Scientific Data Distribution Network Based on P2P
Transmission Technologies

Parunakian D.A. Isaev E.A., Ovchinnikov [.L., Dumsky D.V., Zaytsev A.Yu.
Institute of mathematical problems of biology RAS

Barinova W.O.
Skobeltsyn Institute of Nuclear Physics MSU

Abstract. This work studies the possibility of using a widely adopted peer-to-peer
(P2P) data transmission protocol named BitTorrent for the purpose of building
a data storage and distribution system that would allow numerous institutions
to access vast unstructured volumes of scientific data. We discuss the practical
efficiency of using this technology depending on the typical file sizes and readily
available software, the ratio of read and write operations, computational power
available at the tracker server, the number of mirrors and simultaneously connected
clients.

Overview of common scientific data distribution methods

Modern research operations produce vast and still growing amounts of data. For instance,
LSST (Large Synoptic Survey Telescope) outputs 20Tb [1] observational data per day, and the
four main LHC experiments combined generate over 40Tb per day [2]. Meanwhile, the demand
for global collaboration and data access grows as well, since it is becoming exceedingly difficult
for a single research group to process and to analyse such amounts of data.

In order to give geographically remote partners possibility to quickly obtain and analyse
the data it is necessary to a) store data using common and/or well-documented formats, and
b) rationally choose data transfer protocols and mechanisms based on the supposed loads, data
characteristics, technical and organisational requirements.

We now will discuss the first question more closely. In some cases where the data is being
accessed only by a small consolidated group of researchers it is not uncommon to see proprietary
formats specific to the software package used by that group or formats developed by the group
or a research area to emerge. However, as the number of participants and the demand for the
data grows, a need arises to agree upon a common open data format. There are numerous
examples of such formats; we will only discuss the most widely adopted ones, namely, HDF,
CDF, FITS NetCDF formats that are often used in astronomy, space science and related fields
of study.

HDF

The Hierarchical Data Format (HDF) [3] was originally created by the NCSA; nowadays
its development is overseen by the HDF Group. The format, which is already at its first version
(incompatible with older ones) is based on the idea of hierarchical structure of multidimensional
arrays. This format is actively used in meteorology, near-Earth space research and other Earth
and space sciences where storing time-sorted measurements is required. It allows to achieve high
read and write performance often better than that of traditional relational database systems

[4].
CDF

The CDF format [5] has been developed by NASA. Just as HDF, it stores the data as
multidimensional arrays with that important distinction that it supports automatic compres-
sion and decompression of the arrays stored. CDF uses two main field types: rVariables and



PARUNAKIAN ET AL.: P2P DATA DISTRIBUTION NETWORK

zVariables. All rVariables in a file must have the same length, which is quite inconvenient when
dealing with heterogenous types of data in a single file. The zVariables do not have such a lim-
itation, however the application programming interfaces for manipulating them are currently
underdeveloped and thus not suitable for production [6]. One should note that the NetCDF
format which was originally based on CDF is no longer compatible with CDF but has instead
gained compatibility with HDF5.

FITS

FITS [7] (Flexible Image Transport System) is popular with astronomy researchers for
storing imagery and similar data. Among its strengths we should note that it has an ASCII
metadata header that contains the coordinate system used and other useful information as key-
value pairs, which allows a user to easily read the header using any text viewer or a simple
programmatic analyser and to determine whether the file satisfies the criteria desired.

This concludes our brief overview of the scientific data storage formats. We now will discuss
granting access to the database to remote users. The many solutions of this problem can be
roughly split into two categories:

a) storing data in a data center with an attached supercomputer, and granting the users ability
to upload custom software to the machine and to execute it on-site;
b) distribute the data and store/process it locally on the users’ computers.

In this work we concentrate on optimal implementation of the second method applied to
the problem of distributing observational data collected by the Spektr-R spacecraft in the course
of the Radioastron experiment.

Overview of data transfer protocols
Traditional data transfer protocols: FTP, HTTP and their modifications

Let’s first review the most widely spread protocols of sending data over IP networks, namely
FTP and HTTP.

The File Transfer Protocol (FTP) [8] is one of the oldest protocols used on the Internet;
the specs on its first version were published in 1971. Its main peculiarity is that it is a multiport
protocol: it uses one TCP channel for listening to commands from established clients and one
TCP channel to transmit data. FTP supports two modes, active and passive. In the active
mode the client application tells the server which port on the client machine it should connect
to in order to execute the requested file transfer operation, and in the passive mode the client
establishes the appropriate connection itself.

The Hypertext Transfer Protocol (HTTP) [9] is another widely used protocol, owing much
of its popularity to the fact that it is an important part of the WWW specification, although
lately an alternative protocol SPDY (developed by Google) has begun replacing it [12]. De-
spite the fact that it wasn’t initially designed to effectively stream large volumes of data, its
widespread adoption stimulated development of several extensions and ingenious but confor-
mant methods of using of some of its capabilities for improving its suitability for this purpose
(e.g. interrupted file download resume, multipart data type etc.). These improvements make
it possible to further use HTTP with satisfactory efficiency for transmitting large volumes of
data.

It should also be noted that both FTP and HTTP lack any security measures altogether
and are vulnerable to a wide spectrum of attack vectors; thus additional encryption or tunneling
layers and modified versions of these protocols are applied when transmitting sensitive data or
giving access to non-anonymous user accounts.



PARUNAKIAN ET AL.: P2P DATA DISTRIBUTION NETWORK

UuDT

The UDT protocol [10], previously known as SABUL (Simple Available Bandwidth Utility
Library) is being developed since 2001 and is currently one of the best-performing and stable
protocol for transfering data via dedicated channels. The most recent fourth version of the
protocol, available since 2009, is also capable of utilizing public network links in non-exclusive
mode, albeit with reduced efficiency. The main differences between UDT and the other protocols
discussed include the utilization of UDP instead of TCP as the channel-layer protocol, imple-
mentation of duplex connections with send/receive buffers at each end, sending ACK and NAK
status messages to confirm a packet’s arrival or to request its resending by the application-layer
protocol, and a non-linear algorithm of manipulating the window size.

GridFTP

Specifically for the purpose of convenient and secure distribution of large volumes of data
the Globus collaboration has developed a set of improvements upon FTP called GridFTP [11].
Among the extensions of interest one should mention the complicated security subsystem, au-
tomatic TCP connection parameter calibration to maximize performance, file fragment transfer
and, last but not least, support for simultaneous download of fragments of a single file from
several sources.

Technical description of the proposed data distribution network

The basis for our proposed system differs from the ones we reviewed earlier in being based
on the peer-to-peer data distribution model instead of the client-server one. We have selected
BitTorrent as our main protocol for transmitting files.

The files received from the spacecraft undergo a preprocessing procedure, after which they
are deployed to special storage units on several independent servers. Such an approach allows to
reduce the complexity of the load balancing system by using already available data transmission
protocols for that. Each of these storage units is a torrent peer; storage units that contain the
required file fragments are selected automatically by the newly connected peer based on the
data provided by the tracker.

Before the download commences the ”client” peer tells the tracker (whose URL is specified
in the metadata file) the hash of the file that it attempts to obtain. The tracker replies with
a list of addresses of other peers seeding that file; among these will be both the dedicated
storage units and the other peers that have already obtained the file or parts thereof. The
”client” peer periodically informs the tracker about the process of the file’s transmission and
receives an updated list of available peers from it; data itself is transmitted without the tracker’s
participation.

After receiving a file fragment the receiver computes SHA1 hash of the fragment and
compares it with the corresponding value stored in the metadata file. If they are equal, the
receiver informs known peers that it now has the fragment in question, otherwise it attempts
to re-download the fragment.

Since the size of the metafile depends on the number and the size of data file fragments,
one must carefully balance the smaller metafile size and the smaller volume of data that has
to be re-downloaded in case of a checksum mismatch. Besides, the time required to calculate
SHAT1 hashes for file fragments has to be taken into account.

Optimizing the system for transmitting very large files

As mentioned earlier, one of the drawbacks of the proposed system is the relatively high
computational complexity of metadata file creation and verification of data received, since for
every fragment in the file a SHA1 [13][15] hash must be calculated both when computing the



PARUNAKIAN ET AL.: P2P DATA DISTRIBUTION NETWORK

metafile and when completely receiving a fragment. Besides, since the hash for every fragment
must be stored in the metadata file, decreasing fragment size leads to larger metadata files.

On the other side, using exceedingly large fragments (over 4Mb) may negatively affect data
distribution throughput, since each fragment will consist of 256 and more atomic 16kb blocks.
This increases the overalll number of incomplete fragments being simultaneously downloaded
and reduces the network’s efficiency.

In order to speed up transfer of files tens and hundreds of gigabytes large we propose
to use middleware software to split scientific data files into several parts of optimal size, as
determined by metadata computational efficiency considerations and to concatenate them back
on the receiver’s computer automatically.

To find the optimal file size we generate files of different sizes with pseudo-random content
by reading /dev/urandom, compute the metafile for each such file and record the time spent.
We replicate the experiment 25 times and take the averages for each file size. The experiment
was conducted on three servers with varying available RAM sizes; the results indicate that as
the size of the processed file approaches the size of available RAM we begin observing high
MSE values (up to 30% of the average). Apparently this can be explained by the fact that
stock BitTorrent metafile generator attempts to load the whole file into memory and has to use
the swap partition in order to store it. If we further increase the file size, the efficiency (file size
divided by computation time) falls by 75%.

Besides, large MSEs are introduced if the data files are read from an HDD; this error can
be fully removed by copying the files to a RAMFS partition for the sake of the experiment.
This makes the efficiency nearly constant until the available RAM is exceeded by the file size.

Metadata file calculation efficiency

W 2Gb RAM
W 4Gb RAM

10 100 1000 10000 100000

File size, Mb

Figure 1. Metafile computation efficiency dependence on the file size. A drastic reduction can
be observed at the point where the file size equals the amount of RAM available

Low efficiency with small files is caused by the fact that the time spent on computation
per se becomes comparable with the overhead of launching process, Python code interpretation,
etc.

We therefore conclude that from the point of view of computational load on the server and
taking into account typical hardware specifications of computers used in Russian academia the
optimal solution will be to split original files into 1Gb segments and preprocess them using the
size of a torrent chunk of 1Mb, which, as show in [14] is a common maximum chunk size.

Client - server scenario

We will now investigate the relative performance of data transmission based on the common
protocols discussed above. We are interested in finding out the mean time of transferring a file of
the size determined to be optimal. We will conduct two sets of measurements, one for a dedicated
link between the initial storage unit and the receiving machine and one for a connection over



PARUNAKIAN ET AL.: P2P DATA DISTRIBUTION NETWORK

public networks.

Table 1. Dedicated link

Protocol Mean throughput | MSE
FTP 882 11
HTTP 884 9
GridFTP 420 8
UDT 490 12
BitTorrent N/A N/A

Table 2. Public connection

Protocol Mean throughput | MSE

FTP 865 81
HTTP 868 74
GridFTP 427 63
UDT 464 11
BitTorrent 263 6

These values are averages over 25 independent runs. We use vsftpd and nginx as FTP and
HTTP servers, accordingly and GNU wget as their client. The GridF'TP setup was compiled
without the use of pthreads. As we can see, using sophisticated protocols doesn’t necessarily
pay off in simple scenarios like this one and may even negatively impact performance. Besides,
according to [17], GridFTP/UDT adoption is reasonable mainly in networks with large RTT
values where the effect of using UDT instead of TCP layer allows to increase the throughput
by a factor of four. We also should note that while UDT processes use more memory and CPU
the benefits of using this protocol are only clearly visible with large MTU values (e.g. 9000)
and sizeable buffers, while this setup uses a relatively low MTU of 1500. Low performance of
BitTorrent in this scenario is explained by the relatively high SHA1 computation costs. Notice
that all the traditional protocols demonstrate high MSEs and, thus, low stability over public
networks.

Work in progress

We are currently testing the software written using four Amazon Elastic Cloud ml.small
(1.7Gb RAM, 1 dedicated virtual core, fixed network throughput) instances as data storage
units and one load balancer t1.micro instance (613Mb RAM, up to 2 virtual cores temporarily
assigned, low I/O capabilities). We use OpenTracker project [16] as our BitTorrent tracker.
The results are expected to be ready shortly and will be published in a follow-up work, as well
as on the Internet.

Notes

1. Asshown in [18], injecting fake peers into the pool substantially affects the characteristics
of the network, and makes its continued utilization altogether impossible upon reaching a certain
threshold. Nevertheless, since the list of users of the proposed system is supposedly known
beforehand and is not to be changed very often, this problem can be mitigated by filtering
connections from all IP addresses except the ones mentioned in the white list.

2. Previously, a similar system called Biotorrents (Morgan G. I. Langille Jonathan A.
Eisen, Genome Center, University of California Davis) [19] was available. Its main purpose was
to assist bioengineering groups in data distribution. Among its features were the possibility to
group torrent metadata files by the version of the same data file and the automatic distribution
of updated file availability by RSS.

3. The popular social network Twitter reduced [20] the time required to propagate updates
to its server software to over 1000 servers by the factor of 75 by upgrading to BitTorrent based
update delivery system.



PARUNAKIAN ET AL.: P2P DATA DISTRIBUTION NETWORK

References

[1] http://www.lsst.org/lsst/science/concept_data

[2] http://public.web.cern.ch/public/en/LHC/Computing-en.html

[3] http://www.hdfgroup.org/HDF5/doc/PSandPDF/HDF5_UG_r187.pdf

[4] SINP space physics data storage and access system (V. Barinova, V.Kalegaev,
D.Parunakian - D.V. Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State
University) PRBEM1-0014-10 \#7084, COSPAR10

[5] http://cdf.gsfc.nasa.gov/

[6] An Introduction to Distributed Visualization (Jan Heijmans, Delft University of Technology
Faculty of Information Technology and Systems)

[7] nttp://fits.gsfc.nasa.gov/standard30/fits_standard30.pdf

[8] http://www.ietf.org/rfc/rfc959.txt

[9] http://www.w3.org/Protocols/rfc2616/rfc2616.html

[10] http://udt.sourceforge.net/doc/draft-gg-udt-03.txt

[11] http://www.ogf.org/documents/GFD.20.pdf

[12] http://mbelshe.github.com/SPDY-Specification/draft-mbelshe-spdy-00.xml
[13] http://wiki.theory.org/index.php/BitTorrentSpecification

[14] http://wiki.vuze.com/w/Torrent_Piece_Size

[15] http://www.ietf.org/rfc/rfc3174.txt

[16] http://erdgeist.org/arts/software/opentracker/

[17] http://gridftp.bio-mirror.net/biomirror/

[18] Kenji Leibnitz, Tobias Hofeld, Naoki Wakamiya, Masayuki Murata.
Peer-to-Peer vs. Client/Server: Reliability and Efciency of a Content
Distribution Service.

[19] http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010071

[20] http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html



