,T] = 23= max{z(λ−)+ γ−,z(λ+)+ γ+} = max{15+8,13+9} = 23
with max{z(λ−),z(λ+)} = max{15,13} = 15, andγ = max{15+ 8,13+ 9} −
max{15,13}= 8< max{γ−,γ+}= max{8,9}= 9.

For the sake of completeness we prove the “minimization” variant of Theo-
rem 3.2. Let us consider the following problem:

min{z(λ ) | λ ∈ S}= z∗(S).

Theorem 3.3.Let z be an arbitrary function defined on a finite set S and let S=
∪t∈PSt with min{z(λ ) | λ ∈ St}= z∗(St), for t ∈ P= {1, ..., p}. Then for anyε ≥ 0
the following assertion holds.
If z(λt)− z∗(St)≤ γt ≤ ε for someλt ∈ S and for all t∈ P,
thenmin{z(λt) | t ∈ P}− z∗(S) ≤ min{z(λt) | t ∈ P}−min{z(λt)− γt | t ∈ P} =
γ ≤max{γt | t ∈ P} ≤ ε.

Proof. min{z(λt) | t ∈ P} − z∗(S) = min{z(λt) | t ∈ P} −min{z∗(St) | t ∈ P} ≤
min{z(λt) | t ∈ P} −min{z(λt)− γt | t ∈ P} = min{z(λt) | t ∈ P}+ max{γt +
[−z(λt)] | t ∈ P} ≤min{z(λt) | t ∈ P}+max{γt | t ∈ P}+max{[−z(λt)] | t ∈ P}=
min{z(λt) | t ∈ P}+max{γt | t ∈ P}−min{[z(λt)] | t ∈ P}= max{γt | t ∈ P}.

The main step of the DC algorithm, to be formulated in Section3.2, is called
Procedure DC(). The input parameters of Procedure DC() are an interval [S,T],
and a prescribed value ofε; the output parameters areλ and γ, with λ ∈ [ /0,N]
andz∗[S,T]− z(λ ) ≤ γ ≤ ε. The value ofγ is an upper bound for the accuracy of
z∗[S,T]− z(λ ), and may sometimes be smaller than the prescribed accuracyε. The
procedure starts with trying to make the interval[S,T] as small as possible by using
Corollary 2.3(a) and 2.3(b). If this is not possible, the interval is partitioned into two
subintervals. Then, with the help of Lemmas 3.1(c) and 3.1(d) it may be possible to
narrow one of the two subintervals. If this is not possible, the Procedure DC( ) will
use the following branching rule.

Branching Rule: For k ∈ argmin{min[δ−(S,T, i), δ+(S,T, i)] | i ∈ T\S}, split
the interval[S,T] into two subintervals[S+ k,T], [S,T− k], and use the prescribed
accuracyε of [S,T] for both subintervals.

Our choice for the branching variablek ∈ T\S is motivated by the observation
that δ+(S,T, r+) ≤ δ+(S,T − k, r+) andδ−(S,T, r−) ≤ δ−(S+ k,T, r−), follow-
ing straightforwardly from the submodularity ofz. Hence, the values ofδ+, δ−,
for given r+, r−, are seen to increase monotonically with successive branchings.
Our choice is aimed at making the right hand sidesδ+,δ− as large as possible
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after branching (and if possible non-negative), with the purpose of increasing the
‘probability’ of satisfying the preservation rules (see Corollary 2.3). Moreover, this
branching rule makes the upper bound for the difference between aγ-maximum and
a global maximum as small as possible.

Note that in Procedure DC()λ needs not be in the interval[S,T]. Notice that in
most BnB algorithms a solution for a subproblem is searched inside the solution
space of that subproblem. From the proofs of Lemma 3.1 and Theorem 3.2 it can
be seen that this is not necessary here. For any prescribed accuracyε the Procedure
DC() reads now as follows.

ProcedureDC(S,T,ε ;λ ,γ)
Input: A submodular functionzon the interval[S,T], ε ≥ 0.

Output: λ ∈[ /0,N] andγ ≥ 0 such thatz∗[S,T]−z(λ )≤ γ ≤ ε .

begin Step 1:if S= T

then begin λ := S;γ := 0;

goto Step 7;

end
Step 2: Calculateδ+ andr+;

if δ+ ≥ 0

then begin call DC(S+ r+,T,ε ;λ ,γ);
{Lemma 3.1b} goto Step 7;

end
Step 3: Calculateδ− andr−;

if δ− ≥ 0

then begin call DC(S,T− r−,ε ;λ ,γ);
{Lemma 3.1a} goto Step 7;

end
Step 4:if δ+ ≤ ε

then begin call DC(S+ r+,T,ε−δ+;λ ,γ);
γ := γ +δ+ {Lemma 3.1d};

goto Step 7;

end
Step 5:if δ− ≤ ε

then begin call DC(S,T− r−,ε−δ−;λ ,γ);
γ := γ +δ− {Lemma 3.1c};

goto Step 7;

end
Step 6: Selectk∈ T\S(Branching Rule)

call DC(S+k,T,ε ;λ+,γ+)
call DC(S,T−k,ε ;λ−,γ−)
λ := argmax{z(λ−),z(λ+)} {Theorem 3.2}

γ := max{z(λ+)+ γ+,z(λ−)+ γ−}−max{z(λ+),z(λ−)}
Step 7:{z∗[S,T]−z(λ )≤ γ ≤ ε} (with z(λ ) = max{z(λ+),z(λ−)})

end;
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Fig. 3.1 Procedure DC.

In Section 3.3 we will illustrate this algorithm by solving an instance of the Sim-
ple Plant Location Problem.

3.2 The DC Algorithm (see Goldengorinet al. [66])

The DC algorithm is a BnB type algorithm, and is presented as arecursive proce-
dure.

The Data Correcting Algorithm

Input: A submodular functionzon [ /0,N] and a prescribed accuracyε0 ≥ 0.
Output: λ ∈ [ /0,N] andγ ≥ 0 such thatz∗[ /0,N]− z(λ )≤ γ ≤ ε0.
begincall DC( /0,N,ε0;λ ,γ)
end;

The correctness of the DC algorithm is shown in the followingtheorem.

Theorem 3.4.For any submodular function z defined on the interval[ /0,N] and for
any accuracyε0 ≥ 0, the DC algorithm constructs an elementλ ∈ [ /0,N] and an
elementγ ≥ 0 such that z∗[ /0,N]− z(λ )≤ γ ≤ ε0.

Proof. We only need to show that each step of the DC algorithm is correct. The
correctness of Step 1 follows from the fact that ifS= T then the interval[S,T]
contains a unique solution andλ satisfies the prescribed accuracyε0 (i.e.,z∗[ /0,N]−
z(λ ) = z(λ )− z(λ ) = 0≤ γ ≤ ε0). The correctness of Steps 2 and 3 follows from
Lemma 3.1b and Lemma 3.1a, respectively; the correctness ofSteps 4 and 5 follows
from Lemma 3.1d and Lemma 3.1c, respectively; the correctness of Step 6 follows
from Theorem 3.2. So, if the Procedure DC() is called with thearguments /0,N, and
ε0, then, when it is finished,z∗[ /0,N]− z(λ )≤ γ ≤ ε0 holds.

It is possible to make the DC algorithm more efficient if we fathom subprob-
lems by using upper bounds. For subproblems of the form min{z(λ ) | λ ∈ [S,T]}=
z∗[S,T], the following lemma, due to Khachaturov [89] and Minoux [105], provides
two upper bounds.
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Lemma 3.2.If z(S)− z(S+ i)< 0 and z(T)− z(T− i)< 0 for all i ∈ T \S, then

ub1 = z(S)− ∑
i∈T\S

[z(S)− z(S+ i)]≥ z∗[S,T],

and
ub2 = z(S)− ∑

i∈T\S

[z(T)− z(T− i)]≥ z∗[S,T].

Proof. We will prove only ub1 because the proof ofub2 is similar. From Theo-
rem 2.1(iv) we have thatz(T)≤ z(S)−∑i∈T\S[z(S)− z(S+ i)] for S⊆ T ⊆ N. Let
X be a set in[S,T] such thatz(X) = z∗[S,T]. Then alsoz(X)≤ z(S)−∑i∈X\S[z(S)−
z(S+ i)]≤ z(S)−∑i∈T\S[z(S)− z(S+ i)]≥ z∗[S,T] sincez(S)− z(S+ i)< 0 for all
i ∈ T \S.

We next explain how to incorporate such an upper bound into the DC algorithm.
During the running of the DC program we keep a global variableβ in the subset of
N that has the highest function value found so far. Then we can include a Step 3a
after Step 3 in Procedure DC(). Step 3a: Calculateub := min{ub1,ub2};

if ub− z(β )≤ ε
then beginλ := β ;γ := ub− z(β );

gotoStep 7;
end

We will refer to the upper boundub defined in Step 3a as the Khachaturov-
Minoux bound. It is obvious thatλ andγ satisfyz∗[S,T]−z(λ )≤ ub−z(β )= γ ≤ ε.
Note that in this case,β is, in general, not an element of the interval[S,T].

The DC algorithm can also be used as a fast greedy heuristic. If the prescribed
accuracyε0 is very large, branchings never occur at Step 6; the interval[S,T] is
halved in every recursive call of the algorithm untilS= T, and a ‘greedy’ solution
is found. Moreover, the calculated accuracyγ gives insight into the quality of the
solution obtained, as it is an upper bound for the differencein value of the solution
obtained and an optimal solution. Note that, thanks to Steps2 and 3, the ‘greedy’
solution found by the DC algorithm when a largeε is specified, is in general bet-
ter than one obtained by a standard or accelerated greedy algorithm like the ones
described in Minoux [105].

3.3 The Simple Plant Location Problem; an Illustration of the
DC Algorithm

Recall that the objective function of SPLP is supermodular.The DC algorithm is
used for the determination of a global minimum (0-minimum) and a 2-minimum for
the SPL problem of which the data are presented in Table 2.1 (see Section 2.6).



56 3 Data Correcting Approach for the Maximization of Submodular Functions

S= /0,T = {1,2,3,4},ε = 0
γ := 0,z(λ ) := 47

?

Step 2,δ+ = 0, r+ = 1

S= {1},T = {1,2,3,4},ε = 0
γ := 0,z(λ ) := 47

	 R

Step 6,k= 3

S= {1,3},T = {1,2,3,4},ε = 0
γ := 0,z(λ ) := 47

S= {1},T = {1,2,4},ε = 0
γ := 0,z(λ ) := 48

Step 3,δ− = 4, r− = 4
?

Step 2,δ+ = 4, r+ = 4
?

S= {1,3},T = {1,2,3},ε = 0
γ := 0,z(λ ) := 47

S= {1,4},T = {1,2,4},ε = 0
γ := 0,z(λ ) := 48

Step 3,δ− = 0, r− = 2
?

Step 3,δ− = 1, r− = 2
?

S= {1,3},T = {1,3},ε = 0
γ := 0,z(λ ) := 47

S= {1,4},T = {1,4},ε = 0
γ := 0,z(λ ) := 48

Fig. 3.2 The recursive solution tree forε0 = 0.

The recursive solution trees for the casesε0 = 0 andε0 = 2 are depicted in Fig-
ure 3.2 and Figure 3.3, respectively. Each subproblem is represented by a box in

S= /0,T = {1,2,3,4},ε = 2
γ := 1,Φ(λ ) := 48

?

Step 2,δ+ = 0, r+ = 1

S= {1},T = {1,2,3,4},ε = 2
γ := 1,z(λ ) := 48

?

Step 4,δ+ = 1, r+ = 2

S= {1,2},T = {1,2,3,4},ε = 1
γ := 0,z(λ ) := 48

	 R

Step 6,k= 3

S= {1,2,3},T = {1,2,3,4},ε = 1
γ := 0,z(λ ) := 48

S= {1,2},T = {1,2,4},ε = 1
γ := 0,z(λ ) := 49

Step 3,δ− =−4, r− = 4
?

Step 2,δ+ =−4, r+ = 4
?

S= {1,2,3},T = {1,2,3},ε = 1
γ := 0,z(λ ) := 48

S= {1,2,4},T = {1,2,4},ε = 1
γ := 0,z(λ ) := 49

Fig. 3.3 The recursive solution tree forε0 = 2.
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which the values of the input and the output parameters are shown. At each arc
of the trees the corresponding steps of the Procedure DC() are indicated. In Fig-
ure 3.2 the prescribed accuracyε0 = 0 is not yet satisfied at the second level of the
tree, so that a branching is needed. In the case ofε0 = 2, the DC algorithm applies
the branching rule at the third level because after the second level the value of the
current accuracy is equal to 1 (ε = 1). An improved version of the DC algorithm
applied to the SPL problem is presented in Goldengorin et. al. [69] and based on the
pseudo-Boolean approach to the SPLP (see Chapter 4 in this book).

3.4 Computational Experiments with the Quadratic Cost
Partition Problem (QCP) and Quadratic Zero-One
Optimization Problem: a Brief Review

The Quadratic Cost Partition (QCP) problem can be describedas follows (see Sec-
tion 2.2 and Leeet al. [102]). Given nonnegative real numbersqi j and real numbers
pi with i, j ∈ N = {1,2, . . . ,n}, the QCP is the problem of finding a subsetS⊂ N
such that the function

z(S) = ∑
j∈S

pi−
1
2 ∑

i, j∈S

qi j

will be maximized. As a special case we have the Max-Cut Problem (MCP), to be
described as follows. Consider an edge weighted undirectedgraphU(N,E) with
edge weightswi j ≥ 0, i j ∈ E. Define a cutδ (T) as the edge set containing all the
edges with one end inT and the other end inN \T. Define further the weight of a
cut as the sum of the edge weights in the cut. The MCP is the problem of finding a
cut, and thus a partition, with the maximum possible weight.The MCP is a special
case of the QCP, namely take

pi = ∑
i∈V

wi j and qi j = 2wi j .

An instance of the QCP is defined by an integer positive n, a vector of real numbers
Pi , i = 1, ...,n, and a symmetric matrixQ = ||qi j ||, i, j = 1, ...,n with nonnegative
entries.

The QCP and the MCP arise in many real world applications ([99] and references
within) such as capital budgeting, time tabling, communication scheduling, statisti-
cal physics, design of printed circuit boards and VLSI design (see also Barahonaet
al. [8], Carter [24] and Leeet al.[102]). Since the MCP is a special case of the QCP,
the QCP is also NP-hard, Karp [87]. Anα-approximation algorithm is a polynomial-
time algorithm that always finds a feasible solution with an objective function value
within a factorα of optimal (Williamson [135]). The best knownα-approximation
algorithm for MCP givesα = 0.87856 (Williamson [135]). On the negative side
though, Håstad [82] has shown that there can be no 0.941-approximation algorithm
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for MCP unlessP= NP. In other words, to solve the MCP with prescribed accuracy
within 5.9% is an NP-hard problem.

The earliest formulation of the QCP (see Hammer [79]) in terms of an uncon-
strained quadratic zero-one programming problem (QZOP) isthe following pseudo-
Boolean formulation:

max(
n

∑
i=1

pixi−
1
2

n

∑
i=1

n

∑
j=1

qi j xix j | x∈ {0,1}
n).

Sincex2
i = xi we can assume that the diagonal ofQ= ||qi j || is zero.

We would like to make an important remark: the equivalence between QZOP
and the MCP has been pointed out in Hammer [79] (see also Barahonaet al. [8]).
Since the MCP is a special case of the QCP, the QZOP and the QCP are equivalent
also. It means that in quadratic time for each instance of theQZOP we can find an
instance of the QCP such that they have the same sets of feasible solutions and the
same values of densities. We will use this remark as a motivation of the comparabil-
ity of our computational experiments with the QCP instancesand either QZOP or
MCP instances reviewed below through the values of densities of the corresponding
instances (see Goldengorin and Ghosh [72]).

A mixed-integer programming (MIP) formulation can be foundin Padberg [113].
In this formulation the quadratic term is replaced by a linear one and a number of
linear constraints:

max(
n

∑
i=1

pixi−
1
2

n

∑
i=1

n

∑
j=1

qi j yi j | xi + x j− yi j ≤ 1;

for i, j = 1, . . .n; x∈ {0,1}n, y∈ {0,1}n×n).

Another MIP formulation is given in Leeet al. [102]:

max(
n

∑
i=1

pixi−λ | λ ≥ ∑
(i, j)∈E(T)∪δ (T)

qi j (xi + x j−1)

for T ⊆N;x∈ {0,1}n,λ ≥ 0)

where
E(T) = {(i, j) | i ∈ T, j ∈ T, qi j > 0}

and
δ (T) = {(i, j) | i ∈ T, j ∈ N\T, qi j > 0}.

An advantage of the latter formulation over Padberg’s formulation [113] is a
smaller number of variables, although an exponential number of constraints is
required. The exponential number of constraints makes it impossible to solve
the full formulation for large instances. In order to overcome this difficulty Lee
et al. [102] start with only a small subset of the vertex set constraints (λ ≥
∑(i, j)∈E(T)∪δ (T)qi j (xi + x j − 1)) and generate violated ones as soon as they are
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needed. Therefore they need to solve the problem of recognizing violated con-
straints, i.e. a separation problem for the vertex set constraints in their branch and
cut algorithm. The separation problem is a typical part of branch and cut algorithms
based on the polyhedral approach in combinatorial optimization. Boros and Ham-
mer [21] have shown that the corresponding separation problems are polynomially
solvable for a wide class of QZOPs.

The methods of computational studies of the QZOP can be classified into the fol-
lowing groups [99]: BnB methods [16], [114], linear programming based methods
(branch and cut algorithms [8], [102]), eigenvalue based methods, and approaches
via semidefinite programming [119], [120]. We will not discuss all of these ap-
proaches but restrict ourselves to one important remark. Wehave not found any com-
putational study ofexact optimal solutionsfor the QCP or QZOP fordensegraphs
in which the number of vertices is at least 60. An exception isa specialized exact
algorithm for the maximum clique problem (e.g. the stability number problem in the
complementary graph) in Carragan and Pardalos [25]. They give computational re-
sults for problems growing up to 100 variables with any edge density. However, the
maximum clique problem is a special case of the QZOP. Billionnet and Sutter [16]
gave a comprehensive analysis of computational results published in Barahonaet
al. [8], Carragan and Pardalos [25], Carter [24], Kalantari andBagchi [86], Parda-
los and Rodgers [114], Williams [134]. For example, Barahona et al. (see Table 3
in [8]) as well as Pardalos and Rodgers (see Table 5.4 in [114]) reported compu-
tational results for dense QZOPs with up to 30 vertices; Leeet al. (see Table 1 in
[102]) reported computational results for dense QCPs with 40 vertices. Chardaire
and Sutter (see Table 1 in [26]) reported computational results for dense QZOPs
with up to 50 vertices. For 75 vertices their algorithm only finds the exact optimum
for 5 instances out of possible 10. For 100 vertices, they canonly find the exact
optimum for just one out of ten instances [26]. Moreover, thegeneral conclusion
of all published computational studies can be summarized asfollows [120]: “When
the edge density is decreased, the polyhedral bound is slightly better. On the other
hand, increasing the density makes the polyhedral bound poor. ” In other words, for
all above mentioned methods, average calculation times grow as edge densities in-
crease. Gloveret al.[55] have reported computational experiments with theadaptive
memory tabu searchalgorithm for the QZOP on dense graphs with 200 and 500 ver-
tices, and they conclude that this problems are very difficult to solve by currentexact
methods: “Here, however, we have no proof of optimality, since these problems are
beyond the scope of those that can be handled within practical time limits by exact
algorithms” [55]. In the next section we present computational experiments with
the DCA based on the PP algorithm (see Goldengorin and Ghosh [72]). We have
found a set of “threshold” QCP instances on dense graphs withup to 400 vertices
for which this algorithm solved them to optimality within 10min on a standard PC.
In concluding sections we improve this algorithm and reportcomputational results
with “threshold” QCP instances.
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3.5 The QCP: Computational Experiments

We have obtained computational results using randomly generated connected graphs
with the number of vertices varying from 40 to 80 and edge density d varying from
10% to 100% (i.e.d ∈ [0.1,1.0]). Here the edge density isd = |E|

(m
2
) , |E| is the num-

ber of random generated edges and
(m

2
)

is the number of edges in the corresponding

simple complete graph. The values ofpi andqi j are uniformly distributed in the in-
tervals [0,100] and [1,100], respectively. The computational results are summarized
in Table 3.1. We have tested the DC algorithm on the QCP test problems from Lee
et al. [102], and have made a comparison between our results and those from Leeet
al. [102].

Each problem set is labeled by the number of vertices of the graph together with
their densitiesd. For example, problem 50/7 refers to graphs with 50 verticesand
densityd= 0.7(or 70%), problem 40 refers to complete graphs with 40 vertices. For
each combination of density and number of vertices, five random problems were
solved. The column ‘Lee et al.’ of Table 3.1 contains the average computational
times for the problems on a RISC 6000 workstation as given in Leeet al. [102].
The DC algorithm was coded by means of Turbo Pascal 6.0 and wasexecuted on
a PC with a 133 Mhz processor. Cells with “min”, “avg”, and “max” in Table 3.1
show minimum, maximum and average performances of two statistics for the DC
algorithm: ‘the number of generated subproblems’ solved, and ‘the number of fath-
omed subproblems’ indicating the number of subproblems discarded by means of
the upper boundsub1 andub2 from Lemma 3.2. When the graph has at most 40
vertices, the problem is very easy, and the calculation times are less than 0.05 sec.
For problems with at least 40 vertices the average calculation times grow exponen-
tially with decreasing values of the densityd (see Figure 3.4) for all values ofε0.
This behavior differs from the results of the algorithm fromLeeet al. [102]; their
calculation times grow with increasing densities. For problems with density more
than 10% our algorithm is faster than the algorithm from Leeet al. [102]. For one
problem (80/1) with density equal to 10% our algorithm uses more time.

Some typical properties of the behavior of the DC algorithm are shown in the
Figures 3.4, 3.5 and 3.6. In Figure 3.5 it can be seen that the calculation time of the
DC algorithm grows exponentially when the number of vertices increases. This is
to be expected since general QCPs are NP-hard. Figure 3.6 shows how the calcula-
tion times of the DC algorithm depend on the value ofε0. We have used different
prescribed accuracies varying from 0% to 5% of the value of the global minimum.

In all experiments withε0 > 0 the maximum value of the calculatedγ (denoted by
γmax) is at most 0.01949× z∗[ /0,N], i.e. within 2% of a global minimum. Moreover,
for all test problems with density at least 30%(d≥ 0.3), we obtainedγmax= 0, that
is, we found an exact global minimum with a calculation time of at most 5 secs. In
Figure 3.7,γmax is depicted for various values ofε0.

Prof. Fabio Tardella suggested that in case of the QCP the diagonal dominance of
the matrix might have a great influence on the calculation times (see Goldengorinet
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Prob. Time average, sec# of generated subpr.# of fathomed subpr.
Lee et al. DC min avg max min avg max

40/2 0.97 0.10 618 797 972 306 396 481
40/3 2.09 0.08 470 640 793 235 313 385
40/4 6.79 0.05 430 539 735 204 258 354
40/5 6.63 0.028 428 497 584 201 231 278
40/6 8.62 0.038 340 387 434 153 173 192
40/7 11.40 0.030 204 216 267 85 100 116
40/8 14.57 0.028 217 261 292 80 95 103
40/9 8.46 0.012 107 154 223 34 42 56
40 13.89 0.004 119 160 213 33 38 48

50/1 0.56 0.29 1354 1885 2525 686 945 1258
50/2 5.36 0.45 2100 2778 3919 1042 1393 1971
50/3 16.19 0.27 1671 2074 2565 814 1019 1268
50/4 95.32 0.18 1183 1576 1976 576 755 950
50/5 38.65 0.08 870 943 1051 414 447 502
50/6 43.01 0.07 646 725 798 291 321 345
50/7 48.07 0.05 610 648 714 245 270 294

60/2 12.11 1.56 5470 8635 11527 2718 4303 5744
60/3 183.02 0.71 3481 5069 7005 1736 2519 3478
60/4 150.50 0.39 2450 3037 3895 1221 1503 1917
60/5 137.22 0.22 1701 2080 2532 825 1012 1236

70/2 437.74 4.89 15823 23953 34998 7909 11971 17486
70/3 367.50 1.91 9559 11105 13968 4769 5540 6967

80/1 20.87 28.12 55517 92836 132447 27771 46418 66228
80/2 864.27 17.10 64261 66460 68372 32102 33202 34160

Table 3.1 The comparison of computational results.
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Fig. 3.4 Average calculation time in secs against the densityd (case:m= 80,ε0 = 0).

al. [66]). Assuming that allpi are positive, thediagonal dominance(dd) is defined
asddi =

pi
2∑ j 6=i qi j

, i ∈ N, i.e., it is the quotient of the “main diagonal entry”pi and

the sum of the off diagonal entries in thei-th row and column ofQ = ||qi j ||. We
have calculated the diagonal dominance values of the instances from Table 3.1. The
results of these calculations are presented in Table 3.2. The first column shows that
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Fig. 3.5 Average calculation time in secs against the number of verticesm (case:d = 0.3, ε0 = 0).
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Fig. 3.6 Average time in secs against prescribed accuracyε0 (case:m= 80,d = 0.2).

78.8% of the diagonal elements have values in the interval[0.05,0.2]; the meaning
of columns 2 and 3 are similar.

dd [0.05,0.2] [0.2,0.8] [0.8,25]
percentage 78.8 17.2 4.0

Table 3.2 The distribution of the diagonal dominances.

We have studied the influence of the diagonal dominance on theaverage calcula-
tion time of the DC algorithm for the following randomly generated instances. The
number of verticesm varies from 40 to 80, the edge densitiesd are chosen in the
interval [0.1,1.0], and the edge weights are randomly generated from the interval
[1,100], just as in Table 3.1. The weights of the verticespi however, are calculated
from the edge weights by using a constantdd for all vertices in the same instance,



3.5 The QCP: Computational Experiments 63
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Fig. 3.7 γmax as percentage of the value of a global minimum.

namelypi = 2dd∑ j 6=i qi j , i ∈ I0. The results for the casem= 40 are shown in Fig-
ure 3.8.
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Fig. 3.8 Average time in secs against diagonal dominance (cases:m =
40,d = 0.3,0.4, ...,1.0).

The calculation times grow exponentially with increasing values of the density
d, and for fixedd they grow exponentially ifdd comes close to 0.5. The maximum
calculation time is attained fordd = 0.5 andd = 1.0. This is the case of a “pure”
max-cut problem on a complete graph. Recall that for the instances from Leeet



64 3 Data Correcting Approach for the Maximization of Submodular Functions

al. [102], as shown in Figure 3.4, the calculation times decrease by increasing values
of the density. Notice that this phenomenon does not occur incase of constantdd.

We may conclude that diagonal dominance is a good “yardstick” for measur-
ing the intractability of instances of the QCP. For example,our randomly generated
instances with a constantdd for all vertices from the interval union[0.05,0.2]∪
[0.8,1.0] can be classified as “easy” instances of the QCP and from the interval
[0.4,0.6] as “hard” ones. In all our experiments with constantdd, the effect of expo-
nentially increasing calculation times with increasing values ofm (see Figure 3.5),
and the exponentially decreasing calculation times with increasing values ofε0, (see
Figure 3.6) is preserved.

3.6 Remarks for the DC Algorithm

Corollary 2.2 can be considered as the basis of our Data Correcting algorithm. It
states that if an interval[S,T] is split into[S,T−k] and[S+k,T], then the difference
between the submodular function valuesz(S) andz(S+k), or between the values of
z(T) andz(T − k) is an upper bound for the difference of the (unknown!) optimal
values on the two subintervals. This difference is used for ‘correcting’ the current
data (values ofz) in the algorithm.

Another keystone in this chapter is Theorem 3.2. For any listof subsetsSt , t ∈ P
that cover the feasible region, for example,S= ∪t∈PSt , it enables us to derive a new
upper bound between an upper bound on the optimal value of theobjective function
on Sand the optimal value. This new and sharper upper bound, whenimplemented
in the DC algorithm, yields an increase of the calculated accuracy, and a decrease
in the value of the associated parameterε. Moreover, this bound can also be built
into other BnB type algorithms for finding the best calculated accuracy based on the
accuracies for all resolved subproblems.

The DC algorithm presented in this chapter is a recursive BnBtype algorithm.
This recursion makes it possible to present a short proof of its correctness; see The-
orem 3.4.

We have tested the DC algorithm on cases of the QCP, enabling comparison with
the results presented in Leeet al. [102]. The striking computational result is the
ability of the DC algorithm to find exact solutions for instances with densities larger
than 30% and with a prescribed accuracy of 5% within fractions of a second. For
example, an exact global optimum of the QCP with 80 vertices and 100% density,
was found within 0.22 sec on a PC with a 133 Mhz processor.

Benati [12] has applied the DC algorithm for solving medium sized instances
of the Uncapacitated Competitive Location Problem with probabilistic customers’
behavior.

We point out that when the value ofε0 is very large, the DC algorithm behaves
as a greedy algorithm.

Therefore, the DC algorithm was more efficient for QCP instances defined on
dense graphs. However, we did not answer to the following questions.
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1. What are the largest (threshold) QCP instances from Leeet al. [102] defined
on dense graphs in a reasonable CPU time by the DC algorithm can be solved?

2. Is it possible to increase the threshold numbers of vertices for the QCP in-
stances by any modification of the DC algorithm?

In the remainder of this section we answer the first question and in the next sec-
tion we answer the second question. Note that most of the published computational
experiments with QZOP instances by 10 min CPU per instance isrestricted. So, we
have kept 10 min CPU as a reasonable time for finding an exact optimal solution to
each QCP instance involved in our computational experiments.

We have tested the DC algorithm for QCPs on a Pentium processor running at
300 Mhz with 64 MB memory. All algorithms are implemented in Delphi 3.

The threshold QCP instances from Leeet al. [102] which can be solved by the
DC algorithm within 10 minutes and are bounded by 300 vertices are shown in
Table 3.3.

Prob. Average time, secs
Dens. 100 200
100 0.831/0.752 64.372/38.351
90 1.027/0.916 78.614/49.926
80 1.784/1.108 217.898/162.455
70 2.498/1.593 631.492/376.629
60 3.509/2.874 1414.103/895.426
50 9.382/5.931 */1937.673
40 17.245/10.327 */*
30 48.013/22.209 */*
20 195.82/74.841 */*
10 446.293/95.122 */*

Prob. Average time secs
Dens. 300 400 500
100 340.681/229.396 1894.811/1162.396 */*
90 794.037/583.754 3505.892/1996.544 */*
80 2681.973/1875.603 */3604.715 */*
70 */3165.384 */* */*
60 */* */* */*

Table 3.3 “Threshold” QCP instances solved by the DC algorithm within10 min.

Prof. Fabio Tardella has proposed a ‘measure’ of intractability of the QCP in
connection with the DC algorithm, namely the so called diagonal dominance. Our
computational experiments with the DC algorithm show that instances of the QCP
with diagonal dominances from the intervals union[0.05,0.2]∪ [0.8,25] can be clas-
sified as ‘easy’ instances, and instances with diagonal dominances from the interval
[0.4,0.6] as ‘hard’ to solve.

We would like to remark that the DC algorithm can be used for broad classes
of combinatorial optimization problems that are reducibleto the maximization of a
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submodular function. Recently, Krause [96] has incorporated our DC algorithm in
the general purpose software MATLAB.

Our computational experiments with the Quadratic Cost Partition Problem show
that we can substantially reduce the calculation time for data correcting algorithms
[59, 66] by recursive application of our main theorem.

3.7 A Generalization of the DC Algorithm: a Multilevel Search
in the Hasse Diagram

In the previous section we have reported computational experiments with DC al-
gorithm applied to Quadratic Cost Partition Problem (QCP) instances by which we
are able to solve the QCP instances on dense graphs up to 300 vertices within 10
min on a standard PC. In this section we improve the above mentioned DC algo-
rithm for the submodular functions by using instead of two neighboring levels in
the Hasse diagram (the so called Preliminary Preservation Algorithm (PPA) of or-
der zero) more deep search (r levels of the Hasse diagram) procedure (the PPA of
orderr). We study the behavior of the DC algorithm through the number of search
levels of the Hasse diagram for the QCP case. Our computational experiments with
the QCP instances from Leeet al. [102] show that the “trade off” level of the Hasse
diagram is bounded byr = 3 (see Goldengorin and Ghosh [72]). Computational ex-
periments with the improved DCA allow us to solve QCP instances on dense graphs
with number of vertices up to 500 within 10 min on a standard PC.

In the next section we determine a generalization of the PPA,called thePPA of
order r (PPAr).

3.7.1 PPA of order r (PPAr)

The preservations rules in the PPA “look” only one level deepin the Hasse diagram.
The following statements allow us to explore the solution space more than one level
deep. This may be useful because we obtain additional possibilities for narrowing
the original interval [65].
In this section we use Corollary 2.2 in the following formulation.

Corollary 3.1. Let z be a submodular function on the interval[S,T]⊆ [ /0,N] and let
k∈ T \S. Then the following assertions hold.

a. z∗[S+ k,T]− z∗[S,T− k]≤ z(S+ k)− z(S) = d+
k (S).

b. z∗[S,T− k]− z∗[S+ k,T]≤ z(T− k)− z(T) = d−k (T).

Theorem 3.5.Let z be a submodular function on[S,T] ⊆ [ /0,N] and let k∈ T\S.
Then the following assertions hold.
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a. For any t+0 (k) ∈ argmax{d+
k (S+ t) : t ∈ T\(S+ k)},

z∗[S+ k,T]−max{z∗[S,T− k],z(S+ k)} ≤max{d+
k (S+ t+0 (k)),0}.

b. For any t−0 (k) ∈ argmax{d−k (T− t) : t ∈ T\(S+ k)},
z∗[S,T− k]−max{z∗[S+ k,T],z(T− k)} ≤max{d−k (T− t−0 (k)),0}.

Proof. We prove only part (a) since the proof of (b) is similar. Let

t+1 (k) ∈ argmax{z∗[S+ k+ t,T] : t ∈ T\(S+ k)}

We may represent the partition of[S,T] by means of its subintervals as follows:

[S,T] = S∪
⋃

t∈T\S

[S+ t,T].

Applying this representation on the interval[S+ k,T] we have

z∗[S+ k,T] = max{z(S+ k),z∗[S+ k+ t+1 (k),T ]}.

We distinguish now the following two cases:
Case 1: z(S+ k) ≤ z∗[S+ k+ t+1 (k),T]. Thenz∗[S+ k,T] = z∗[S+ k+ t+1 (k),T ].

For anyk∈ T\[S+ t+1 (k)] Corollary 3.1(a) on the interval[S+ t+1 (k),T ] states that:

z∗[S+ t+1 (k)+ k,T]− z∗[S+ t+1 (k),T− k]≤ d+
k (S+ t+1 (k)),

i.e., after substitutingz∗[S+ k,T] instead ofz∗[S+ k+ t+1 (k),T ] this inequality can
be written as follows:

z∗[S+ k,T]− z∗[S+ t+1 (k),T− k]≤ d+
k (S+ t+1 (k)),

and taking into account thatz∗[S+ t+1 (k),T− k]≤ z∗[S,T− k] we have

z∗[S+ k,T]− z∗[S,T− k]≤ d+
k (S+ t+1 (k)).

Adding two maximum operations leads to the following inequality

z∗[S+ k,T]−max{z∗[S,T− k],z(S+ k)} ≤max{d+
k (S+ t+1 (k)),0}.

Finally,d+
k (S+t+1 (k))≤ d+

k (S+t+0 (k)) sinced+
k (S+t) was maximal fort+0 (k). This

gives the required result.
Case 2: z(S+ k)> z∗[S+ k+ t+1 (k),T].

Thenz∗[S+ k,T] = z(S+ k). Consider the inequality

z(S+ k)−max{z∗[S,T− k],z(S+ k)} ≤ 0.

Sincez(S+ k) = z∗[S+ k,T] we have

z∗[S+ k,T]−max{z∗[S,T− k],z(S+ k)} ≤ 0.
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Adding a maximum operation withd+
k (S+ t+0 (k)) gives the required result

z∗[S+ k,T]−max{z∗[S,T− k],z(S+ k)} ≤max{d+
k (S+ t+0 (k)),0}.

Corollary 3.2. (preservation rules of order one). Let z be a submodular function on
[S,T]⊆ [ /0,N] and let k∈ T\S. Then the following assertions hold.

First Preservation Rule of Order One
(a) If max{d+

k (S+ t) : t ∈ T\(S+ k)} ≤ 0, then
z∗[S,T] = max{z∗[S,T− k],z(S+ k)} ≥ z∗[S+ k,T]
Second Preservation Rule of Order One

(b) If max{d−k (T) : t ∈ T\(S+ k)} ≤ 0, then
z∗[S,T] = max{z∗[S+ k,T],z(T− k)} ≥ z∗[S,T− k]

In the following theorem we show if the current interval[S,T] cannot be nar-
rowed by preservation rules of order one then the same interval cannot be narrowed
by preservation rules of order zero (see the preservation rules in Corollary 2.3).
Moreover, if the interval[S,T] can be narrowed by preservation rules of order zero
then this interval can be narrowed by preservation rules of order one. In this sense
we will say that preservation rules of order one arenot weakerthan preservations
rules of order zero.

Theorem 3.6.Preservations rules of order one are not weaker than preservations
rules of order zero.

Proof. We compare only first preservation rules of order one and order zero because
the proof for the case of second rules is similar.

Assume that the preservation rule of order one is not applicable, i.e., max{d+
k (S+

t) : t ∈ T\(S+ k)} = d+
k (S+ t0) > 0. The definition of submodularity ofz im-

plies d+
k (S) ≥ d+

k (S+ t0). Hence,d+
k (S) > 0 and the first preservation rule is

not applicable. In case when the first preservation rule of order zero is applica-
ble, i.e.,d+

k (S) ≤ 0 we have 0≥ d+
k (S) ≥ d+

k (S+ t) for all t ∈ T\(S+ k), i.e.,
max{d+

k (S+ t) : t ∈ T\(S+ k)} ≤ 0.

Note that the computational complexity for rules of order one and order zero
is different not only in their time complexities but also in their space complexities
because together with the preserved interval either[S+k,T] or [S,T−k] we should
preserve exactly one additional value eitherz(T− k) or z(S+ k), respectively. This
property is also valid for the preservation rules of orderr ≥ 1.

Instead of one level deep (order one) we may ‘look’r levels deep (orderr) with
a view to determine whether we can include or exclude an element. To simplify
the presentation of the following theorem, we need some new notations describing
certain subsets of the interval[S,T] as followsM+

r [S,T] = {I ∈ [S,T] : |I\S| ≤ r}
andM−r [S,T] = {I ∈ [S,T] : |T\I | ≤ r}.

The setsM+
r [S,T] andM−r [S,T] are the collection of subsets that contain in the

vicinity on one side of the setsS (the bottom of the corresponding Hasse subdi-
agram) andT (the top of the corresponding Hasse subdiagram) forr levels deep.
Define further the collections of sets
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N+
r [S,T] = M+

r [S,T]\M+
r−1[S,T],

N−r [S,T] = M−r [S,T]\M−r−1[S,T]
The setsN+

r [S,T] andN−r [S,T] are the collection of sets which are located on
the levelr aboveSand belowT in the Hasse diagram, respectively. Letv+r [S,T] =
max{z(I) : I ∈M+

r [S,T]}, v−r [S,T] =max{z(I) : I ∈M−r [S,T]}, w+
rk[S,T] =max{d+

k (I) :
I ∈ N+

r [S+ k,T]} andw−rk[S,T] = max{d−k (I) : I ∈N−r [S,T− k]}.

Theorem 3.7.Let z be a submodular function on[S,T] ⊆ [ /0,N] with k∈ T\S and
let r be a positive integer. Then the following assertions hold.
(a) If |N+

r [S+ k,T]|> 0, then
z∗[S+ k,T]−max{z∗[S,T− k],v+r [S,T]} ≤max{w+

rk[S,T],0}.

(b) If |N−r [S,T− k]|> 0, then
z∗[S,T− k]−max{z∗[S+ k,T],v−r [S,T]} ≤max{w−rk[S,T],0}.

Proof. We prove only part (a) since the proof of the part (b) is similar. We may
represent the partition of interval[S,T] as follows:

[S,T] = M+
r [S,T]∪

⋃

I∈N+
r [S,T]

[I ,T].

Applying this representation on the interval[S+ k,T] we have

z∗[S+ k,T] = max{v+r [S+ k,T],max{z∗[I + k,T] : I ∈N+
r [S,T]}}.

Let I(k) ∈ argmax{z∗[I + k,T] : I ∈ N+
r [S,T]}, and let us consider two cases of the

last equality:
Case 1.z∗[I(k)+ k,T]≥ v+r [S+ k,T], and
Case 2.z∗[I(k)+ k,T]< v+r [S+ k,T].

In the first casez∗[S+k,T] = z∗[I(k)+k,T]. ForI(k)∈N+
r [S,T] Corollary 3.1(a)

on the interval[I(k),T ] states:

z∗[I(k)+ k,T]− z∗[I(k),T− k]≤ d+
k (I(k)),

i.e. in case 1
z∗[S+ k,T]− z∗[I(k),T− k]≤ d+

k (I(k)).

Note for [I(k),T− k] ⊆ [S,T− k] we havez∗[S,T− k] ≥ z∗[I(k),T− k]. This leads
to the following inequality

z∗[S+ k,T]− z∗[S,T− k]≤ d+
k (I(k)).

Adding two maximum operations gives

z∗[S+ k,T]−max{z∗[S,T− k],v+r [S+ k,T]} ≤max{d+
k (I(k)),0}.

Sincew+
rk[S,T] is the maximum ofd+

k (I) for I ∈ N+
r [S+k,T], we have the required

result.
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In the second casez∗[S+ k,T] = v+r [S+ k,T] the following equality holds:

z∗[S+ k,T]− v+r [S+ k,T]}= 0

or
z∗[S+ k,T]−max{z∗[S,T− k],v+r [S+ k,T]} ≤ 0.

Adding a maximum operation withw+
rk[S,T] completes the proof of case (a)

z∗[S+ k,T]−max{z∗[S,T− k],v+r [S+ k,T]} ≤max{w+
rk[S,T],0}.

Corollary 3.3. (preservation rules of order r). Let z be a submodular function on
[S,T]⊆ [ /0,N] and let k∈ T\S. Then the following assertions hold.

First Preservation Rule of Order r
(a) If w+

rk[S,T]≤ 0, then
z∗[S,T] = max{z∗[S,T− k],v+r [S+ k,T]} ≥ z∗[S+ k,T]
Second Preservation Rule of Orderr

(b) If w−rk[S,T]≤ 0, then
z∗[S,T] = max{z∗[S+ k,T],v−r [S,T− k]} ≥ z∗[S,T− k]

Note that the analogue of Theorem 3.6 can be proved for preservation rules of
orderr−1 andr as follows. Preservation rules of orderr are not weaker than preser-
vations rules of orderr−1.

Now we can describe the PPA of orderr (PPAr). The PPAr behaves in the same
manner as the PPA, i.e., it tries to decrease the original interval [X,Y] in which an
optimal solution is located. The difference between the twoalgorithms lies in the
fact that the PPA searches only one level deep in the Hasse diagram, while the PPAr
searchesr levels deep. The PPAr chooses one element to investigate further from
either the top or the bottom of the Hasse diagram. We could investigate all vertices
from T \Sbut this would cost too much time. Therefore we use a heuristic to select
the element which we investigate further. The element we choose is an element
for which it is likely that one of the preservations rules of order r will succeed in
including or excluding this element from an optimal solution. The preservations
rules of order one apply if max{d+

k (S+ t) : t ∈ T \ (S+k)} ≤ 0 or max{d−k (T− t) :
t ∈ T \ (S+k)}≤ 0. So if we want them to apply then we have to choose an element
k so as to minimize the valuesd+

k (S+ t) andd−k (T− t). According to an equivalent
definition of a submodular function (see Nemhauseret al. [109]), d+

k (S)≥ d+
k (S+

t), if we choosed+
k (S) as small as possible, thend+

k (S+ t) will not be large and
hopefully negative for allt, and the first preservation rule of order one is more
likely to apply. Also if we takek with the smallest valued−k (T) then the second
preservation rule of order one is more likely to apply. Our computational study (see
Section 3.7.3) selects the “best” value ofr, and therefore shows the relevance of this
choice.

It is clear that if we search deep enough, the PPAr will alwaysfind an optimal so-
lution to our problem. We just taker = |Y\X|, where[X,Y] is the initial interval, and
at each step we will be able to include or exclude an element ofthe initial interval.
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However, the number of sets we have to examine in this case is not a polynomial
function ofr.

Let us define two recursive procedures PPArplus and PPArmin by means of
which we can try to include and exclude some elements of the initial interval [X,Y].

ProcedurePPArplus(S,T,k, r,maxd)
begin Calculatez(S+k);

If z(B) < z(S+k)
then B← S+k;
For all t ∈ T\(S+k) calculated+

k (S+ t);
If d+

k (S+ t) ≤ 0 or r = 1
then maxd←max{maxd,d+

k (S+ t)}
elsecall PPArplus(S+ t,T,k, r−1,maxd);

end

ProcedurePPArmin(S,T,k, r,maxd)
begin Calculatez(T−k);

If z(B) < z(T−k)
then B← T−k;
For all t ∈ T\(S+k) calculated−k (T− t);
If d−k (T− t)≤ 0 or r = 1
then maxd←max{maxd,d−k (T− t)}
elsecall PPArplus(S,T− t,k, r−1,maxd);

end

The Preliminary Preservation Algorithm of order r.

Input: A submodular functionzon [X,Y] of [ /0,N]

Output: The subinterval[S,T] and the setB such that

z∗[X,Y] = max{z∗[S,T],z(B)} and

min{w+
rk[S,T],w

−
rk[S,T]}> 0 for all k∈ T\S

Step 0: S← X, T←Y, B← /0;

Step 1: call PPA(X,Y;S,T); goto Step 2;

Step 2: d+←max{d+
k (S) : k∈ T\S}, d−←max{d−k (T) : k∈ T\S};

If d+ < d− then gotoStep 3else gotoStep 4;

Step 3: k← argmax{d+
t (S) : t ∈ T\S};

call PPArplus(S,T,k, r,maxd);

If maxd≤ 0 then T← T−k, goto Step 1.

Step 4: k← argmax{d−t (T) : t ∈ T \S};

call PPArmin(S,T,k, r,maxd);

If maxd≤ 0 then S← S+k, goto Step 1.

Note that the PPAr finds a maximum of the submodular function iff the levelr of
the Hasse diagram is “deeper or equal” to the level on which a STC is located.
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3.7.2 The Data Correcting Algorithm Based on the PPAr

In this section we briefly describe the main idea and the structure of the DC al-
gorithm based on the PPAr and abbreviated to DCA(PPAr). The description of the
DCA(PPA0) can be found in Section 3.2 (see also Goldengorinet al. [66]). We will
point out the main differences between the DCA(PPA) and the DCA(PPAr).

Recall that if a submodular functionz is not a PP-function, then the PPA ter-
minates with a subinterval[S,T] of [ /0,N] with S 6= T containing a maximum
of z without knowing its exact location in[S,T]. In this case, the postcondition
min{d+

i (S),d
−
i (T) | i ∈ T\S} = δ > 0 of the PPA is satisfied. The basic idea of

the DCA is that if a situation occurs for which this postcondition holds, then the
data of the current problem will be corrected in such a way that a corrected function
z violates at least one of inequalitiesd+

k (S) = δ > 0 or d−p (T) = δ > 0 for some
k, p ∈ T\S. In that manner the PPA can continue. Moreover, each correction of z
is carried out in such a way that the new (corrected) functionremains submodular.
If the PPA stops again without an optimal solution we apply the correcting rules
again and so on until the PPA finds an optimal solution. Fork∈ T \SCorollary 3.1
gives upper bounds for the valuesz∗[S,T]− z∗[S,T − k], namely,d+

k (S), and for
z∗[S,T]− z∗[S+ k,T], namely,d−k (T).

So, if we choose to include an elementk in the interval[S,T], then we know that
the difference between an optimal solution of the original interval and the new one
will be smaller thand+

k (S). A similar interpretation holds ford−k (T). It is clear that
after at mostn corrections we will find an approximate solutionJ ∈ [ /0,N] such that
z∗[ /0,N]≤ z(J)+ ε, whereε = ∑n

i=1 δi with δi equal to eitherd+
i (S) or d−i (T).

Before the PPA stops there are a few options. First, if we would like to al-
low a certain prescribed accuracy, sayε0, of an approximate solution for the
current interval[S,T], then after each correction we must check the inequalities
z∗[X,Y]− z∗[S,T] ≤ ε ≤ ε0. If ε > ε0 then it is possible to look deeper than one
level in the Hasse diagram (see the PPAr)either to determine whether or not an
element belongs to an optimal solutionor at least to reduce the current values of
d+

i (S) andd−i (T), becausew+
rk[S,T] ≥ w+

r+1k[S,T] andw+
rk[S,T] ≥ w+

rk[S,T− t], or
w−rk[S,T]≥w−r+1k[S,T] andw−rk[S,T]≥w−rk[S− t,T]. We will explore these possibil-
ities in the DCA(PPAr).

Finally, we can divide the current problem into two subproblems by splitting the
corresponding interval into[S+k,T] and[S,T−k] for some chosenk, and apply the
PPA on each interval separately. The monotonicity propertyd+

i (S)≥ d+
i (S+ t) of a

submodular function is the base of the following branching rule (see Section 3.1 and
Goldengorinet al. [66]). Note thatd+

i (S) =−δ−(S,T, i) andd−i (S) =−δ+(S,T, i).
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Branching Rule:

For k ∈ argmax{max[d+
i (S),d

−
i (T)] : i ∈ T\S}, split the interval[S,T] into two

subintervals[S+ k,T], [S,T − k], and use the prescribed accuracyε of [S,T] for
both intervals.

To make the DCA more efficient we incorporate improved upper bounds by
which we can discard certain subproblems from further consideration. We may dis-
card a subproblem if some optimal value found so far is largerthan the upper bound
of the subproblem under investigation because the optimal value of this subproblem
will never be larger than the optimal value found so far.

Due to Khachaturov [90], the upper boundsub1 andub2 from Corollary 3.1 can
be tightened. Define the following sets of positive numbers:d+(S,T) = {d+

i (S) :
d+

i (S)> 0, i ∈ T\S} andd−(S,T) = {d−i (T) : d−i (T)> 0, i ∈ T\S}. Define further
the ordered arrays:d+[i] is an i-th largest element ofd+(S,T) andd−[i] is an i-th
largest element ofd−(S,T) both for i = 1, . . . , |T\S|. So,d+[1] ≥ . . . ≥ d+[|T\S|]
and d−[1] ≥ . . . ≥ d−[|T\S|]. Let z∗[S,T, i] = max{z(I) : N+

i [S,T]} which is the
optimal value ofz(I). Finally, let us consider two functions which describe the be-
havior of our upper bounds while we add elements to the setS or delete elements
from the setT: f+(i) = z(S)+∑i

j=1d+[ j] and f−(i) = z(T)+∑i
j=1d−[ j]. Hence,

z∗[S,T, i] ≤ min{ f+(i), f−(i)}. Sincez∗[S,T] = max{z∗[S,T, i] : i = 1, . . . , |T\S|}
we have the following upper bound

ub= max{min[ f+(i), f−(i)] : i = 1, . . . , |T\S|} ≥ z∗[S,T].

Now we will describe the DCA. The DCA starts with a submodularfunctionz
on the interval[ /0,N] and the prescribed accuracyε0. A list of unsolved subproblems
(LUS) is kept during the course of the DCA. Every time a subproblem is further
decomposed into smaller subproblems, one of the subproblems is added to the LUS
and to the other one the DCA is applied. After a solution has been found to a sub-
problem, a new subproblem is taken from the LUS, and so on until the LUS is empty.
First, the DCA approximates a subproblem by using the PPA. Ifthis does not result
in an optimal solution of that subproblem, it first tries to discard the subproblem by
using the upper bound, else the subproblem will be either corrected (ifε ≤ ε0) or (if
ε > ε0) split up by means of the branching rule.

Note that the corrections are executed implicitly. A correction allows the PPA
to continue at least one step since the correction makes the postcondition of the
PPA invalid. For instance, if the PPA stops with an interval[S,T], then after in-
creasing (correction) the value ofz on [S,T− k] by d+

k (S) > 0 the DCA may dis-
card the subinterval[S+ k,T], becausez∗[S+ k,T]− [z∗[S,T − k] + d+

k (S)] ≤ 0.
In fact, instead of correcting the function values of the preserved subinterval, the
DCA increases the current value ofε with d+

k (S). In our example, if the value
of the current accuracy of the interval[S,T] is equal toε, then after discarding
the subinterval[S+ k,T] its value will be equal toε + d+

k (S). These arguments
show that the DCA did not change our submodular function explicitly. On the
other hand, letI ∈ [S+ k,T], J ∈ [S,T − k], then the submodularity ofz implies
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z(I)+ z(J) ≥ z(I ∩ J)+ z(I ∪ J). Since,I ∩ J ∈ [S,T− k] and I ∪ J ∈ [S+ k,T] we
havez(I)+ [z(J)+d+

k (S)]≥ [z(I ∩J)+d+
k (S)]+ z(I ∪J). Therefore, by correcting

the values ofzon a subinterval, the DCA preserves the submodularity ofz.
Finally, note that using the PPAr instead of the PPA yields two more possibilities:

either by narrowing the current interval or by decreasing the current value ofε.

3.7.3 Computational Experiments for the QCP
with the DCA(PPAr)

In Goldengorinet al. [66] we have restricted our computational experiments with
the number of vertices up to 80 for the QCP instances, since just such instances
in Lee et al. [102] are considered. For these instances from Leeet al. [102] we
have shown that the average calculation times grow exponentially when the number
of vertices increases and cut down exponentially with the increasing values of the
density. For example, an exact global optimum of the QCP with80 vertices and
100% density, was found within 0.22 sec on a PC with a 133 Mhz processor but for
the QCP with 80 vertices and 10% density 28.12 sec is requiredon the same PC.
Therefore, the DCA(PPA0) was more efficient for QCP instances defined on dense
graphs. However, we have not answered the following question yet.

Is it possible to increase the threshold numbers of verticesfor the QCP instances
by the DCA(PPAr)?

In the remainder of this Section we answer to this question. We have tested the
DCA(PPAr) for QCPs on a Pentium processor running at 300 Mhz with 64 MB
memory. All algorithms are implemented in Delphi 3.

The largest part of the calculation time is taken by the calculation of the values
of d+

k (S) andd−k (T), since they are calculated rather frequently in the course of the
algorithm. In case of the QCP we may calculate, for example, the value ofd+

k (S),
by calculating, at the first step, the expressions of

z(S+ k) = ∑
i∈S+k

pi−
1
2 ∑

i, j∈S+k

qi j

and

z(S) = ∑
i∈S

pi−
1
2 ∑

i, j∈S

qi j ,

and, at the second step,
d+

k (S) = z(S+ k)− z(S).

However, we can simplify the calculating ofd+
k (S) as follows:

d+
k (S) = z(S+ k)− z(S) =
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∑
i∈S+k

pi−
1
2 ∑

i, j∈S+k

qi j − (∑
i∈S

pi−
1
2 ∑

i, j∈S

qi j ) =

pk−
1
2 ∑

i, j∈S

qi j +
1
2 ∑

i, j∈S

qi j −
1
2 ∑

i∈S

qik−
1
2 ∑

j∈S

qk j =

pk−
1
2 ∑

i∈S

qik−
1
2 ∑

j∈S

qk j.

Sinceqkk = 0 andqi j = q ji the last expression can be rewritten as

d+
k (S) = pk−∑

i∈S

qik.

Similarly,
d−k (T) = ∑

i∈T
qik− pk.

Note that values ofd+
k (S) andd−k (T) must be calculated for successive sets such

that S,S+ t0,S+ t0 + t1 etc., andT,T − t0,T − t0− t1 etc. Hence, we can use the
previous value for calculating the next one as follows

d+
k (S+ t) = d+

k (S)−qtk and d−k (T− t) = d−k (T)−qtk.

If we compare the two implementations of the DCA(PPAr), namely with the direct
calculation of differences betweend+

k (S+ t)andd−k (T − t), and with the prelimi-
nary simplified expression ofd+

k (S), then computational experiments show that the
average computational time is reduced, on average, by a factor of 2.

As problem instances we use randomly generated connected graphs having from
50 to 500 vertices and densities 10–100% which are ‘statistically’ the same as from
Leeet al. [102]. Thedensityis defined as

d =
|E|

n(n−1)/2
·100%,

where|E| is the number of generated edges andn(n−1)/2 is the number of edges
in a complete simple graph. The datapi andqi j are uniformly distributed withpi ∈
[0,100] andqi j ∈ [1,100]. So, we may compare our computational results (see also
Goldengorinet al. [66]) to those obtained by Leeet al. [102].

First of all we look at calculation times of the DCA(PPAr) needed for problems
varying from 50 to 100 vertices. Since the DCA(PPAr) finds easily an optimal solu-
tion to the instances for which an optimal solution as close as possible either to the
top or to the bottom of the Hasse diagram is located, we use thedistance

dist(|I |,n/2) =
||I |−n/2|

n/2
·100%
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between the calculated optimal solutionI and the leveln/2 of the “main diagonal”
of the Hasse diagram in percentages as one of parameters of the “hardness” of our
instances by solving them to optimality by the DCA(PPAr).

Intuitively, it is clear that the DCA(PPAr) applied to instances with distances
close to 0% requires more calculation time than the DCA(PPAr) applied to in-
stances with distances close to 100%. Empirically we have found (see Goldengorin
et al. [66]) that for sparse instances from Leeet al. [102] the distance is close to the
“main diagonal” of the Hasse diagram (see Figure 3.9). For sparse instances with
densities bounded by 20% the DCA(PPA0) outperformes the branch-and-cut algo-
rithm from Leeet al. [102], often with speeds 10 times faster and for nonsparse
instances with density more than 40% with speeds 100 times faster. Figure 3.9
shows that the distance grows when the density of instances increases. Therefore,
we can expect a decrease in the average calculation time [66]when the density
of instances increases (see Figure 3.10). Figure 3.10 showsthat the natural loga-
rithm of the average calculation time is approximately linear. Hence, it is plausible
that the average calculation time grows exponentially whenthe size of instances in-
creases. Moreover, this increasing is more rapid for sparseinstances than for dense
ones. The threshold QCP instances from Leeet al.[102] which can be solved by the
DCA(PPA0) within 10 minutes in Table 3.3 are shown and bounded by 300 vertices.

We also study the impact of the numberr of levels of the PPAr on the average
calculation time of the DCA(PPAr). Figure 3.11 shows that searching one or more
levels deep does not decrease the average calculation time for non-dense instances
(d < 1.0). The smallest average calculation time is achieved at level 3 for instances
of complete graphs (d = 1.0). This fact is explained for all cases by the number
of generated subproblems for different levelsr (see Figure 3.12). In Figure 3.12
it can be seen that in all cases the number of subproblems is decreased when we
search deeper, but the decrease percentage of the number of subproblems for levels 0
through 5 is only 14% for instances with density of 70% while it is 91% for instances
with density 100%. Therefore the profit of decreasing the number of subproblems
is spent on the additional costs of the average calculation time for the PPAr. More
exactly, for dense graphs the balance is positive for searchlevels 3 and 4. This effect
holds also for larger instances (see Figure 3.13).

In the second part of experiments we consider instances of the QCP with sizes
between 100 and 500 vertices and densities between 10% and 100% which can be
solved with a prescribed accuracy of up to 5% within approximately 10 minutes. Ta-
ble 3.4 gives calculation times in seconds for exact/approximate solutions (0%/5%).
The entries in this table with * could not be solved within 10 minutes. All instances
with sizes above 300 and densities below 50% could not be solved within 10 min-
utes and are not shown in Table 3.4. In all experiments of the second part, the effect
of exponentially increasing calculation times with increasing of sizes and decreas-
ing of densities is preserved. Therefore instances of the QCP with 500 vertices and
densities between 90% and 100% are the largest instances which can be solved by
the DCA(PPA3) within 10 minutes on a standard PC.

The impact of the “diagonal dominance” notion for instancesof the QCP is the
same as in our previous experiments (see Goldengorinet al. [66] and Section 3.5).
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Fig. 3.9 dist(|I |,n/2) for instances of theQCPwith 50–100 vertices and densities 10%–100%.
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Prob. Time, average, secs
Dens 100 200
100 0.098/0.094 2.630/2.444
90 0.138/0.118 3.824/3.607
80 0.280/0.228 9.506/8.186
70 0.393/0.304 17.643/15.693
60 0.731/0.517 86.330/72.931
50 1.752/1.298 345.723/267.445
40 3.457/2.179 */*
30 11.032/5.880 */*
20 47.162/17.477 */*
10 70.081/12.196 */*

Prob. Time, average, secs
Dens 300 400 500
100 18.316/ 17.179 85.827/ 85.096 229.408/222.883
90 37.931/ 34.972 173.063/166.996 624.925/608.755
80 98.690/ 89.685 679.914/580.789 */*
70 413.585/364.480 */* */*
60 */* */* */*

Table 3.4 Average calculation times (in seconds) against prescribedaccuracies of 0% and 5% for
instances of the QCP with 100–500 vertices and densities 10%–100% within 10 min.
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3.8 Concluding Remarks

Theorem 3.5(a) can be considered as a generalization of Corollary 3.1(a) which is
the basis of the DCA(PPAr) and DCA(PPA), respectively. It states that if an interval
[S,T] is split into[S,T−k] and[S+k,T], then the maximum value of all differences
between the submodular function valueszon levelsr+1 andr is anupper boundfor
the difference between the unknown optimal value on the discarded subinterval and
the maximum of the unknown value of the preserved subinterval and the maximum
value ofz(I) on r levels of the Hasse diagram. Theorem 3.5(b) can be expounded
similarly. These upper bounds are used for implicit “correcting” of the current values
of z. In fact, we correct the value of the current accuracy (see Goldengorin and
Ghosh [72]).

We have tested the DCA(PPAr) on the QCP instances which ‘statistically’ are
the same as in Leeet al. [102]. It is shown that the distance of an optimal solution
to an antichain (“main diagonal”) of the Hasse diagram is a good measure of an
instance difficulty of the QCP at least for the DCA(PPAr). This distance increases
a little slower than a linear function against the increasing values of the density
for any fixed number of vertices (size). The instances with distances from 0% to
20% can be categorized as “hard”, distances from 30% to 60% as“difficult”, and
distances from 70% to 100% as “easy”. In all tested instancesthe average calculation
time grows exponentially for decreasing density values forall prescribed accuracies
values. This behavior differs from the results of the branchand cut algorithm in Lee
et al.[102]. Their calculation times grow when densities increase. This effect is also
indicated for all algorithms based on linear programming (see, e.g., Barahonaet
al. [8]; Pardalos and Rodgers [114]; Poljak and Rendl [120]). Our experiments with
different levelsr of the PPAr show that for the QCP instances from Leeet al. [102],
the best level is 3. In addition, this effect will be more evident when the density of the
corresponding instances will be as close as possible to 100%. Note that the largest
QCP instances solved by the DCA(PPA0) based on the two neighboring levels in
the Hasse diagramm within 10 min on a standard PC by 300 vertices is bounded.

Gloveret al. [55] reported their computational experiments for binary quadratic
programs withadaptive memory tabu searchprocedures. They assumed that the so
called “c” problems withn= 200 andn= 500 “ (which are ’statistically’ equivalent
to the Leeet al. [102] instances defined on dense graphs) to be the most challenging
problems reported in the literature to date - far beyond the capabilities of current
exact methods and challenging as well for heuristic approaches”.

Recently Billionnet and Elloumi [17] and Rendlet al. [122] have reported the
so called “achievemnts” with solving Max-Cut problem instances to optimlaity
on dense graphs with up to 100 and 250 vertices, respectively. This a negligible
“progress” compared to the DCA (PPA3) ability to solve statistically similar prob-
lems with up to 500 vertices. It seems that the authors of bothpapers [17, 122] have
overlooked the computational results produced by the data correcting approach to
the Max-Cut and Quadratic Costs Partition problems published in [66, 72].

The DCA(PPA3) have solved instances of the QCP up to 500 vertices on dense
graphs within 10 minutes on a standard PC. Since the data correcting approach is
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applicable for solving the large QCP instances defined on thedense graphs it will be
interesting to investigate a “composition” of data correcting approach and branch-
and-cut type algorithms based on mixed integer linear programming for solving
large instances of the QCP up for all range of densities.





Chapter 4
Data Correcting Approach for the Simple Plant
Location Problem

In this chapter we improve the DC algorithm for general supermodular functions
by using a pseudo-Boolean representation of the Simple Plant Location Problem
(SPLP) presented in the previous chapters. It is common knowledge that exact al-
gorithms forN P-hard problems in general, and for the SPLP in particular, spend
only about 10% of the execution time to find an optimal solution. The remaining
time is spent proving the optimality of the solution. In thischapter, our aim is to
reduce the amount of time spent proving the optimality of thesolution obtained. We
propose a data correcting algorithm for the SPLP that is designed to output solutions
with a pre-specifiedacceptable accuracyε (see Ghoshet al. [53]). This means that
the difference between the cost of the solution created by the algorithm is at most
ε more than the cost of an optimal solution. (Note thatε = 0 results in an exact
algorithm for the SPLP, whileε = ∞ results in a fast greedy algorithm). The objec-
tive function of the SPLP is supermodular (see Cornuejolset al. [35]) and so, the
data correcting algorithm described in Section 3.2 (see also Goldengorinet al. [66])
can be used to solve the SPLP. In fact, Section 3.3 contains anexample to that
effect. However, it can be made much more efficient; for example, by using SPLP-
specific bounds (used in Erlenkotter [44]) and preprocessing rules (used in Petrov
and Cherenin [118], Khachaturov [89], Khumawala [91], Frieze [46], Alcouffe and
Muratet [3]). The algorithm described here uses a pseudo-Boolean representation of
the SPLP, due originally to Hammer [80] (see Section 4.2). Ituses a newReduction
Procedure(RP) based on data correcting, which is stronger than the preprocessing
rules used in Khumawala [91] to reduce the original instanceto a smaller ‘core’ in-
stance, and then solves it using a procedure based on PP and DC(see Section 3.2 and
Goldengorinet al. [66]) algorithms. Recently, the RP procedure has been successf-
fully applied to the p-Median Problem (see Goldengorin and Krushinsky [74, 75]).
Since the new Reduction Procedure is based on a lower bound tothe SPLP, we
have compared the computational efficiency of this procedure on two different lower
bounds. The first lower bound is the well known Khachaturov-Minoux bound (see
Lemma 3.2) which is valid for a general submodular (supermodular) function. The
second lower bound is due to Erlenkotter [44] which is based on a pair of primal and
dual mathematical programming formulations of the SPLP. Weshow how the use

83
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of preprocessing and bounds specific to the SPLP enhance the performance of the
data correcting algorithm. This algorithm is based on two concepts presented in the
previous chapter,namely, data correcting and the preliminary preservation procedure
(see Chapter 2). Computational experiments with the data correcting algorithm on
benchmark instances of the SPLP are also described in this chapter.

4.1 Introduction

Given setsI = {1,2, . . . ,m} of sites in which plants can be located,J = {1,2, . . . ,n}
of clients, a vectorF = ( fi) of fixed costs for setting up plants at sitesi ∈ I , a matrix
C = [ci j ] of transportation costs fromi ∈ I to j ∈ J, and a unit demand at each
client site, the Simple Plant Location Problem (SPLP) is theproblem of finding a
setS, /0⊂ S⊆ I , at which plants can be located so that the total cost of satisfying
all client demands is minimal. The costs involved in meetingthe client demands
include the fixed costs of setting up plants, and the transportation cost of supplying
a given client from an open plant. We will assume that the capacity at each plant is
sufficient to meet the demand of all clients. We will further assume that each client
has a demand of one unit, which must be met by one of the opened plants. If a
client’s demand is different from one unit, we can scale the demand to a unit by
scaling the transportation costs accordingly.

A detailed introduction to this problem appears in Cornuejols et al. [35]. SPLP
forms the underlying model in several combinatorial problems, like set covering,
set partitioning, information retrieval, simplification of logical Boolean expressions,
airline crew scheduling, vehicle despatching (Christofides [32]), assortment (Beres-
nevet al. [14], Goldengorin [56, 64], Joneset al. [84], Pentico [116, 117], Tripathy
et al. [128]) and is a subproblem for various location analysis problems (ReVelle
and Laporte [124], ReVelleet al. [123]).

The SPLP is NP-hard (Cornuejolset al.[35]), and many exact and heuristic algo-
rithms to solve the problem have been discussed in the literature. Most of the exact
algorithms are based on a mathematical programming formulation of the SPLP. Di-
rect approaches (Schrage [126], Morris [106]), use a BnB approach and the strong
linear programming relaxation (SPLR) for computing bounds. However such ap-
proaches cannot always output an optimal solution to average-sized SPLP instances
in reasonable time. More efficient solution approaches to the SPLP are based on La-
grangian duality (Heldet al. [83], Beresnevet al. [14]). Computational experience
of solving the Lagrangian dual using subgradient optimization have been reported
in Cornuejolset al. [34] and Cornuejols and Thizy [36], and using Dantzig-Wolfe
decomposition in Garfinkelet al. [49]. Computer codes for solving medium sized
SPLP using a mixed-integer programming system are also available (Martin and
Schrage [104], Van Roy and Wolsey [132]). Polyhedral results for the SPLP poly-
tope have been reported in Trubin [129], Balas and Padberg [5], Mukendi [107],
Cornuejolset al.[33], Krarup and Pruzan [95], Choet al.[30], and Choet al.[31]. In
theory, these results allow us to solve the SPLP by applying the simplex algorithm to
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SLPR, with the additional stipulation that a pivot to a new extreme point is allowed
only when this new extreme point is integral. Although some computational expe-
rience using this method has been reported in the literature(Guignard and Spiel-
berg [77]), efficient implementations of this pivot rule arenot available. Results of
computational experiments with Lagrangian heuristics formedium sized instances
of the SPLP have been reported in Beasley [9]. Large-sized SPLP instances can be
solved using algorithms based on refinements to a dual-ascent heuristic procedure
to solve the dual of LP-relaxation of the SPLP (Körkel [93]), combined with the
use of the complementary slackness conditions to constructprimal solutions (Er-
lenkotter [44]). An annotated bibliography is available inLabbé and Louveaux [98],
ReVelle aand Laporte [124], and ReVelleet al. [123].

It is easy to see that any instance of the SPLP has an optimal solution in which
each customer is satisfied by exactly one plant. We believe that Hammer (see Ham-
mer [80]) first used this fact to derive a pseudo-Boolean representation of this prob-
lem. The pseudo-Boolean function developed in that work hasterms that contain
both a literal and its complement which can be replaced by a different pseudo-
Boolean form containing terms with either only literals or only their complements.
This fact is clearly illustrated by an example in Hammer [80]and has been gen-
eralized in Beresnev [13]. We find this form easier to manipulate, and hence use
Hammer-Beresnev’s formulation in this chapter.

The Hammer-Beresnev’s pseudo-Boolean representation of the SPLP facilitates
the construction of rules to reduce the size of SPLP instances (Beresnevet al. [14],
Cornuejolset al.[35], Dearinget al.[38], Goldengorinet al.[69], Khumawala [91],
Veselovsky [133], and the references within). These rules have been used in Gold-
engorinet al. [67, 68] not only for preprocessing, but also as a tool to either solve a
subproblem or reduce its size. They also use information from Hammer-Beresnev’s
pseudo-Boolean representation of the SPLP to compute efficient branching func-
tions (see Goldengorinet al. [67, 68]). For the sake of simplicity, we use a com-
mon depth first BnB scheme in our implementations and Khachaturov-Minoux (see
Khachaturov [89] and Minoux [105]) bound, but the concepts developed herein can
easily be implemented in any of the algorithms cited above.

The remainder of this chapter is organized as follows. In Section 4.2 we describe
Hammer-Beresnev’s pseudo-Boolean approach to the SPLP, and use this approach
to present Cherenin’s Preprocessing Rules 4.3. We then describe the ingredients of
Data Correcting Approach to the SPLP 4.4 and analyse this approach by extensive
computational study 4.5 . We finally summarize this chapter in Section 4.6 with
concluding remarks.

4.2 A Pseudo-Boolean Approach to SPLP

An instance of the SPLP is described by anm-vectorF = ( fi), and am×n matrix
C= [ci j ]. We assume thatF andC are finite, i.e.F ∈ℜm, andC∈ℜmn. We will use
them× (n+1) augmented matrix[F |C] as a shorthand for describing an instance
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of the SPLP. The total costf[F |C](S) associated with a solutionS consists of two
components, the fixed costs∑i∈S fi , and the transportation costs∑ j∈J min{ci j |i ∈S},
i.e.

f[F |C](S) = ∑
i∈S

fi + ∑
j∈J

min{ci j |i ∈ S},

and the SPLP is the problem of finding

S⋆ ∈ argmin{ f[F |C](S) : /0⊂ S⊆ I}. (4.1)

An m× n ordering matrixΠ = [πi j ] is a matrix each of whose columnsΠ j =
(π1 j , . . . ,πm j)

T defines a permutation of 1, . . . ,m. Given a transportation matrixC,
the set of all ordering matricesΠ such thatcπ1 j j ≤ cπ2 j j ≤ ·· · ≤ cπm j j , for j =
1, . . . ,n, is denoted byperm(C). A vector (π1 j , . . . ,πk j)

T , 1≤ k ≤ m, is called a
sub-permutationof the permutationΠ j .

Defining

yi =

{
0 if i ∈ S
1 otherwise,

for eachi = 1, . . . ,m (4.2)

we can indicate any solutionSby a vectory = (y1,y2, . . . ,ym). The fixed cost com-
ponent of the total cost can be written as

FF(y) =
m

∑
i=1

fi(1− yi). (4.3)

Given a transportation cost matrixC, and an ordering matrixΠ ∈ perm(C), we can
denote differences between the transportation costs for each j ∈ J as

∆c[0, j] = cπ1 j j , and

∆c[l , j] = cπ(l+1) j j − cπl j j , l = 1, . . . ,m−1.

Then, for eachj ∈ J,

min{ci j |i ∈ S} = ∆c[0, j]+∆c[1, j] ·yπ1 j +∆c[2, j] ·yπ1 j ·yπ2 j

+ · · ·+∆c[m−1, j] ·yπ1 j · · ·yπ(m−1) j

= ∆c[0, j]+
m−1

∑
k=1

∆c[k, j] ·
k

∏
r=1

yπr j ,

so that the transportation cost component of the cost of a solution y corresponding
to an ordering matrixΠ ∈ perm(C) is

TC,Π (y) =
n

∑
j=1

{

∆c[0, j]+
m−1

∑
k=1

∆c[k, j] ·
k

∏
r=1

yπr j

}

. (4.4)

Lemma 4.1.TC,Π (·) is identical for allΠ ∈ perm(C).
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Proof. Let Π = [πi j ],Ψ = [ψi j ] ∈ perm(C), and anyy ∈ {0,1}m. It is sufficient to
prove thatTC,Π (y) = TC,Ψ (y) when

πkl = ψ(k+1)l , (4.5)

π(k+1)l = ψkl , (4.6)

πi j = ψi j if (i, j) 6= (k, l). (4.7)

Then

TC,Π (y)−TC,Ψ (y) = (cπ(k+1)l l − cπkl l ) ·
k

∏
i=1

yπil − (cψ(k+1)l l − cψkl l ) ·
k

∏
i=1

yψil .

But (4.5) and (4.6) imply thatcπ(k+1)l l = cπkl l andcψ(k+1)l l = cψkl l which in turn imply
thatTC,Π (y) = TC,Ψ (y).

Combining (4.3) and (4.4), the total cost of a solutiony to the instance[F |C]
corresponding to an ordering matrixΠ ∈ perm(C) is

f[F |C],Π (y) = FF(y)+TC,Π (y) =

=
m

∑
i=1

fi(1− yi)+
n

∑
j=1

{

∆c[0, j]+
m−1

∑
k=1

∆c[k, j] ·
k

∏
r=1

yπr j

}

. (4.8)

Lemma 4.2.The total cost function f[F |C],Π (·) is identical for allΠ ∈ perm(C).

Proof. This is a direct consequence of Lemma 4.1.

A pseudo-Boolean polynomialof degreem is a polynomial of the form

P(y) = ∑
T∈2m

αT ·∏
i∈T

yi ,

where 2m is the power set of{1,2, . . . ,m}, a constantαT can assume arbitrary val-
ues, andyi is a Boolean variable. We call a pseudo-Boolean polynomialP(y) a
Hammer-Beresnev functionif there exists a SPLP instance[F |C] andΠ ∈ perm(C)
such thatP(y) = f[F |C],Π (y) for y ∈ {0,1}m. We denote a Hammer-Beresnev func-
tion corresponding to a given SPLP instance[F |C] by H[F |C](y) and define it as

H[F |C](y) = f[F |C],Π (y) whereΠ ∈ perm(C). (4.9)

Theorem 4.1.A general pseudo-Boolean function is a Hammer-Beresnev function
if and only if

(a) All coefficients of the pseudo-Boolean function except those of the linear terms
are non-negative, and

(b) The sum of the constant term and the coefficients of all thenegative linear terms
in the pseudo-Boolean function is non-negative.
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Proof. The “if” statement is trivial. In order to prove the “only if”statement, con-
sider a SPLP instance[F |C], an ordering matrixΠ ∈ perm(C), and a Hammer-
Beresnev functionH[F |C](y) in which there is a non-linear term of degreek with
a negative coefficient. Since non-linear terms are contributed by the transportation
costs only, a non-linear term with a negative coefficient implies that∆C[k, j] for
some j ∈ {1, . . . ,n} is negative. But this contradicts the fact thatΠ ∈ perm(C).
Next suppose that inH[F |C](y), the sum of the constant term and the coefficients
of the negative linear terms is negative. This implies that the coefficient of some
linear term in the transportation cost function is negative. But this also contradicts
the fact thatΠ ∈ perm(C). The logic above holds true for all members ofperm(C)
as a consequence of Lemma 4.1.

Therefore we have shown (AlBdaiwiet al. [1]) that the total cost function
f[F |C],Π (·) is identical for allΠ ∈ perm(C). In other words

H[F |C](y) = f[F |C],Π (y) whereΠ ∈ perm(C). (4.10)

We can formulate (4.1) in terms of Hammer-Beresnev functions as

y⋆ ∈ argmin{H[F |C](y) : y ∈ {0,1}m,y 6= 1}. (4.11)

Hammer-Beresnev functions assume a key role in the development of the algo-
rithms described in the next sections.

Example 4.1.Consider the SPLP instance:

[F |C] =







7 7 15 10 7 10
3 10 17 4 11 22
3 16 7 6 18 14
6 11 7 6 12 8






. (4.12)

Two of the four possible ordering matrices corresponding toC are

Π1 =







1 3 2 1 4
2 4 3 2 1
4 1 4 4 3
3 2 1 3 2







andΠ2 =







1 4 2 1 4
2 3 4 2 1
4 1 3 4 3
3 2 1 3 2






. (4.13)

The Hammer-Beresnev function isH[F |C](y) = [7(1− y1) + 3(1− y2)+ 3(1−
y3)+6(1− y4)]+ [7+3y1+1y1y2+5y1y2y4]+ [7+0y3+8y3y4+2y1y3y4]+ [4+
2y2+0y2y3+4y2y3y4]+ [7+4y1+1y1y2+6y1y2y4]+ [8+2y4+4y1y4+8y1y3y4]
= 52− y2−3y3−4y4+2y1y2+8y3y4+4y1y4+11y1y2y4+10y1y3y4+4y2y3y4.
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4.3 Cherenin’s Preprocessing Rules

Suppose that the given instance is not recognized to correspond to a known polyno-
mially solvable special case. Then we have to use an exact algorithm for solving this
instance. The execution times of exact algorithms for the SPLP are exponential in
the parameterm. So any preprocessing rules, i.e. quick methods of reducingthe size
of the given instance, are of much practical importance. There are two preprocessing
rules available in the literature. The first one, due to Beresnev [13], Cornuejolset
al. [35], Dearinget al.[38], and Veselovsky [133] states that if there are two clients
that have the same sub-permutations of the transportation costs in any ordering ma-
trix, then they can be aggregated into a single virtual client. The second rule, due to
Cornuejolset al.[35], Dearinget al.[38] states that if the coefficientak of the linear
term involvingyk is non-negative, thenyk = 0 in an optimal solution, i.e, there exists
an optimal solution in which a plant will be opened in that site.

The existing first rule is automatically applied and generalized when we construct
a Hammer-Beresnev function. In instance (4.12) we can aggregate clients 1 and 4
by using the first rule. In the following example we see that the same rule can be
used to further decrease the number of clients to three.

Example 4.2.Consider the SPLP instance described in (4.12). Combining the first
and the fourth client we get the equivalent instance

[S|D] =







7 14 15 10 10
3 21 17 4 22
3 34 7 6 14
6 23 7 6 8






.

The Hammer-Beresnev function for both these instances isH[F |C](y) = 52−
y2−3y3−4y4+2y1y2+8y3y4+4y1y4+11y1y2y4+10y1y3y4+4y2y3y4. Since this
Hammer-Beresnev function can be represented asH[F |C](y) = [1(1− y2) +3(1−
y3)+4(1−y4)]+[44+0y1+2y1y2+11y1y2y4]+[0+0y3+8y3y4+4y2y3y4]+[0+
0y4+4y1y4+10y1y3y4].
the following equivalent instance withthreevirtual clients is also possible:

[S1|D1] =







0 44 12 0
1 44 8 14
3 57 0 4
4 46 0 0






.

The first virtual client is obtained by aggregating clients 1and 4, the second by
aggregating clients 2 and 3, and the third by aggregating clients 2 and 5 from the
original set of clients.

In the remainder of this section we will show that the second rule is equivalent to
the Khumawala’s “delta” rule (see Efroymson and Ray [43], Khumawala [91] and
Canelet al. [23]). In fact this rule is a special case of Cherenin’s Excluding Rules,



90 4 Data Correcting Approach for the Simple Plant Location Problem

and our Preservation Rules (see Chapter 2), developed for supermodular functions
(see Cherenin [29]). In contrast to Khumawala [91] we use Hammer-Beresnev func-
tions to justify the correctness of “delta” and “omega” rules, since such a justifica-
tion leads to an efficient implementation of these rules.

The pseudo-Boolean representation of the SPLP allows us to develop rules using
which we can peg certain variables in a solution by examiningthe coefficients of the
Hammer-Beresnev functions. The rule that we use here is described in Goldengorin
et al.[68] as a Pegging Rule. We assume, without loss of generality, that the instance
is not separable, i.e. we cannot partitionI into setsI1 andI2, andJ into setsJ1 and
J2, such that the transportation costs from sites inI1 to clients inJ2, and from sites
in I2 to clients inJ1 are not finite. We also assume without loss of generality, that
the site indices are arranged in non-increasing order offi +∑ j∈J ci j values.

Theorem 4.2.(Cherenin’s Excluding Rules, see also Khumawala’s “delta” and
“omega” rules [91] and Pegging Rule in Goldengorin et al. [68]) Let H[F |C](y) be
the Hammer-Beresnev function corresponding to the SPLP instance[F |C] in which
like terms have been aggregated. Letak = (∑ j :π1 j=k ∆c[1, j])− fk be the coefficient
of the linear term corresponding toyk and let

tk =
n

∑
j=1

j :k∈{π1 j ,...,πp j}

m−1

∑
p=2

∆c[p, j]

be the sum of the coefficients of all non-linear terms containing yk for each site
indexk. Then the following holds.

(a) RO: Ifak ≥ 0, then there is an optimal solutiony⋆ in whichy⋆k = 0, else
(b) RC: If ak+ tk≤ 0, then there is an optimal solutiony⋆ in whichy⋆k = 1, provided

y⋆i 6= 1 for somei 6= k.

Proof.

(a) Supposeak≥ 0. Let us consider a solutiony in whichyk = 1 and a solutiony′ in
whichy′i = yi for eachi 6= k, andy′k = 0. NowH[F |C](y)−H[F|C](y

′)≥ ak≥ 0.
Hencey′ is preferable toy. This shows thatyk = 0 is an optimal solution.

(b) Next suppose thatak+ tk≤ 0. Consider two solutionsy andy′, such thatyi = y′i
for eachi 6= k, yk = 0, andy′k = 1. Then

H[F |C](y
′)−H[F|C](y)

= {
m

∑
i=1

fi(1− y′i)+
n

∑
j=1

m−1

∑
p=1

∆c[p, j]
p

∏
r=1

y′πr j
}−

{
m

∑
i=1

fi(1− yi)+
n

∑
j=1

m−1

∑
p=1

∆c[p, j]
p

∏
r=1

yπr j }
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= {− fky
′
k−

m

∑
i=1
i 6=k

fiy
′
i

︸ ︷︷ ︸

A

+
n

∑
j=1

m−1

∑
p=s+1

s:πs j=k

∆c[p, j]
p

∏
r=1

y′πr j
+

n

∑
j=1

r:πr j =k

∑
p=1

∆c[p, j]
p

∏
r=1

y′πr j
}

︸ ︷︷ ︸

B

−

{− fkyk−
m

∑
i=1
i 6=k

fiyi

︸ ︷︷ ︸

C

+
n

∑
j=1

j :k∈{π1 j ,...,πp j}

m−1

∑
p=1

∆c[p, j]
p

∏
r=1

y′πr j
+

n

∑
j=1

j :k6∈{π1 j ,...,πp j}

m−1

∑
p=1

∆c[p, j]
p

∏
r=1

yπr j

︸ ︷︷ ︸

D

} (4.14)

Notice that the terms markedA andC cancel each other sinceyi = y′i wheni 6= k,
as do the terms markedB andD. Canceling these terms and settingyk = 0 and
y′k = 1 in (4.14) we obtain

H[F |C](y
′)−H[F|C](y)

= {− fk+
n

∑
j=1

j :k∈{π1 j ,...,πp j}

m−1

∑
p=1

∆c[p, j]
p

∏
r=1

y′πr j
} (4.15)

which, on separating the linear and non-linear terms

= {ak+
n

∑
j=1

j :k∈{π1 j ,...,πp j}

m−1

∑
p=2

∆c[p, j]
p

∏
r=1

y′πr j
}. (4.16)

An upper bound to (4.16) isak + tk, which is obtained by settingy′i = 1 for
eachi ∈ I , since all non-linear terms in the Hammer-Beresnev function have
non-negative coefficients. Thus

H[F |C](y
′)−H[F|C](y)≤ (ak+ tk)≤ 0. (4.17)

Hencey′ is preferable toy. This shows thatyk = 1 in an optimal solution. Of
course, ify⋆i = 1 for all i 6= k, then settingy⋆k to 1 would yield an infeasible
solution.

Note thattk ≥ 0 for each indexk, since the non-linear terms of the Hammer-
Beresnev function are non-negative. Thusak+ tk ≤ 0 implies thatak ≤ 0. If tk = 0,
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then there is a possibility ofak being equal to zero, but this possibility is taken care
of in the first part of the rule.

The importance of the ordering of the site indices is demonstrated in the follow-
ing lemma.

Lemma 4.3.If ak < 0 and ak + tk ≤ 0 for each k∈ I in H[F |C](y) for the SPLP
instance[F |C], then an optimal solution would be(1,1, . . . ,1,0) assuming that the
site indices are arranged in non-increasing order of fi +∑ j∈J ci j values.

Proof. Let us initially relax the constrainty 6= 1 in (4.11). In such a case it is easy
to see that the optimal solution would bey = 1 (from (4.17)). If we reimpose the
constraint, we need to set one or moreyk values to 0. Changingyk = 0 for any
variablek∈ I increases the value of the Hammer-Beresnev function byfk+∑ j∈J ck j.
Note that settingyk = 0 does not affect the non-positive nature ofai + ti , i 6= k, since
this operation does not affectai and can only reduce the value ofti . Also note that
setting any additional variableyi , i 6= k to 0 cannot reduce the value of Hammer-
Beresnev function sinceai < 0 andai + ti ≤ 0 for eachi 6= k. The result follows.

The lemma above is illustrated by the following example. Consider a SPLP in-
stance[F |C], m= n= 3, in whichF = (99,100,98) and

C=





0 10 13
10 0 16
13 16 0





The Hammer-Beresnev function for this instance is

H[F |C] = 297−89y1−90y2−85y3+9y1y2+3y1y3.

It is clear thatak < 0 andak+ tk < 0 for k= 1, 2, and 3. Therefore the Pegging Rule
will solve this instance completely, setyk = 1 the first two sites it encounters, and
setyk = 0 for the last site. However, the solution would be correct only if the last
site encountered has the lowestfi +∑ j∈J ci j value, i.e., if site 1 is considered after
sites 2 and 3. In general therefore, the sitesi should be ordered in non increasing
values offi +∑ j∈J ci j .

Since there areO(mn) terms in the Hammer-Beresnev function corresponding to
a SPLP instance withm candidate sites andn clients, the computational complexity
of the preprocessing rule stated above isO(mn).

Notice that if at any preprocessing step, we can determine thatyk = 1 for a certain
sitek, then we need not include the row corresponding to sitek in our calculations,
and can therefore drop this row from the extended matrix in the succeeding steps.
This deletion of rows is not possible ifyk = 0, since we do not know beforehand the
whole set of clients that be served by a plant located at this site in any equivalent
instance of the SPLP. The preprocessing rules also allow us to reduce the number
of clients in the problem. If there is a client, the cost of satisfying whose demand
by a site determined to be open by RO is less than the cost of satisfying it by any
site whose status was not determined by preprocessing, thenthat client could be
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removed from further consideration. We could also cluster the clients based on the
Hammer-Beresnev function, as illustrated in the followingExample.

Example 4.3.Consider the SPLP instance

[F |C] =







7 7 15 10 7 10
3 10 17 8 11 22
3 16 7 6 18 14
6 11 7 6 12 8






.

The Hammer-Beresnev function for this instance isH[F |C]((y1,y2, y3,y4)) =
54+0y1−3y2−3y3−4y4+2y1y2+4y1y4+10y3y4+11y1y2y4+10y1y3y4+2y2y3y4.
Since the coefficient ofy1 is zero we can sety1 = 0. The Hammer-Beresnev func-
tion then becomesH[F |C]((0,y2,y3,y4)) = 54−3y2−3y3−4y4+10y3y4+2y2y3y4.
The coefficient of the linear term involvingy2 is negative and its magnitude in the
revised Hammer-Beresnev polynomial is 3 while the sum of allterms containing
y2 in the transportation cost component is 2. So we can sety2 = 1. The Hammer-
Beresnev function then changes toH[F |C]((0,1,y3,y4)) = 51−3y3−4y4+12y3y4.
One of the instances that such a Hammer-Beresnev function corresponds to is the
following one (with rows corresponding toy1, y3 andy4, respectively, since we have
deleted the row corresponding toy2).

[S|D] =





0 56
3 44
4 44



 .

It is easy to see that an optimal solution to this instance isy1 = y3 = 0 andy2 =
y4 = 1. So an optimal solution to the SPLP instance is to set up plants at sites 1 and
3.

Hence we have reduced the size of the instance at hand, and in this case, arrived at
an optimal solution to the original instance using the preprocessing rules described
above.

We carried out some preliminary computation to check the strength of our pre-
processing rule. We used 12 benchmark problems in the OR-Library maintained by
Beasley [10]. The results are summarized in column “m after Procedure a” of Ta-
ble 4.1. Notice that the status of almost half of the number ofsites could be predicted
using the preprocessing rule. In particular, the second part of the rule, that allows us
to predict sites which willnot be opened in an optimal solution, is quite powerful
for these instances.

4.4 Ingredients of Data Correcting for the SPLP

Data correcting is a method in which we alter the data in a problem instance to con-
vert it to an instance that is easily solvable. This methodology was first introduced
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in [59]. In this subsection we illustrate the method for the SPLP when the instance
data is represented by the fixed cost vector and the transportation cost matrix. How-
ever it can be applied to a wide variety of optimization problems, and in particular,
to the SPLP represented as a Hammer-Beresnev function.

Consider an instance[F |C] of the SPLP. The objective of the problem is to com-
pute a setP, /0⊂ P⊆ I , that minimizesf[F |C](P). Also consider a SPLP instance
[S|D] that is known to be polynomially solvable. LetP⋆

[F|C] and P⋆
[S|D] be optimal

solutions to[F|C] and [S|D], respectively. Let us define the proximity measure
ρ([F|C], [S|D]) between the two instances as

ρ([F |C], [S|D]) = ∑
i∈I

| fi− si |+∑
j∈J

max{|ci j −di j | : i ∈ I}. (4.18)

We use max{|ci j − di j | : i ∈ I} in (4.18) instead of the expression∑i∈I |ci j − di j |,
since, in an optimal solution, the demand of each client is satisfied by a single facil-
ity, only one element in each column in the transportation matrix will contribute to
the cost of the optimal solution.

Notice thatρ([F|C], [S|D]) is defined only when the instances[F |C] and[S|D] are
of the same size. Also note thatρ([F|C], [S|D]) can be computed in time polynomial
in the size of the two instances. The following theorem, which forms the basis for
data correcting, shows thatρ([F |C], [S|D]) is an upper bound to the difference be-
tween theunknownoptimal costs for the SPLP instances[F |C] and[S|D].

Theorem 4.3.Let [F |C] and [S|D] be two SPLP instances of the same size, and let
P⋆
[F|C] and P⋆[S|D] be optimal solutions to[F |C] and[S|D], respectively. Then

| f[F |C](P
⋆
[F |C])− f[S|D](P

⋆
[S|D])| ≤ ρ([F |C], [S|D]).

Proof. There are two cases to consider.
Case 1:f[F |C](P

⋆
[F |C])≤ f[S|D](P

⋆
P[S|D]), and

Case 2:f[F |C](P
⋆
[F|C]) > f[S|D](P

⋆
[S|D]). We only prove Case 1 here; the proof of Case

2 is similar to that of Case 1.
f[F |C](P

⋆
[F|C])− f[S|D](P

⋆
[S|D])≤ f[F |C](P

⋆
[S|D])− f[S|D](P

⋆
[S|D])

= ∑i∈P⋆
[S|D]

[ fi− si ]+∑ j∈J(min{ci j : i ∈ P⋆
[S|D]}−

min{di j : i ∈ P⋆
[S|D]}).

Let cic( j) j = min{ci j : i ∈ P⋆
[S|D]} anddid( j) j = min{di j : i ∈ P⋆

[S|D]}. Then

f[F |C](P
⋆
[F|C])− f[S|D](P

⋆
[S|D])

≤ ∑
i∈P⋆

[S|D]

[ fi− si ]+∑
j∈J

[cic( j) j −did( j) j ]

≤ ∑
i∈P⋆

[S|D]

[ fi− si ]+∑
j∈J

[cid( j) j −did( j) j ]



4.4 Ingredients of Data Correcting for the SPLP 95

≤ ∑
i∈P⋆

[S|D]

[ fi− si ]+∑
j∈J

[max{ci j −di j : i ∈ P⋆
[S|D]}]

≤ ∑
i∈P⋆

[S|D]

| fi − si|+ ∑
j∈J

[max{|ci j −di j | : i ∈ I}]

≤∑
i∈I
| fi− si |+∑

j∈J
[max{|ci j −di j | : i ∈ I}]

= ρ([F |C], [S|D]).

Theorem 4.3 implies that if we have an optimal solution to a SPLP instance[S|D],
then we have an upper bound forall SPLP instances[F|C] of the same size. This
upper bound is actually the distance between the two instances, distances being de-
fined by the proximity measure (4.18). Also if the solution to[S|D] can be computed
in polynomial time, (i.e.[S|D] belongs to a polynomially solvable special case) then
an upper bound to the cost of anas yet unknownoptimal solution to[F |C] can be
obtained in polynomial time. If the distance between the instances is not more than
a prescribed accuracyε, then the optimal solution of[S|D] is, in fact, a solution to
[F |C] within the prescribed accuracy. This theorem forms the basis of data correct-
ing.

In general, the data correcting procedure works as follows.It assumes that we
know a class of polynomially solvable instances of the problem. It starts by choos-
ing a polynomially solvable SPLP instance[S|D] from that class of instances, prefer-
ably as close as possible to the original instance[F |C]. If ρ([F|C], [S|D]) ≤ ε, the
procedure terminates and returns an optimal solution to[S|D] as an approximation
of an optimal solution to[F |C]. The instance[F |C] is said to be ‘corrected’ to the
instance[S|D], which is solved polynomially to generate the solution output by the
procedure. Otherwise, the set of feasible solutions for theproblem is partitioned
into two subsets. For the SPLP, one of these subsets is comprised of solutions that
locate a plant at a given site, and the other is comprised of solutions that do not. The
two new instances thus formed are perturbed in a way that theyboth change into
instances that are within a distanceε from a polynomially solvable instance. The
procedure is continued until an instance with a proximity measure not more thanε
is obtained for all the subsets generated.

4.4.1 The Reduction Procedure

The Data Correcting Algorithm (DCA) that we propose in this chapter is the one that
uses a strong Reduction Procedure (RP) to reduce the original instance into a smaller
‘core’ instance, and then uses a data correcting procedure (DCP, see Figure 3.1 in
Section 3.2) to obtain a solution to the original instance, whose cost is not more than
a pre-specified amountε more than the cost of an optimal solution.



96 4 Data Correcting Approach for the Simple Plant Location Problem

The first preprocessing RO and RC rules (see Theorem 4.2 in Subsection 4.3) for
the SPLP involving both fixed costs and transportation costsappeared in Cherenin [29],
Khachaturov [89], Khumawala [91], Frieze [46], Alcouffe and Muratet [3].

Notice that RO and RC primarily try to either open or close sites. If it succeeds, it
also changes the Hammer-Beresnev function for the instance, reducing the number
of non-linear terms therein. In the remaining portion of this subsection, we describe
a completely newReduction Procedure(RP), whose primary aim is to reduce the
coefficients of terms in the Hammer-Beresnev function, and if we can reduce it to
zero, to eliminate the term from the Hammer-Beresnev function. This procedure is
based on fathoming rules of BnB algorithms and data correcting principles.

Let us assume that we have an upper bound (UB) on the cost of an optimal so-
lution for the given SPLP instance. This can be obtained by running a heuristic on
the problem data. Now consider any non-linear terms∏k

r=1yπr j , in the Hammer-
Beresnev function. This term will contribute to the cost of asolution, only if plants
arenot located in any of the sitesπ1 j , . . . ,πk j. Let lb be a lower bound on the op-
timal solution of the SPLP with respect to the subspace for which no facilities are
located in sitesπ1 j , . . . ,πk j. If lb ≤UB, then we cannot make any judgement about
this term. On the other hand, iflb >UB, then we know that there cannot be an opti-
mal solution withyπ1 j = . . .= yπk j = 1. In this case, if we reduce the coefficientsby
lb−UB− ε, (ε > 0, small), then the new Hammer-Beresnev function and the origi-
nal one have identical sets of optimal solutions. Note that the values of upperUB and
lower lb bounds are calculated not necessarily for the same subspaceof feasible so-
lutions. If after the reduction,s is non-positive, then the term can be removed from
the Hammer-Beresnev function. Such changes in the Hammer-Beresnev function
alter the values oftk, and can possibly allow us to use Cherenin’s Excluding Rules
to close certain sites. Once some sites are closed, some of the linear terms in the
Hammer-Beresnev function change into constant terms, and some of the quadratic
terms change into linear ones. These changes cause changes in both theak and the
tk values, and can make further application of Cherenin’s Excluding Rules, thus pre-
processing some other sites, and making further changes in the Hammer-Beresnev
function. A pseudocode of the reduction procedure RP(H[F |C](y)) is provided be-
low.

Let us consider the application of all preprocessing rules to the following SPLP
instance:

[F |C] =







9 7 12 22 13
4 8 9 18 17
3 16 17 10 27
6 9 13 10 11






. (4.19)

Two possible ordering matrices corresponding toC are

Π1 =







1 2 3 4
2 1 4 1
4 4 2 2
3 3 1 3







andΠ2 =







1 2 4 4
2 1 3 1
4 4 2 2
3 3 1 3






. (4.20)
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ProcedureRP(H[F |C](y))
begin

repeat
Compute an upper boundUB for the instance;
for each nonlinear terms∏k

r=1 yπr j in H[F|C](y) do
begin

Compute lower boundlb on the cost of solutions in
which plants are not located in sitesπ1 j , . . . ,πk j;
if lb >UB then

Reduce the coefficient of the term by
max{s, lb−UB− ε};

end
Apply Khumawala’s rules until no further preprocessing
is possible;
Recompute the Hammer-Beresnev functionH[F|C](y);

until no further preprocessing of sites was achieved
in the current iteration;

end;

The Hammer-Beresnev function isH[F |C](y) = [9(1− y1) + 4(1− y2)+ 3(1−
y3)+6(1−y4)]+ [7+1y1+1y1y2+7y1y2y4]+ [9+3y2+1y1y2+4y1y2y4]+ [10+
0y3+8y3y4+4y2y3y4]+ [11+2y4+4y1y4+10y1y2y4]
= 59−8y1− y2−3y3−4y4+2y1y2+4y1y4+8y3y4+21y1y2y4+4y2y3y4.

The values ofak, tk andak+ tk are as follows:

k : 1 2 3 4
ak : −8 −1 −3 −4
tk : 27 27 12 37
ak+ tk : 19 26 9 33

It is clear that neither RO nor RC is applicable here, since the coefficient of the
term 21y1y2y4 is too large. Therefore, we try to reduce this coefficient by applying
RP.

The upper boundUB = 51 to the original problem can be obtained by setting
y1 = y4 = 1 andy2 = y3 = 0. A lower bound to the subproblem under the restriction
y1 = y2 = y4 = 1 is 73, sinceH[F |C](1,1,0,1) = 73. In virtue of RP, we can reduce
the coefficient of 21y1y2y4 by 73−51− ε = 20, so that the new Hammer-Beresnev
function, with the same set of optimal solutions as the original function becomes,
H ′(y) = 59− 8y1− y2− 3y3− 4y4+ 2y1y2 + 4y1y4 +8y3y4 +1y1y2y4 +4y2y3y4.
The updated values ofak, tk, andak+ tk are presented below.

k : 1 2 3 4
ak : −8 −1 −3 −4
tk : 7 7 12 17
ak+ tk : −1 6 9 13
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RC can immediately be applied in this situation to sety1 = 1. UpdatingH ′(y), we
can apply RO and sety2 = y4 = 0. This allows us to apply RC again to sety3 = 1,
yielding the optimal solution(1,0,1,0) with cost 48.

4.4.2 The Data Correcting Procedure

We have used our data correcting procedureProcedureDC(S,T,ε;λ ,γ) from Chap-
ter 2 in which we setδ+ = max{ak | k∈ S\T} andδ+ = min{ak+ tk | k∈ S\T}.
Let us suppose that the DC procedure is applied to the SPLP instance[F |C]. On ter-
mination, it outputs two subsetsSandT, /0⊂ S⊆ T ⊆ I . If S= T, then the instance
is said to have been solved by this procedure, and setS is an optimal solution. Since
the PP procedure is a polynomial time algorithm, instances that it solves to opti-
mality constitute a class of algorithmically defined polynomially solvable instances.
We have called such instancesPP-solvable. We use this class of polynomially solv-
able instances in our algorithm, since it is one of the best among the polynomially
solvable cases discussed in Goldengorin [64].

Next suppose that the given instance is not PP-solvable. In that case we try to
extend the idea of the PP procedure to obtain a solution such that the difference
between its cost and the cost of an optimal solution is bounded by a pre-defined
valueε. This is the basic idea behind the data correcting procedure.

In caseδ = min(δ−,δ+) > ε, then data correction cannot guarantee a solution
within the prescribed allowable accuracy, and hence we needto use a branching
procedure.

The data correcting procedure (DCP, see below) in our algorithm takes two sets
S,T ⊆ I ( /0⊂ S⊂ T ⊆ I ) andε as input. It outputs a solutionλ and a boundγ, such
that f[F |C](λ )− f[F |C](P

⋆) ≤ γ ≤ ε, whereP⋆ is an optimal solution to[F |C]. It is a
recursive procedure that first tries to reduce the setT \Sby applying Lemma 3.1b
and Lemma 3.1a. If Lemma 3.1b and Lemma 3.1a cannot be applied, then it tries
to apply Lemma 3.1d and Lemma 3.1c to reduceT \S (see Section 3.2). We do
not use the reduction procedure at this stage since it increases the computational
times substantially without reducing the core problem appreciably. If even these
lemmas cannot be applied, then the procedure branches on a memberk∈ T \Sand
invokes two instances of DCP, one with setsS∪{k} andT, and the other with sets
S andT \ {k}. Notice that the solutions searched by the two invocations of DCP
are mutually exclusive and exhaustive. A bound is used to remove unpromising
subproblems from the solution tree. The choice of the branching variablek∈ T \S
in DCP is motivated by the observation thatak < 0 andtk+ak > 0 for each of these
indices. (These are the preconditions of the branching rule). A plant would have
been located in this site in an optimal solution if the coefficient of the linear term
involvingyk in the Hammer-Beresnev function had been increased by−ak. We could
have predicted that a plant would not be located there if the same coefficient had
been decreased bytk+ak. Therefore we could useφk = average(−ak, tk+ak) =

tk
2

as a measure of the chance that we willnot be able to predict the fate of sitek in
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any subproblem of the current subproblem. If we want to reduce the size of the BnB
tree by assigning values to such variables, then we can thinkof a branching function
(see Goldengorinet al. [67]) that branches on the indexk∈ PU \PL with the largest
φi value.

4.5 Computational Experiments

The execution of the DCA can be divided into two stages, apreprocessingstage in
which the given instance is reduced to a core instance by using RP; and asolution
stage in which the core instance is solved using DCP.

In the preprocessing stage we experimented with the following three reduction
procedures.

(a) The “delta” and “omega” rules from Khumawala [91];
(b) Procedure RP with the combinatorial Khachaturov-Minoux bound to obtain a

lower bound, and
(c) Procedure RP with the LP dual-ascent Erlenkotter bound (see Erlenkotter [44])

to obtain a lower bound.

The Khachaturov-Minoux boundlb is a combinatorial bound for general super-
modular functions (see Lemma 3.2 due to Khachaturov [89] andMinoux [105]).

We also experimented with the Khachaturov-Minoux bound andthe Erlenkotter
bound in the implementation of the DCP.

The effectiveness of the reduction procedure can be measured either by comput-
ing the number of free locations in the core instance, or by computing the number
of non-zero nonlinear terms present in the Hammer-Beresnevfunction of the core
instance. Note that the number of non-zero nonlinear terms present in the Hammer-
Beresnev function is an upper bound on the number of unassigned customers in
the core instance. Tables 4.1 and 4.2 show how the various methods of reduction
perform on the benchmark SPLP instances in the OR-Library (Beasley [10]). The
existing preprocessing rules due to Cherenin [29] and Khumawala [91] (i.e. proce-
dure (a), which was used in the SPLP example in Goldengorinet al. [66]) cannot
solve any of the OR-Library instances to optimality. However, the variants of the
new RP (i.e. procedures (b) and (c)) solve a large number of these instances to op-
timality. Procedure (c), based on the Erlenkotter bound is marginally better than
procedure (b) in terms of the number of free locations (Table4.1), but substantially
better in terms of the number of non-zero nonlinear terms in the Hammer-Beresnev
function (Table 4.2).

The information in Tables 4.1 and 4.2 can be combined to show that some of the
problems that are not solved by these procedures can actually be solved by inspec-
tion of the core instances. For example, consider cap74. We see that the core prob-
lem (using procedure (a)) has two free variables and one non-linear term. Therefore
the Hammer-Beresnev function of the core instance looks like
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A+ pyu+qyw+ ryuyw,

wherep,q< 0, r > 0, min{p+ r, p+q}> 0 andA is a constant. The minima of such
functions are easy to obtain by inspection.

In addition, Tables 4.1 and 4.2 demonstrate the superiorityof the new prepro-
cessing rule over the “delta” and “omega” rules. Consider for example the problem
cap132. The “delta” and “omega” rules reduce the problem size fromm= 50 and
2389 non-zero nonlinear terms tom′ = 27 and 112 non-zero nonlinear terms. How-
ever, the new preprocessing rule reduces the same problem toone havingm′ = 5
and 3 non-zero nonlinear terms.

Problem m n mafter
Procedure
a b c

cap71 16 50 4 0 0
cap72 16 50 6 0 0
cap73 16 50 6 3 3
cap74 16 50 2 0 0
cap101 25 50 9 0 0
cap102 25 50 13 3 0
cap103 25 50 14 0 0
cap104 25 50 12 0 0
cap131 50 50 34 32 8
cap132 50 50 27 25 5
cap133 50 50 25 19 10
cap134 50 50 19 0 0

Table 4.1 Number of free locations after preprocessing SPLP instances in the OR-Library.

Problem # of non-zero terms
before preprocessing after Procedure

a b c
cap71 699 6 0 0
cap72 699 12 0 0
cap73 699 13 2 2
cap74 699 1 0 0
cap101 1147 24 0 0
cap102 1147 33 2 0
cap103 1147 38 0 0
cap104 1147 29 0 0
cap131 2389 163 135 8
cap132 2389 112 92 3
cap133 2389 101 60 11
cap134 2389 62 0 0

Table 4.2 Number of non-zero nonlinear terms in the Hammer-Beresnev function after prepro-
cessing SPLP instances in the OR-Library.
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In order to test the effect of bounds in the DCA, we compared the execution times
of DCA using the two bounds on some difficult problems of the type suggested in
Korkel [93] (see Subsection 4.5.4 for more details). The problems were divided into
seven sets. Each set consists of five problems, each having 65sites and 65 clients
(see Subsection 4.5.4 for more details regarding these problems). From Table 4.3 we
see that the Erlenkotter bound reduces the execution time taken by the Khachaturov-
Minoux bound (that was used in the SPLP example in Goldengorin et al. [66]) by
a factor of more than 100. This is not surprising, since the Khachaturov-Minoux
bound is derived for a general supermodular function, whilethe Erlenkotter bound
is specific to the SPLP.

Problem Execution time of the DCP (sec)
Set Khachaturov-Minoux bound Erlenkotter Bound

Set 1 119.078 0.022
Set 2 290.388 0.040
Set 3 458.370 0.056
Set 4 158.386 0.054
Set 9 428.598 0.588
Set10 542.530 0.998
Set11 479.092 2.280

Table 4.3 Comparison of bounds used with the DCA on Körkel-type instances withm= n= 65.

We report our computational experience with the DCA on several benchmark
instances of the SPLP in the remainder of this section. The performance of the al-
gorithm is compared with that of the algorithms described inthe chapters that sug-
gested these instances. We implemented the DCA in PASCAL, compiled it using
Prospero Pascal, and ran it on a 733 MHz Pentium III machine. The computation
times we report are in seconds on our machine.

4.5.1 Bilde and Krarup-Type Instances

These are the earliest benchmark problems that we consider here. The exact instance
data is not available, but the process of generating the problem instances is described
in Bilde and Krarup [15]. There are 22 different classes of instances, and Table 4.4
summarizes their characteristics.

In our experiments we generated 10 instances for each of the types of problems,
and used the mean values of our solutions to evaluate the performance of our algo-
rithm with the one used in Bilde and Krarup [15]. In our implementation, we used
the reduction procedure (b) and the Khachaturov-Minoux bound in the DCP.

The reduction procedure was not useful for these instances,but the DCA could
solve all the instances in reasonable time. The results of our experiments are pre-
sented in Table 4.5. The performance of the algorithm implemented in Bilde and
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Type m n fi ci j

B 50 100 Uniform(1000, 10000) Uniform(0, 1000)
C 50 100 Uniform(1000, 2000) Uniform(0, 1000)

Dq † 30 80 Identical, 1000×q Uniform(0, 1000)
Eq † 50 100 Identical, 1000×q Uniform(0, 1000)
†q= 1, . . . ,10.

Table 4.4 Description of the instances in Bilde and Krarup (1977).

Problem DCA Bilde and Krarup [15]
Type Branching CPU time Branching CPU Time†

B 11.72 0.67 43.3 4.33
C 17.17 14.81 ⋆ >250

D1 13.80 0.65 216 11
D2 12.13 0.38 218 24
D3 10.87 0.19 169 19
D4 10.25 0.15 141 17
D5 9.24 0.07 106 14
D6 8.99 0.09 101 15
D7 8.79 0.09 83 13
D8 8.60 0.09 55 11
D9 8.15 0.07 47 11
D10 7.29 0.03 43 11
E1 18.66 35.28 1271 202
E2 16.14 8.64 1112 172
E3 14.59 3.81 384 82
E4 13.65 2.74 258 65
E5 12.73 2.01 193 53
E6 11.82 0.90 136 43
E7 10.82 0.53 131 42
E8 10.79 0.68 143 48
E9 10.62 0.76 117 44
E10 10.36 0.69 79 37

† IBM7094 seconds.
⋆ could not be solved in 250 seconds.

Table 4.5 Results from Bilde and Krarup-type instances.

Krarup [15] was measured in terms of the number of branching operations per-
formed by the algorithm and its execution time in CPU secondson a IBM 7094
machine. We estimate the number of branching operations by our algorithm as the
logarithm (to the base 2) of the number of subproblems it generated. From the table
we see that the DCA reduces the number of subproblems generated by the algorithm
in Bilde and Krarup [15] by several orders of magnitude. Thisis especially inter-
esting because Bilde and Krarup use a bound (discovered in 1967) identical to the
Erlenkotter bound in their algorithm (see Korkel [93]) and we use the Khachaturov-
Minoux bound. The CPU time required by the DCA to solve these problems was
too low to warrant the use of anyε > 0.
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4.5.2 Galṽao and Raggi-Type Instances

Galvão and Raggi [47] developed a general 0-1 formulation of the SPLP and pre-
sented a 3-stage method to solve it. The benchmark instancessuggested in this work
are unique, in that the fixed costs are assumed to come from a Normal distribution
rather than the more commonly used Uniform distribution. The transportation costs
for an instance of sizem×n with m= n are computed as follows. A network, with
a given arc densityδ is first constructed, and the arcs in the network are assigned
lengths sampled from a uniform distribution in the range[1,n] (except forn= 150,
where the range is[1,500]). The transportation cost fromi to j is the length of
the cheapest path fromi to j. The problem characteristics provided in Galvão and
Raggi [47] are summarized in Table 4.6.

Problem Size Density Fixed costs’ parameters
(m= n) δ mean standard deviation

10 0.300 4.3 2.3
20 0.150 9.4 4.8
30 0.100 13.9 7.4
50 0.061 25.1 14.1
70 0.043 42.3 20.7
100 0.025 51.7 28.9
150 0.018 186.1 101.5
200 0.015 149.5 94.4

Table 4.6 Description of the instances in Galvão and Raggi (1989).

As with the data in Bilde and Krarup [15], the exact data for the instances are
not known. So we generated 10 instances for each problem size, and used the mean
values of the solutions for comparison purposes. In our DCA implementation, we
used reduction procedure (b) and the Khachaturov-Minoux bound in the DCP. The
comparative results are given in Table 4.7. Since the computers used are different,
we cannot make any comments on the relative performance of the solution proce-
dures. However, since the average number of subproblems generated by the DCA is
always less than 10 for each of these instances, we can conclude that these problems
are easy for our algorithm. In fact they are too easy for the DCA to warrantε > 0.

Note that the average number of opened plants in the optimal solutions to the
instances we generated is quite close to the number of openedplants in the opti-
mal solutions reported in Galvão and Raggi [47]. Also observe that the reduction
procedure was quite effective — it solved 35 of the 80 instances generated.
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Problem DCA Galvão and Raggi [47]
Size # solved # of sub- CPU # of open CPU # of open

by pre-
(m= n) processing problems† time† plants† time⋆ plants

10 6 2.3 <0.001 4.7 <1 3
20 5 2.4 <0.001 9.0 <1 8
30 7 1.8 0.002 13.6 1 11
50 7 2.6 0.002 20.3 2 20
70 2 3.8 0.004 28.8 6 31
100 3 3.5 0.011 41.1 6 44
150 1 7.8 0.010 64.4 25 74
200 4 2.9 0.158 81.8 63 84

† Average over 10 instances.
⋆ IBM 4331 seconds.

Table 4.7 Results from Galvão and Raggi-type instances.

4.5.3 Instances from the OR-Library

The OR-Library ([10]) has a set of instances of the SPLP. These instances were
solved in Beasley [9] using an algorithm based on the Lagrangian heuristic for
the SPLP. Here too, we used reduction procedure (b) and the Khachaturov-Minoux
bound in the DCP. We solved the problems to optimality using the DCA. The re-
sults of the computations are provided in Table 4.8. The execution times suggest
that the DCA is faster than the Lagrangian heuristic described in Beasley [9]. The
reduction procedure was also quite effective for these instances, solving 4 of the
16 instances to optimality, and reducing the number of free sites appreciably in the
other instances. Once again the use ofε > 0 cannot be justified, considering the
execution times of the DCA.

DCA
Problem m after pre- # of sub- CPU CPU time # of open

name m n processing problems time ([9])† plants
cap71 16 50 ⋆ 0 <0.01 0.11 11
cap72 16 50 ⋆ 0 <0.01 0.08 9
cap73 16 50 ⋆ 0 <0.01 0.11 5
cap74 16 50 ⋆ 0 <0.01 0.05 4
cap101 25 50 9 6 <0.01 0.18 15
cap102 25 50 13 16 <0.01 0.16 11
cap103 25 50 14 16 <0.01 0.14 8
cap104 25 50 12 7 0.01 0.11 4
cap131 50 50 34 196 0.01 0.31 15
cap132 50 50 27 183 0.02 0.28 11
cap133 50 50 25 71 <0.01 0.29 8
cap134 50 50 19 25 <0.01 0.15 4
⋆ instance solved by preprocessing only.
† Cray-X-MP/28 seconds.

Table 4.8 Results from OR-Library instances.



4.5 Computational Experiments 105

4.5.4 K̈orkel-Type Instances with 65 sites

Korkel [93] described several relatively large Euclidean SPLP instances (m= n=
100, andm= n = 400) and used a BnB algorithm to solve these problems. The
bound used in that work is an improvement on a bound based on the dual of the
linear programming relaxation of the SPLP due to Erlenkotter [44] and is extremely
effective. The bound due to Erlenkotter [44] is very effective because, for a large ma-
jority of SPLP instances, the optimal solution to the dual ofthe linear programming
relaxation of the SPLP is integral. In this subsection, we use instances that have the
same cost structure as the ones in Korkel [93] but for whichm= n= 65. Instances
of this size were not dealt with in Korkel [93]. We used reduction procedure (b) for
the RP, and the Khachaturov-Minoux bound in the DCP.

In Korkel [93], 120 instances of each problem size are described. These can be
divided into 28 sets (the first 18 sets contain 5 instances each, and the rest contain 3
instances each). We solved all the 120 instances we generated, and found out that the
instances in Sets 1, 2, 3, 4, 10, 11, and 12 are more difficult tosolve than others. We
therefore used these instances in the experiments in this section. The transportation
cost matrix for a Körkel instance of sizen×n is generated by distributingn points in
random within a rectangular area of size 700×1300 and calculating the Euclidean
distances between them. The fixed costs are computed as in Table 4.9.

Problem Set # of instances Fixed cost forith instance
Set 1 5 Identical, set at 141+6.6i
Set 2 5 Identical, set at 174+6.6i
Set 3 5 Identical, set at 207+6.6i
Set 4 5 Identical, set at 174+66i
Set10 5 Identical, set at 7170+660i
Set11 5 Identical, set at 7120.5+333.3i
Set12 5 Identical, set at 8787+333.3i

Table 4.9 Description of the fixed costs for instances in Körkel (1989).

The values of the results that we present for each set is the average of the values
obtained for all the instances in that set. Interestingly, the preprocessing rules were
found to be totally ineffective for all of these problems. Since the fixed costs are
identical for all the sites, the sites are distributed randomly over a region, and the
variable cost matrix is symmetric, no site presents a distinct advantage over any
other. This prevents our reduction procedure to open or close any site. Table 4.10
shows the variation in the costs of the solution output by theDCA with changes in
ε, and Table 4.11 shows the corresponding decrease in execution times.

The effect of varying the acceptable accuracyε on the cost of the solutions output
by the DCA is also presented graphically in Figure 4.1. We define theachieved
accuracyβ as
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Problem Optimal Acceptable accuracy⋆

Set 1% 2% 3% 5% 10%
Set 1 6370.0 6404.8 6450.6 6480.6 6569.2 6781.0
Set 2 6920.6 6952.2 6971.4 7028.4 7123.8 7320.2
Set 3 7707.4 7738.0 7770.2 7797.6 7854.6 8053.8
Set 4 9601.2 9642.4 9680.2 9698.4 9786.6 9932.0
Set10 146691.2 146896.6 146909.6 147543.6 148062.0 151542.2
Set11 168598.4 168858.2 169655.0 170341.6 170597.0 173913.8
Set12 186386.3 186729.7 187112.0 188002.7 188854.2 192528.7

⋆ As a percentage of the optimal cost.

Table 4.10 Costs of solutions output by the DCA on Körkel-type instances with 65 sites.

Problem Optimal Acceptable accuracy⋆

Set 1% 2% 3% 5% 10%
Set 1 119.078 90.948 70.758 55.494 43.200 20.426
Set 2 290.388 225.108 172.422 145.828 96.240 36.966
Set 3 458.370 339.420 259.022 203.036 150.216 50.378
Set 4 158.386 129.694 109.754 89.666 65.548 30.058
Set10 428.598 370.120 319.804 283.832 230.078 142.090
Set11 542.530 476.350 418.628 408.594 290.338 160.744
Set12 479.092 416.472 370.832 326.572 261.835 149.038

⋆ As a percentage of the optimal cost.

Table 4.11 Execution times for the DCA on Körkel-type instances with 65 sites.

β =
cost of solution output by the DCA− cost of optimal solution

cost of optimal solution

and therelative timeτ as

τ =
execution time for the DCA for acceptable accuracyε

execution time for the DCA to compute an optimal solution

Note that the achieved accuracyβ varies almost linearly withε, with a slope
close to 0.5. Also note that the relative timeτ of the DCA reduces with increasing
ε. The reduction is slightly better than linear, with an average slope of -8.

4.5.5 K̈orkel-Type Instances with 100 Sites

We solved the benchmark instances in Korkel [93] withm= n = 100 to optimal-
ity and observed that the instances in Sets 10, 11, and 12 required relatively longer
execution times. So we restricted further computations to instances in those sets.
The fixed and transportation costs for these problems are computed in the proce-
dure described in Subsection 4.5.4. Tables 4.12 and 4.13 show the results obtained
by running the DCA on these problem instances. In our DCA implementation for
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Fig. 4.1 Performance of the DCA for Körkel-type instances with 65 sites.

solving these instances, we used reduction procedure (c) and the Erlenkotter bound
in the DCP.

Problem Optimal Acceptable accuracy⋆

Set 1% 2% 3% 5% 10%
Set10 190782.0 191550.8 192755.4 192080.6 195983.2 203934.2
Set11 219583.4 220438.8 222393.6 221947.2 228467.2 235963.4
Set12 240402.4 241609.6 243336.8 244209.4 247417.6 259168.6

⋆ As a percentage of the optimal cost.

Table 4.12 Costs of solutions output by the DCA on Körkel-type instances with 100 sites.
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Problem Optimal Acceptable accuracy⋆

Set 1% 2% 3% 5% 10%
Set10 133.746 91.774 65.99 65.908 44.2 32.074
Set11 81.564 55.356 39.554 38.348 33.628 17.598
Set12 111.272 85.858 65.608 55.928 61.758 33.014

⋆ As a percentage of the optimal cost.

Table 4.13 Execution times for the DCA on Körkel-type instances with 100 sites.

Fig. 4.2 Performance of the DCA for Körkel-type instances with 100 sites.
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Figure 4.2 illustrates the effect of varying the acceptableaccuracyε on the cost
of the solutions output by the DCA for the instances mentioned above. The nature of
the graphs is similar to those in Figure 4.1. However, in several of the instances we
noticed thatβ reduced whenε is increased, and in some other instancesτ increased
whenε was increased.

4.6 Concluding Remarks

In this chapter we tailor the general data correcting algorithm (DCA) for super-
modular functions (see Chapter 3 and Goldengorinet al. [66]) to the simple plant
location problem (SPLP). This algorithm consists of two procedures, a reduction
procedure to reduce the original instance to a smaller ‘core’ instance, and a data
correcting procedure to solve the core instance.

Theorem 4.3 can be considered as the basis of data correcting. It states that for
two different instances of the SPLP of the same size, the difference between the costs
of theunknownoptimal solutions for these instances is bounded by a polynomially
calculated distance between these instances. This distance is used tocorrectone of
these instances in an implicit way by justcorrectingthe value of the given accuracy
parameter in the DCA.

An important contribution of this chapter is a new ReductionProcedure (RP),
which when implemented in the DCA yields to a substantial reduction in the size
of the original instance. This reduction procedure is much more powerful than the
“delta” and “omega” reduction rules in Khumawala [91]. It also incorporates the
Erlenkotter bound specific to the SPLP (see Erlenkotter [44]), which is more com-
putationally efficient than the Khachaturov-Minoux bound used in Goldengorinet
al. [66]. The strength of the new RP based on the Erlenkotter bound is made obvious
by the observation that none of the instances in the OR-Library could be solved by
the “delta” and “omega” rules to optimality, but the new reduction procedure solves
75% of them to optimality, and preprocesses at least twice the number of sites as the
“delta” and “omega” rules for the remaining 25% of the instances. Another contri-
bution of the chapter is the incorporation of the Erlenkotter bound to the recursive
BnB type data correcting procedure.

We have compared the performance of the Erlenkotter bound implemented in an
usual BnB type algorithm (see Bilde and Krarup [15]) and the Khachaturov-Minoux
bound implemented in the DCP for the new RP and for fathoming subproblems cre-
ated by the DCP. On the instances in Bilde and Krarup [15], thenumber of sub-
problems created by the BnB type algorithm with Erlenkotterbound is found to be
more than 1000 times the number of subproblems created by theDCP based on the
Khachaturov-Minoux bound.

We have tested the DCA on a broad range of different classes ofinstances avail-
able in the literature (Bilde and Krarup [15], Galvão and Raggi [47], OR-Library,
Korkel [93]). The striking computational result is the ability of the DCA to find exact
solutions for many relatively large instances within fractions of a second. For exam-
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ple, an exact global optimum of the 200×200 instances from Galvão and Raggi [47]
was found within 0.2 seconds on a PC with a 733 MHz processor.

In all of our implementations for the DCA with Khachaturov-Minoux and Er-
lenkotter bounds we have used data structures induced by pseudo-Boolean repre-
sentations of the SPLP due to Hammer [80]. These data structures are conducive to
efficient updating for the current subproblems in the DCA andsometimes show that
a current subproblem remaining after application of the newRP has relatively small
numbers of linear and non-linear terms in the correspondingHammer-Beresnev
function and therefore can be solved by any BnB type algorithm for the SPLP.

We have found that for all instances in Korkel [93] the “delta” and “omega”
reduction rules were totally ineffective since none of the sites presented any dis-
tinct advantage over any other (the fixed costs are almost identical for all sites,
the sites are distributed randomly over a region, and the transportation costs matrix
is symmetric). Anyway, the DCA has solved to optimality all the instances with
m= n = 100 within fractions of a second except for the instances in Sets 10, 11
and 12 which required relatively longer execution times. Onthese sets of instances
we have studied the behavior of the execution time and calculated the accuracy for
acceptable values ofε. When the acceptable value ofε increases, we see that the
costs of the solutions output by the DCA generally worsen, but the execution times
also decrease.

In summary, our computational experience with the DCA on several benchmark
instances known in the literature suggests that the algorithm compares well with
other algorithms known for the problem. However, like any other BnB algorithm,
DCA depends heavily on the quality of the bounds used. We believe that this algo-
rithm merits serious consideration as a solution tool for the SPLP.



SUMMARY

In this book we study a class of algorithms for solving NP-hard problems calleddata
correctingalgorithms. A data correcting (DC) algorithm is a branch-and-bound type
algorithm, in which the data of a given problem is “heuristically corrected” at the
various stages in such a way that the new instance will be polynomially solvable and
its optimal solution is within a pre-specified deviation (called prescribed accuracy)
from the optimal solution to the original problem.

The DC approach is applied to determining exact and approximate global optima
of NP-hard problems. A DC algorithm consists of the following ingredients:

(a) apolynomially solvable special case(PSC) related to the original problem;
(b) aproximity measurebetween two problem instances, being a polynomially com-

putable measure for the distance between the two instances.This measure pro-
vides an upper bound for the difference between the objective function values
of the optimal solutions to the two instances.

The DC approach is based on the well-known in the literature polynomially solv-
able special cases. In the DC approach we can directly start with computational ex-
periments based on the well-known in the literature polynomially solvable special
cases. The choice of a branching element in the data-correcting approach is based
on an elementek ∈ sF \ sR with the maximum contribution into the current value of
a proximity measure, and hence leads to the reducing of the current value of prox-
imity measure. Moreover, the values of proximity measure computed for different
subproblems made useful any additional heuristic includedin a DC algorithm. For
example, the patching heuristic finds a feasible solution tothe ATSP and provides
an upper bound for the optimal value in any DC algorithm. In the DC algorithm the
patching operation is used not only for finding a feasible solution to the ATSP but
helps us to form a corrected instance (which has the patched solution as an optimal
solution). We then use this corrected instance not only to compute an upper bound
(see Theorem 1.2) of the cost difference between the patchedsolution and theyet
unknownoptimal solution to the original problem but also to decide by which arc to
branch so that we will try to reduce the value of the current upper bound as much as
possible. If this upper bound is less than the allowed accuracy, we can stop the algo-
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rithm here. This bound computation (using expression 1.3) also grants us an insight
into the arc that is most likely to cause infeasibility of theAP solution for the ATSP,
so that we can use that arc as our branching variable. Thus theDC algorithm, using
both necessary and sufficient conditions for optimality, extracts much more infor-
mation out of the lower bound computation than any B&B algorithm, which only
uses necessary conditions, and normally leads to smaller solution trees.

DC algorithms stand to gain from good lower bounds, which help to prune the
solution trees. Such lower bounds allow us to discard partial solutions that are man-
ifestly suboptimal.

Efficient implementations of DC algorithms depend on the construction of branch-
ing rules based on specific properties of the original NP-hard problem, the choice of
the class of the polynomially solvable special case, and thecurrent optimal solution
to the special case. Two different approaches for creating polynomially solvable
special cases are known in the literature, namely algorithmic and analytic. In the
algorithmic approach, heuristic for solving the NP-hard problem is chosen, and suf-
ficient conditions for this heuristic to return an optimal solution is formulated. In the
analytic approach, sufficient conditions are given on the class of instances such that
any instance can be solved to optimality, and recognized in polynomial time.

DC algorithms are designed for various classes of NP-hard problems including
the Quadratic Cost Partition (QCP), Simple Plant Location (SPL), and Traveling
Salesman problems based on the algorithmically defined polynomially solvable spe-
cial cases. Results of computational experiments on the publicly-available bench-
mark instances as well as on random instances are presented.The striking compu-
tational result is the ability of DC algorithms to find exact solutions for many rela-
tively difficult instances within fractions of a second. Forexample, an exact global
optimum of the QCP problem with 80 vertices and 100% density,was found within
0.22 seconds on a PC with 133 Mhz processor, and for the SPL problem with 200
sites and 200 clients within 0.2 seconds on a PC with 733 Mhz processor.

An interesting direction of research is to develop DC algorithms based on analyt-
ically defined polynomially solvable special cases. We planto experiment with DC
algorithms for the SPL problem based on the concept of equivalent instances (see
AlBdaiwi et al.[1]). An interesting research direction is the formulation of com-
putationally efficient branching rules based on the properties of upper and lower
tolerances for different classes of combinatorial optimization problems and their
polynomially solvable special cases (see, Goldengorin andSierksma [70]).
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