
Accepted Manuscript

An Improved Adaptive Binary Harmony Search Algorithm

Ling Wang, Ruixin Yang, Yin Xu, Qun Niu, Panos M. Pardalos, Minrui Fei

PII: S0020-0255(13)00035-2

DOI: http://dx.doi.org/10.1016/j.ins.2012.12.043

Reference: INS 9891

To appear in: Information Sciences

Received Date: 3 September 2011

Revised Date: 9 December 2012

Accepted Date: 31 December 2012

Please cite this article as: L. Wang, R. Yang, Y. Xu, Q. Niu, P.M. Pardalos, M. Fei, An Improved Adaptive Binary

Harmony Search Algorithm, Information Sciences (2013), doi: http://dx.doi.org/10.1016/j.ins.2012.12.043

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ins.2012.12.043
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2012.12.043

 An Improved Adaptive Binary Harmony Search Algorithm

Ling Wang1,2, Ruixin Yang1, Yin Xu1, Qun Niu1, Panos M. Pardalos2, Minrui Fei1

1. Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics and

Automation, Shanghai University, Shanghai, 200072, China

2. Center for Applied Optimization, Department of Industrial and Systems Engineering, University

of Florida, Gainesville, Florida, 32611, USA

wangling@shu.edu.cn

Abstract. Harmony Search (HS), inspired by the music improvisation process, is a new

meta-heuristic optimization method and has been successfully used to tackle the optimization

problems in discrete or continuous space. Although the standard HS algorithm is able to solve

binary-coded optimization problems, the pitch adjustment operator of HS is degenerated in the

binary space, which spoils the performance of the algorithm. Based on the analysis of the

drawback of the standard HS, an improved adaptive binary Harmony Search (ABHS) algorithm is

proposed in this paper to solve the binary-coded problems more effectively. Various adaptive

mechanisms are examined and investigated, and a scalable adaptive strategy is developed for

ABHS to enhance its search ability and robustness. The experimental results on the benchmark

functions and 0-1 knapsack problems demonstrate that the proposed ABHS is efficient and

effective, which outperforms the binary Harmony Search, the novel global Harmony Search

algorithm and the discrete binary Particle Swarm Optimization in terms of the search accuracy and

convergence speed.

Keywords: Harmony Search, binary Harmony Search, meta-heuristic, knapsack problem

1 Introduction

Harmony Search (HS) is a recent meta-heuristic algorithm firstly developed by Geem et al. [13] in

2001. It imitates the musician seeking to find pleasing harmony determined by an aesthetic standard as

the optimization method seeks to find the global optimal solution determined by an objective function.

Unlike the traditional optimization algorithms based on the Gradient and Newton's Methods, HS uses a

stochastic search instead of a gradient-based search, and therefore the derivative information is

unnecessary [20].

 Due to the characteristics such as easy implementation and quick convergence, HS has drawn more

and more attention and dozens of variants have been developed to enhance the optimization ability. Pan

et al. [33] proposed an improved Harmony Search algorithm with an ensemble of parameter sets which

can self-adaptively choose the best control parameters during the evolution process. Mahdavi et al. [27]

developed an adaptive pitch adjustment strategy to improve HS. Hasancebi et al. [18] proposed a new

adaptive mechanism for HS in which the harmony memory consideration rate and the pitch adjustment

rate change dynamically during the improvisation process. Pan et al. [35] presented a self-adaptive

global best harmony search algorithm and proved that it was more effective in finding the better

solutions than several other HS algorithms. Li and Li [21] addressed a hybrid HS algorithm combining

HS with Particle Swarm Optimization (PSO) to solve high-dimensional optimization problems and

achieved better optimization results. Omran and Mahdavi [31] introduced a new global-best HS

inspired by the concept of PSO algorithms and validated its efficiency in numerical and integer

programming problems. Li et al. [24] also proposed a hybrid PSO-HS algorithm where HS was used to

deal with the variable constraints. Li and Wang [23] presented two hybrid algorithms by merging HS

with the Differential Evolution algorithm and tested their performance with a set of benchmark

functions. The results display that the hybrid algorithms surpass DE. Seok et al. [41] developed a

hybrid Simplex Algorithm-Harmony Search in which the Simplex Algorithm was adopted to improve

the accuracy and convergence speed. Zhao et al. [50] introduced the HS algorithm into the dynamic

multi-swarm particle swarm optimizer (DMS-PSO) and the newly developed approach improved the

performance compared with DMS-PSO and HS. Recently, hybridization has been the hotspot in HS

research, and more and more hybrid algorithms have been reported, such as HS combined with a

genetic algorithm (GA) [22] and a Clonal Selection algorithm [48].

Now HS has been successfully applied to a wide range of discrete and continuous optimization

problems in the scientific and engineering fields, such as slope stability analysis [4, 25], structural

engineering [38, 39], groundwater management model optimization and identification [1, 2], multiple

dam system scheduling [12], energy dispatch problems [5, 30], clustering [8, 26], visual tracking

problems [9], sound power level optimization [29] and Sudoku problems[10].

 As far as we know, the majority of previous works on HS focused on solving the optimization

problems in discrete or continuous space and only a few works investigated binary problems. In 2005,

Geem [11] firstly adopted the standard HS with binary-coding (BHS) to solve water pump switching

problems in which the pitch adjustment operator was discarded. Then, Geem and Williams [15] utilized

BHS to tackle an ecologic optimization problem and achieved the better results than those using the

Simulated Annealing algorithm. Later, Greblicki and Kotowski [17] analyzed the properties of BHS on

one dimensional binary knapsack problems and the experimental results indicated that the performance

of BHS was not ideal. Wang et al. [47] pointed out that the dysfunction of the pitch adjustment rule

degraded the search ability of BHS and redesigned the pitch adjustment operation in the proposed

discrete binary harmony search (DBHS) algorithm. Afterwards, they extended DBHS to tackle the

Pareto-based multi-objective optimization problems [44]. Recently, Zou et al. [51] modified a novel

global HS (NGHS) to solve the 0-1 knapsack problem in which the updating strategy of the real-coded

HS was used and binary solutions were generated by replacing the real values with the nearest integers.

In summary, the research on binary-coded HS algorithms has only begun, and the performance of the

current binary HS algorithms is still not satisfactory. Therefore, in this work we propose an improved

adaptive binary harmony search (ABHS) algorithm for solving the binary-coded problems more

efficiently and effectively.

The rest of this paper is organized as follows. In section 2, the standard HS is briefly introduced.

Then the proposed ABHS algorithm is elaborated in section 3. Section 4 conducts a series of

experiments to analyze the properties of ABHS. In section 5, the benchmark functions and 0-1

knapsack problems are used to verify the optimization performance of ABHS. The comparisons with

BHS, NGHS and discrete binary PSO (DBPSO) are also given. Finally, the conclusions are drawn in

Section 6.

2 Harmony Search Algorithm

HS is developed by imitating the music improvisation process where music players improve the pitch

of their instruments to obtain the better harmony. The optimization problem can be described as

follows:

 () , 1, 2 , ,i i iM in im iz in g f x s u b je c t to L x x U x i M≤ ≤ = (1)

where f(x) is the objective function; ix is the decision variable; Lxi and Uxi are the lower and upper

bounds of the feasible domain; M is the number of decision variables. The implementation of HS is as

follows:

Step 1) Initializing the algorithm parameters and the harmony memory. The algorithmic

parameters include the harmony memory size (HMS), the harmony memory considering rate (HMCR),

the pitch adjusting rate (PAR) and the maximum number of improvisations. The harmony memory

1 2
TH M SH M x x x⎡ ⎤= …⎣ ⎦ is randomly initialized within the feasible solution space according to

the HMS.

Step 2) Improvising new harmonies. A new harmony denoted as ()' ' ' ' '
1 2 1, ,M Mx x x x x−= � is

improvised by using the harmony memory consideration rule, the pitch adjustment rule and

randomization, which are determined by the pre-defined HMCR and PAR. The HMCR is the

probability of choosing one value from the harmony memory (HM) while (1-HMCR) represents the

probability of randomly picking up one value among all the feasible values. For instance, if a uniform

random number between 0 and 1 is less than the HMCR, '
ix is chosen from the HM. In addition, the

element of x’ chosen from the HM needs to be judged whether it should be pitch-adjusted with the

probability PAR. If the random number is less than PAR, '
ix will be replaced by

' ()ix r a n d b w± × where bw is the bandwidth.

Step 3) Updating the harmony memory. If the new generated harmony vector 'x performs better

than the worst one in the HM, the new one is included in the HM and the corresponding worst

candidate is excluded.

Step 4) Checking the termination criterion. If the stopping criterion is satisfied, the iterative

search is terminated and the optimal solution is output. Otherwise, Step 2 and step 3 are repeated.

More details on the standard HS algorithm can be found in [27].

3 Adaptive Binary Harmony Search Algorithm

Although the HS with binary-coding can be used to tackle binary-coded problems, the pitch adjustment

operator is inferior in binary space, which spoils the performance of the algorithm. To make up for it,

the drawback of HS for binary-valued problems is analyzed and discussed, and an adaptive binary HS

algorithm with a novel pitch adjustment operator is proposed to improve the optimization ability.

3.1 Initialization of the harmony memory

In ABHS, individuals are represented as binary strings, and the HM, denoted as H, is initialized with

random binary numbers as Eq. (2):

11 12 1 1

21 22 2 2

1 2

,1 ,2 , ,

...
 {0,1}, {1, 2,..

...

j M

j M

ij
i i ij iM

HMS HMS HMS j HMS M

h h h h

h h h h

H h i
h h h h

h h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈ ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

., }, {1, 2,..., }HMS j M∈

(2)

where HMS is the size of the HM; hij is the element of the i-th harmony vector; M is the length of

harmony vectors, i.e. the dimension of solutions.

3.2 Harmony memory consideration rule

The harmony memory consideration rate indicates whether the element of new candidates is generated

from the HM or randomization. Imitating the standard HS, the HMCR is defined as the probability of

picking out a value from the HM while (1-HMCR) is the rate of randomly choosing a feasible value not

limited to the HM; that is, it is re-initialized stochastically to be “0” or “1” in ABHS. In this work, two

strategies are presented to implement harmony memory consideration operation: the bit selection

strategy and the individual selection strategy.

(1) Bit selection strategy

For the bit selection strategy, each element of harmony vectors is independently chosen from the

HM; that is, each bit of new solutions is chosen from the different harmony memory vectors randomly

as Eq. (3-4)

1 if

pj

ij

h r HMCR
x

R else

<
=
⎧
⎨
⎩

 (3)

20 if 0.5

1

r

else
R

<
=
⎧
⎨
⎩

 (4)

where ijx is the j-th bit of the new improvised harmony vector ix ; {1,..., }p HMS∈ is a random

integer decided by 3r HMS×⎡ ⎤⎢ ⎥ and generated for each bit independently; r1, r2 and r3 are three

independent random numbers between 0 and 1.

(2) Individual selection strategy

In the individual selection strategy, all the elements of solutions are only selected from one HM

vector. The individual strategy operation can be defined as Eq. (5-6)

, 1{1,2,..., }

tj

ij

HMS r HMCR
x

R else

h t ∈ <
=
⎧
⎨
⎩

 (5)

20 if 0.5

1

r

else
R

<
=
⎧
⎨
⎩

 (6)

where ijx is the j-th element of the new candidate ix ; t is a random integer which does not change

during generating ix ; 1r and 2r are two independent random numbers between 0 and 1.

The difference between these two strategies can be depicted as Fig. 1; that is, the elements of the

new harmony vector can be picked up from the different vectors in the HM for the bit selection strategy

while the individual strategy only chooses the value from one harmony vector in the HM for a new

candidate.

1h (1101)=

3h (1000)=
2h (0101)=

(1001)ix =

4h (0100)=

1h (1101)=

3h (1000)=
2h (0101)=

(0101)ix =

4h (0100)=

Fig. 1 Bit and individual selection strategies

3.3 Pitch adjustment rule

The pitch adjustment operator chooses an adjacent value with the probability PAR in the standard HS.

For binary optimization problems, the solution has only two values, i.e. “0” or “1”. Thus the standard

pitch adjustment operator is a NOT gate for binary-coded problems as shown in Eq. (7-8)

ij
ij

ij

x r PAR
x

x else

⎧ <⎪= ⎨
⎪⎩

 (7)

1 0

0 1
ij

ij
ij

 if h
x

 if h

=⎧⎪= ⎨ =⎪⎩
 (8)

where r is a random number between 0 and 1. According to Eq. (7-8), we can find that the pitch

adjustment operator is transformed into a mutation operator for binary optimization problems. It should

be noted that the randomization operator has introduced a mutation operation in the process of the

harmony memory consideration with the probability (1-HMCR)/2, which means that the total mutation

probability of the standard BHS is mp as Eq.(9)

2 1-

2m

HMCR PAR HMCR
p

× × += （ ）
 (9)

The pitch adjustment operator is utilized to find locally improved solutions, but it is degraded to be

the mutation operator in the standard BHS. Therefore, it is reasonable that the optimization ability of

BHS is spoiled. Due to this fact, Geem [11] abandoned the pitch adjustment rule in his work while

Greblicki [17] retained the pitch adjustment operator. Although the mutation operation can perform a

local search, the efficiency and effectiveness are not satisfactory. To improve it, we adopt a new pitch

adjustment rule which chooses the adjacent value from its structural neighborhood rather than an

adjacent value in the harmony memory. For easy implementation, the neighbor of each HS vector is

defined as the global optimal harmony vector in the HM. Thus, the pitch adjustment rule in ABHS is

improved as Eq. (10)

bj

ij
ij

h r PAR
x

x else

<⎧⎪= ⎨
⎪⎩

 (10)

where bjh denotes the corresponding element of the global optimal harmony vector in the HM.

3.4 Adaptive mechanism

The optimization ability of meta-heuristic algorithms, including HS, relies on the parameter setting. To

improve the robustness and flexibility of algorithms, adaptive parameter strategies [37] are adopted in

evolutionary algorithms such as PSO [7, 28, 49], Differential Evolution [3] and Ant Colony

Optimization [46]. As mentioned above, adaptive strategies are also introduced into the HS algorithms

to enhance the performance [6, 18, 27, 40, 43]. However, it is difficult to determine which adaptive

method is the best choice for the binary-coded HS. On the one hand, various adaptive methods, even

conflicted ones [27, 42], were proposed for the standard HS. On the other hand, the characteristics of

the binary-coded HS are different from those of the standard HS, and therefore the performance of

adaptive methods may change. Thus, a variety of adaptive HMCR and PAR mechanisms including the

linear increment, linear decrease, nonlinear increment and random increment as Eq. (11-22) are studied

and analyzed to improve the optimization ability and the flexibility of the proposed binary HS.

max min
min

max

HMCR HMCR
HMCR HMCR iter

iter

−
= + × (11)

max min
max

max

HMCR HMCR
HMCR HMCR iter

iter

−
= − ×

(12)

()
min

max

min

max

c iterHMCR HMCR e

HMCR
Ln

HMCR
c

iter

⋅⎧ =
⎪
⎪ ⎛ ⎞
⎨ ⎜ ⎟
⎪ ⎝ ⎠=⎪
⎩

 (13)

() ()()min max min

1

ln 1
HMCR HMCR HMCR HMCR

iter
= + −

+
 (14)

max

min
-

 0.02
iter

iter

e
HMCR HMCR HMCR HMCR

e

= + × Δ Δ = (15)

()min 1 max minHMCR HMCR rand HMCR HMCR= + × − (16)

max min
min

max

PAR PAR
PAR PAR iter

iter

−
= + × (17)

max min
max

max

PAR PAR
PAR PAR iter

iter

−
= − ×

(18)

()
min

max

min

max

c iterPAR PAR e

PAR
Ln

PAR
c

iter

⋅⎧ =
⎪
⎪ ⎛ ⎞
⎨ ⎜ ⎟
⎪ ⎝ ⎠=⎪
⎩

 (19)

() ()()min max min

1

ln 1
PAR PAR PAR PAR

iter
= + −

+
 (20)

max

min
-

iter

iter

e
PAR PAR PAR

e

= + × Δ (21)

()min 1 max minPAR PAR rand PAR PAR= + × − (22)

min min/HMCR PAR denotes the lower boundary of the HMCR/PAR; max max/HMCR PAR is the upper

boundary of the HMCR/PAR; Iter and maxIter represent the current iteration number and the

maximum iteration number, respectively. Fig. 2 depicts the dynamical changes of the HMCR with these

six adaptive mechanisms which are totally different, and thus it is vital to choose a proper adaptive

method to improve the performance of the algorithm.

In summary, the procedure of ABHS can be described as follows.

Step1: Set the parameters such as the HMS, the HMCR and the PAR.

Step2: Initialize the harmony memory.

Step3: Improvise new harmonies by conducting the adaptive harmony memory consideration, the

pitch adjustment and randomization.

Step4: Update the harmony memory and the global best harmony vector.

Step5: Repeat step 3 and step 4 until the termination criteria are satisfied.

Fig. 2 Variation of the HMCR versus the iteration number

3.5 Algorithm complexity

ABHS consists of two phases, i.e. the initialization and the iterative search. The generation and sorting

of the initial HM has time complexity O(HMS × M+HMS × log(HMS)) where M is the dimension of

solutions. During the iterative search, harmony vectors are generated to search for the optimal solution.

The generation of each new harmony vector costs time O(M × (1+HMCR × PAR)), and the new

candidate needs to be checked and replaces the worst vector in the HM which has complexity

O(log(HMS)+M). However, one or multiple candidates can be generated in each generation of ABHS.

Thus, one iteration takes O(NGC × (M× (1+HMCR× PAR)+log(HMS)+M)) where NGC stands for the

number of the new candidates. NGC=1 means that ABHS adopts the serial updating strategy as the

standard HS algorithm while NGC>1 indicates that the parallel updating mechanism is used, which

denotes that multiple candidates are generated and used to update the HM in each iteration. Usually,

the iterative search process is repeated till the pre-defined fitness calculation number (FCN) is reached;

that is, the iteration repeats FCN/NGC times. Hence, the iterative search phase has time complexity

O(FCN/NGC × (NGC× (M × (1 +HMCR × PAR)+log(HMS)+M)). In summary, the overall complexity

of the proposed ABHS is O(HMS × (M+log(HMS))+ FCN × (M × (2+HMCR× PAR)+log(HMS))).

4 Parameter analysis of ABHS

Like other meta-heuristic algorithms, ABHS is sensitive to the parameter setting. Although we hardly

expect to find the general optimal parameter values for ABHS as they are problem-dependent, it is

possible to set the fair parameter values to achieve the satisfactory optimization performance. Thus,

two unimodal functions and two multimodal functions of 36 benchmark functions [16, 32, 34, 49], i.e.

F2, F3, F11 and F17, are used for the parameter analysis to avoid the improper parameter setting of

ABHS. The characteristics of all the functions are listed in Table 1-2.

4.1 The number of new harmony vectors generated

The original HS adopts the serial updating strategy; that is, it improvises one new candidate and then

updates the HM immediately. However, the parallel updating strategy [36] has been reported to have

the better performance for various optimization problems. To verify the performance clearly and

exactly, ABHS based on the bit selection and the individual selection with the different number of new

generating candidates (NGC) were studied, and no adaptive parameter was employed to eliminate the

disturbance from the adaptive mechanism. The HMCR and PAR of ABHS were set as the values

recommended in [14, 17], i.e. HMCR=0.74 and PAR=0.1; the HMS was 30. For a fair comparison, the

maximum number of fitness calculating was set as a constant, i.e. 90000. Four criteria, i.e. the best

value (BV), the mean best value (MBV), the rate of finding the global optima (RGO) and the fitness

calculation number (FCN), were adopted to evaluate the optimization performance. All the tests were

run 50 times independently. The results are given in Table 3 and Table 4.

Table 1. Characteristics of Benchmark Functions

 Name dimension Optima Type
F1 Sphere 2/30 0.0(min) unimodal
F2 Rosenbrock 2/30 0.0(min) unimodal
F3 Goldstein&Price 2 3.0(min) unimodal
F4 Glankwahdee 2 0.0(min) unimodal
F5 Griewangk 2/30 0.0(min) unimodal
F6 Freudenstein-Roth 2 0.0(min) unimodal
F7 Beale 2 0.0(min) unimodal
F8 Sum of different power 2/30 0(min) unimodal
F9 Schwefel 2.22 2/30 0(min) unimodal
F10 Rastrigin 2/30 0(min) multimodal
F11 Schwefel 2.26 2/30 -837.96577(min) /-12569.5(min) multimodal
F12 Ackley's path 2/30 0.0(min) multimodal
F13 Branin 2 0.3978874(min) multimodal
F14 Schaffer F6 2 1.0(max) multimodal
F15 Levy F3 2 -176.5417(min) multimodal
F16 Camel-6 2 -1.031628(min) multimodal
F17 Alpine 2 7.8856(max) multimodal
F18 schaffer F7 2 0(min) multimodal
F19 Levy F5 2 -176.1375 (min) multimodal
F20 Bohachevsky 2 2 0(min) multimodal

Table 2. Characteristics of CEC05 Benchmark Functions

 Name Dimension Optima Type
F21 Shifted Sphere Function 2/30 -450 unimodal
F22 Shifted Schwefel’s Problem 1.2 2/30 -450 unimodal
F23 Shifted Rotated High Conditioned Elliptic Function 2/30 -450 unimodal
F24 Shifted Schwefel’s Problem 1.2 with Noise in Fitness 2 -450 unimodal
F25 Schwefel’s Problem 2.6 with Global Optimum on

Bounds
2 -310 unimodal

F26 Shifted Rosenbrock’s Function 2/30 390 multimodal
F27 Shifted Rotated Griewank’s Function without Bounds 2/30 -180 multimodal
F28 Shifted Rotated Ackley’s Function with Global

Optimum on Bounds
2 -140 multimodal

F29 Shifted Rastrigin’s Function 2/30 -330 multimodal
F30 Shifted Rotated Rastrigin’s Function 2 -330 multimodal
F31 Shifted Rotated Weierstrass Function 2 90 multimodal
F32 Schwefel’s Problem 2.13 2 -460 multimodal
F33 Expanded Extended Griewank’s plus Rosenbrock’s

Function
2 -130 multimodal

F34 Shifted Rotated Expanded Scaffer’s F6 2/30 -300 multimodal
F35 Hybrid Composition Function 2/30 120 multimodal
F36 Rotated Hybrid Composition Function 2 120 multimodal

Table 3 and Table 4 show that the parallel updating strategy is beneficial to the global optimization

ability of ABHS, especially on the multimodal functions. In the serial updating, only one new harmony

vector is yielded based on the current HM, and the HM will be updated instantly. But in the parallel

updating, multiple candidates are generated in each generation, which means that the present worse

vectors in the HM have more chance to be chosen to create new solutions. Obviously, the selection

pressure in the HM is effectively alleviated in the parallel updating method. Thus, on the one hand, the

parallel updating strategy can maintain the diversity of the HM better, which helps the algorithm

escape from the local optima and improves the global search ability efficiently. On the other hand,

compared with the original serial updating strategy, the convergence speed of the parallel updating is

slowed on the unimodal problems in which there are no local optima. However, a small NGC, for

instance less than 15, cannot present this advantage, and too big an NGC may decrease the efficiency

of ABHS, which can be observed both in the individual and bit selection methods.

Obviously, the difference between the bit selection strategy and the individual selection strategy

affects the optimization performance. For the serial updating strategy, the bit selection method can

maintain the better diversity and achieves the better optimization results. But the individual selection

method is prior for the parallel updating mechanism. According to the results in Table 3-4, ABHS

based on the individual selection with NGC=20 achieves the best optimization performance, which is

adopted in the following sections.

Table 3. The results of ABHS with the different NGC based on the individual selection strategy

 NGC 1 5 10 15 20 30
BV 0.0 0.0 0.0 0.0 0.0 0.0
MBV 3.25E-9 9.74E-8 1.74E-9 1.98E-10 1.75E-11 2.48E-8
RGO 40% 22% 30% 40% 44% 42%

F2

FCN 66095 45560 77040 59790 71600 69960
BV 3.0 3.0 3.0 3.0 3.0 3.0
MBV 3+1.91E-08 3+1.99E-08 3+1.61E-08 3+1.50E-08 3+1.45E-08 3+1.66E-08
RGO 24% 32% 36% 40% 42% 34%

F3

FCN 71286 65700 62802 46155 58320 64950
BV -837.96577 -837.96577 -837.96577 -837.96577 -837.96577 -837.96577
MBV -837.62955 -837.96568 -837.96570 -837.96571 -837.96571 -837.96570
RGO 40% 42% 48% 60% 64% 54%

F11

FCN 62053 15540 27209 33030 38640 67590
BV 7.885601 7.885601 7.885601 7.885601 7.885601 7.885601
MBV 7.865510 7.867054 7.869099 7.876906 7.877155 7.873681
RGO 44% 40% 58% 64% 66% 60%

F17

FCN 56202 51724 43812 50472 34853 35642

Table 4. The results of ABHS with the different NGC based on the bit selection strategy

 NGC 1 5 10 15 20 30
BV 0.0 0.0 0.0 0.0 0.0 0.0
MBV 5.35E-11 2.31E-10 1.44E-10 4.19E-10 7.45E-11 5.23E-11
RGO 44% 24% 32% 38% 42% 50%

F2

FCN 71951 81305 78979 73854 73891 72610
BV 3.0 3.0 3.0 3.0 3.0 3.0
MBV 3+1.68E-08 3+2.16E-08 3+2.06E-08 3+1.61E-08 3+1.96E-08 3+1.96E-08
RGO 26% 14% 18% 30% 22% 22%

F3

FCN 71286 78775 80430 63588 73073 72667
BV -837.96577 -837.96577 -837.96577 -837.96577 -837.96577 -837.96577
MBV -837.96568 -837.96568 -837.96568 -837.96571 -837.96570 -837.96573
RGO 36% 40% 38% 40% 42% 48%

F11

FCN 60370 57450 59004 58627 57658 51897
BV 7.885601 7.885601 7.885601 7.885601 7.885601 7.885601
MBV 7.870760 7.867254 7.863590 7.866346 7.871849 7.870010
RGO 50% 40% 44% 46% 62% 52%

F17

FCN 40041 50486 63687 51376 39401 44985

4.2 HMS

ABHS yields new solutions based on the HM, and therefore the HMS influences the performance of

the algorithm. A set of the HMS values, i.e. 1, 5, 20, 30, 40, 60, 100, 140 and 180, were studied to

evaluate its influence on the optimization ability. HMCR=0.74 and PAR=0.1 were adopted and NGC

was set as 20. The adaptive mechanisms were not introduced to evade the disturbance in the

performance analysis. The experimental results of the 50 independent runs are presented in Table 5.

Table 5. The results of ABHS with the different HMS

 HMS 1 5 20 30 40 60 100 140 180
BV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MB
V

 3.20E-9 1.54E-9 4.35E-10 1.75E-11 8.13E-10 1.10E-9 3.51E-9 1.18E-8 7.33E-8

RGO 24% 26% 36% 44% 32% 28% 20% 14% 6%
F2

FCN 69419 65768 70727 71600 73932 79402 86792 88709 89018
BV 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
MB
V

 3+2.24E-08
3+2.05E-0
8

3+2.13E-08 3+1.45E-083+2.03E-08
3+2.38E-0
8

3+2.42E-0
8

3+2.43E-0
8

3+2.35E-0
8

RGO 30% 34% 34% 42% 36% 26% 26% 24% 24%
F3

FCN 74396 69236 71503 58320 65377 81248 81520 72419 80040
BV -837.96577 -837.96577 -837.96577 -837.96577 -837.96577 -837.96577 -837.96577 -837.96577 -837.96577
MB
V

 -837.96566 -837.96567 -837.96569 -837.96571 -837.96572 -837.96572 -837.96572 -837.96573 -837.96573

RGO 32% 40% 46% 64% 66% 64% 66% 70% 72%
F11

FCN 64919 59592 51300 38640 36991 40422 29801 35190 34126
BV 7.885601 7.885601 7.885601 7.885601 7.885601 7.885601 7.885601 7.885601 7.885601
MB
V

 7.872386 7.871289 7.872440 7.877155 7.874240 7.870639 7.871928 7.870972 7.871035

RGO 52% 52% 54% 66% 58% 52% 52% 50% 52%
F17

FCN 56202 46118 51937 34853 33953 492981 45624 49681 45304

According to the results in Table 5, it is obvious that the optimal HMS is problem-dependent. The

optimization performance of F2 is degraded with the increment of the HMS when it is more than 30,

while the contrary result, i.e. the enhanced performance, is observed on F11. However, the HMS

should not be too small as the results of all the functions become worse with the decreasing of the HMS

when it is less than 30. The convergence curves of ABHS with HMS=1, 30 and 180 on F2 and F11 are

depicted in Fig. 3 and Fig. 4, respectively. As expected, we can find that the better initial fitness values

are obtained with the increasing of the HMS because more initial solutions are generated. Meanwhile,

Fig. 3 and Fig. 4 show that the size of the HM does not significantly influence the convergence speed

of the algorithm. Therefore, HMS=30 is adopted in this work based on the comprehensive results of the

four functions.

0 20000 40000 60000 80000

10
-10

10
-5

10
0

10
5

Number of evaluations

F
un

ct
io

n
V

al
ue

HMS=1

HMS=30

HMS=1800 100 200

10
0

10
2

Fig.3 Convergence graph of F2 with different HMS

0 20000 40000 60000 80000
-850

-800

-750

-700

-650

-600

-550

-500

F
un

ct
io

n
V

al
ue

Number of evaluations

HMS=1

HMS=30

HMS=180

0 100 200
-800

-750

-700

-650

-600

-550

-500

Fig.4 Convergence graph of F11 with different HMS

4.3 HMCR and PAR

The HMCR indicates that the new candidate is generated from the HM or randomization, and the PAR

determines whether the new candidate needs to be refined. Thus, the HMCR and the PAR are of great

importance as they determine the capabilities of the global search and the local search. Apparently,

there is a coupling between the HMCR and the PAR on the optimization ability. To investigate their

influence on ABHS, the parameter studies were performed with the HMCR and the PAR tuned from

0.1 to 0.9 and 0.05 to 0.9, respectively. The adaptive mechanisms were not introduced to avoid the

disturbance in the analysis. The optimization results of F2, F3, F11 and F17 are illustrated in Fig. 5-8

where the three axes represent the HMCR, the PAR and the success rate (SR) of finding the global

optima in the 50 independent runs, respectively.

Fig. 5 The influence of PAR and HMCR on F2

Fig. 6 The influence of PAR and HMCR on F3

Fig. 7 The influence of PAR and HMCR on F11

Fig. 8 The influence of PAR and HMCR on F17

Fig. 5-8 show that the HMCR and the PAR play important roles in the algorithm performance, and

ABHS is more sensitive to the HMCR. ABHS gains the better performance when the HMCR is

between 0.6 and 0.8, while its optimization ability is severely spoiled if the HMCR is out of this range.

Compared with the unimodal functions, the multimodal optimization problems prefer to a small HMCR,

which means that a higher randomization rate can keep the diversity more efficiently to help the

algorithm escape from the local optima. Although ABHS is less sensitive to the PAR, an improper

PAR can degrade ABHS as well. As depicted in the Fig. 5-8, a small PAR, less than 0.3, is

recommended especially for the multimodal functions. Overall, the results reveal that the optimal

HMCR and PAR of ABHS are different for various optimization problems, and it is hard to set the

optimal parameters without a priori knowledge. However, it is not difficult to choose the proper

parameter values to achieve the fair performance for ABHS. Based on the results of four functions, the

recommended values of the HMCR and the PAR are from 0.6 to 0.8 and from 0.05 to 0.3, respectively.

4.4 Adaptive mechanism

ABHS is sensitive to the parameter setting. Thus, the adaptive mechanisms presented in section 3.4 are

investigated to improve the flexibility and optimization ability. The success rate of the different

adaptive strategies and the constant parameters are plotted in the Fig. 9-12. The definitions of the axes

in the figures are listed in Table 6 and the parameter values adopted are given in Table 7.

Table 6. The definition of the adaptive mechanism combinations

HMCR Axis PAR Axis
Label Strategy Label Strategy

1 Constant (0.7) 1 Constant(0.2)
2 Eq. (11) 2 Eq. (17)
3 Eq. (12) 3 Eq. (18)
4 Eq. (13) 4 Eq. (19)
5 Eq. (14) 5 Eq. (20)
6 Eq. (15) 6 Eq. (21)
7 Eq. (16) 7 Eq. (22)

Table 7. The parameter values of adaptive methods

Parameter Value

minHMCR 0.6

maxHMCR 0.8

HMCRΔ 0.02

minPAR 0.05

maxPAR 0.3

PARΔ 0.03

maxiter 4500

Fig. 9 The optimization performance of the adaptive mechanisms on F2

Fig. 10 The optimization performance of the adaptive mechanisms on F3

Fig. 11 The optimization performance of the adaptive mechanisms on F11

Fig. 12 The optimization performance of the adaptive mechanisms on F17

It is obvious that a proper adaptive strategy can efficiently improve the optimization ability of the

algorithm while an improper adaptive method spoils the performance. On various functions, the

optimal adaptive combination strategy is different. It is reasonable as the best parameter values are

problem-dependent. Based on the results displayed in Fig. 9-12, the overall best performance of ABHS

is achieved when (a) the HMCR linearly increases as Eq. (11) and the PAR is a constant, (b) the

HMCR and the PAR both linearly increase using Eq. (11) and Eq. (17). To reduce the computation cost

and simplify the algorithm, the former adaptive strategy, i.e. the linearly incremental HMCR and the

constant PAR, is adopted in this paper. Considering the scalability of the algorithm, the adaptive

linearly increasing HMCR finally used is defined as Eq. (23) based on the overall results of the

parameter analysis,

max

ln ln
1

MC M iter
HMCR

M M M iter

⎢ ⎥⎛ ⎞ ⎣ ⎦= − + + ×⎜ ⎟
⎝ ⎠

 (23)

where M is the dimension of solutions and C is a constant. The first term on the right of Eq. (23)

ensures that certain elements are generated by the randomization operator, which can effectively

prevent the algorithm from trapping in the local optima regardless of the change of problem

dimensionality. The value of the second term on the right of Eq. (23) varies following the change of the

dimension which slightly tunes the HMCR. These two parts correspond to the first item of Eq. (11).

The third term on the right of Eq. (23) is the adaptive factor that dynamically and linearly adjusts

HMCR based on the dimension and the number of the iteration.

5 Experimental results and discussions

To verify the optimization ability and scalability of the algorithm, ABHS was applied to optimize the

benchmark functions listed in Table 1 and Table 2. All the functions were tested in 2 dimensions, and

sixteen of them which could be extended to the high dimension were also evaluated in 30 dimensions.

Furthermore, 10 low-dimensional and 10 high-dimensional 0-1 knapsack problems were adopted as

benchmarks as well. For comparisons, the HS with binary-coding (BHS) [11], the binary-coded novel

global harmony search (NGHS) [51] and the discrete binary PSO (DBPSO) [19, 45] with the

recommended parameter settings were also used to solve these benchmark problems. The parameter

values of all the algorithms are listed in Table 8.

Table 8. The parameters of ABHS, BHS, NGHS and DBPSO

 Parameter setting Parameter setting

ABHS
C=15;PAR=0.2;HMS=30;
NGC=20;

BHS [11]
HMCR=0.971;HMS=19;
NGC = 1;

NGHS [51]
Pm=2/M; NGC = 1;
HMS=5(low-dimensional problems);
HMS=30(high-dimensional problems);

DBPSO [19,
45]

c1=2;c2=2;ω=0.8;vmax=6;vmin=-6;
population = 30;

5.1 Benchmark functions

The fitness calculation number of all the algorithms for all the benchmark functions was set to 90000.

Table 9-11 show the optimization results of the 36 low-dimensional functions and the 16

high-dimensional functions. The t-test results of all functions are also given in these three tables where

“1” or “-1” denotes that the results obtained by the proposed method, i.e. ABHS, are significantly

better or worse than those of the compared algorithm at the 95% confidence, respectively, while “0”

means that the achieved results are not statistically different. To show the performance clearly, Fig. 13

draws the average rank based on the RGO, MBV and FCN sorted by the descending priority. It is

obvious that the proposed ABHS outperforms BHS, NGHS and DBPSO.

On the 36 low-dimensional functions, ABHS is only inferior to BHS, NGHS and DBPSO on 3, 3

and 6 functions, respectively. In Table 9, we can find that ABHS is poorer than BHS and NGHS on F1,

F8 and F9 just due to the slower convergence speed. F1, F8 and F9 are all the unimodal functions and

easy for optimizing, thus four algorithms reach the global optima with 100% success rate. As BHS and

NGHS both adopt the serial updating strategy, it is not surprising that they are superior to ABHS and

DBPSO on the convergence speed. However, the serial updating method increases the risk of sticking

in the local optima, thus BHS and NGHS perform worse than ABHS on the other functions. DBPSO

obtains the best results on six functions and outperforms BHS and NGHS on the most functions.

Fig.14-25 draw the average convergence curves of all the algorithms in 50 runs where we can observe

that ABHS surpasses BHS, NGHS and DBPSO in terms of the accuracy and convergence speed.

The search space of the 30-dimensional functions is expanded to 2600 as each decision variable is

coded by 20 bits, which is a challenge for ABHS, NGHS, BHS and DBPSO. Thus, BHS and DBPSO

fail to reach any global optima of all the high-dimensional functions while ABHS and NGHS find out

the global best values of 5 and 4 functions, respectively. The results in Table 11 show that ABHS

outperforms BHS and DBPSO on all the functions and is only inferior to NGHS on three functions, i.e.

F1, F8 and F9 due to the slow convergence speed. As mentioned above, F1, F8 and F9 are relatively

easy for optimizing, and therefore NGHS as well as ABHS searches out the global optima with a 100%

success rate. NGHS adopts the serial updating strategy, thus it achieves the fastest convergence on

these three functions. However, this advantage of NGHS becomes the disadvantage for the complicated

optimization functions as NGHS is likely to stick in the local optima. The average convergence graphs

of ABHS, NGHS, BHS and DBPSO on the high-dimensional functions in 50 runs are drawn in

Fig.26-37 where we can find that the convergence speed of NGHS is obviously poorer than those of

ABHS on the high-dimensional F2, F5, F11 and F12.

Based on the results of Table 9-11 and Fig.14-37, it is fair to claim that ABHS has a better

optimization ability and scalability compared with NGHS, BHS and DBPSO.

ABHS BHS NGHS DBPSO
0

0.5

1

1.5

2

2.5

3

3.5

4

ABHS BHS NGHS DBPSO
0

0.5

1

1.5

2

2.5

3

3.5

4

1.33

3.53

2.78

2.36

1.10

2.63
2.43

3.75

 (a) the low-dimensional functions (b) the high-dimensional functions

Fig. 13 The average rank of the four algorithms on the benchmark functions

Table 9. The low-dimensional function optimization results of ABHS, BHS, NGHS and DBPSO

 ABHS BHS NGHS DBPSO ABHS BHS NGHS DBPSO
BV 0 0 0 0 BV -837.96577 -837.96577 -837.96577 -837.96577

RGO 100% 100% 100% 100% RGO 54% 14% 28% 46%
MBV 0 0 0 0 MBV -837.96570 -836.83069 -837.40648 -837.96571

F1

FCN 14540 388 415.02 33090

F11

FCN 46142 79462 68520 25306
 t-test / 0 0 0 t-test / 1 1 0

BV 0 5.82E-09 0 0 BV 0% 0 0 0
RGO 32% 0% 4% 6% RGO 100% 96% 92% 100%
MBV 5.05E-10 4.12E-01 1.90E-01 1.02E-08 MBV 0 7.31E-01 1.56E-01 0

F2

FCN 73682 90000 88144 47439

F12

FCN 16275 11368 19742 31888
 t-test / 1 1 1 t-test / 0 0 0

BV 3 3 3 3 BV 0.3978874 0.3978927 0.3978874 0.3978874
RGO 48% 18% 18% 32% RGO 90% 0% 28% 74 %
MBV 3 28.1636 19.3637 3 MBV 0.3979258 1.3631266 0.4756296 0.3979479

F3

FCN 54592 74116 74465 38670

F13

FCN 31810 90000 77419 37403
 t-test / 1 0 0 t-test / 1 1 0

BV 0 0 0 0 BV -1 -1 -1 -1
RGO 14% 6% 8% 2% RGO 56% 8% 6% 78%
MBV 8.70E-06 2.49E+00 5.85E-01 3.59E-04 MBV -0.995725 -0.984775 -0.989766 -0.998445

F4

FCN 79600 86610 82960 43215

F14

FCN 54221 87132.56 86814 49291
 t-test / 1 1 0 t-test / 1 1 -1

BV 0 0 0 0 BV -176.5417 -176.5417 -176.5418 -176.5417
RGO 60% 14% 48% 76% RGO 96% 24% 42% 94%
MBV 0.002958 0.027353 0.010937 0.001482 MBV -176.541593 -164.647753 -173.763723 -176.541561

F5

FCN 47537 77964.76 56971 40568

F15

FCN 15113 77576 60672 25165
 t-test / 1 0 0 t-test / 1 1 0

BV 0 0 0 0 BV -1.031628 -1.031628 -1.0316285 -1.031628
RGO 18% 12% 2% 10% RGO 96% 22% 46% 64%
MBV 9.36E-07 2.39E+01 1.10E+01 9.01E-07 MBV -1.031628 -1.026981 -1.030869 -1.031621

F6

FCN 76743 80672 89258 39270

F16

FCN 27605 74443 61121 43850
 t-test / 1 0 0 t-test / 1 1 0

F7 BV 0 0 0 0 F17 BV 7.8856 7.8856 7.8856 7.8856

RGO 48% 20% 20% 18% RGO 46% 8% 22% 42%
MBV 5.01E-10 3.25E-01 1.22E-02 1.29E-09 MBV 7.86854 5.9817 6.6875 7.8679
FCN 59247 80914 76797 44208 FCN 52454 85744 76601 19317

 t-test / 1 0 0 t-test / 1 1 0
BV -1 -1 -1 -1 BV 0 0 0 0

RGO 100% 100% 100% 100% RGO 100% 98% 100% 92%
MBV -1 -1 -1 -1 MBV 0.00 0.002557 0 0.000724

F8

FCN 15194 414 407 32876

F18

FCN 19561 11811 23180 41602
 t-test / 0 0 0 t-test / 0 0 0

BV 0 0 0 0 BV -176.1375 -176.1375 -176.1376 -176.1375
RGO 100% 100% 100% 100% RGO 98% 2% 30% 96%
MBV 0.00 0 0 0.00E+00 MBV -176.1370 -146.4581 -159.2101 -176.1372

F9

FCN 14265 388 12920 31020

F19

FCN 16163 89564 76063.62 29581
 t-test / 0 0 0 t-test / 1 0 0

BV 0 0 0 0 BV 0 0 0 0
RGO 100% 24% 36% 100% RGO 100% 94% 100% 100%
MBV 0 1.014860 0.736270 0 MBV 0 0.013105 0 0

F10

FCN 18306 68492 58249 35356

F20

FCN 14708 7949 15282 32786
 t-test / 1 1 0 t-test / 0 0 0

0 10000 30000 50000 70000 90000
10

-15

10
-10

10
-5

10
0

10
5

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

0 20000 40000 60000 80000
10

-10

10
-5

10
0

10
5

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS

NGHS

DBPSO

Fig.14 Convergence graph of the low-dimensional F1 Fig.15 Convergence graph of the low-dimensional F2

Table 10. The low-dimensional CEC05 function optimization results of ABHS, BHS, NGHS and DBPSO

 ABHS BHS NGHS DBPSO ABHS BHS NGHS DBPSO
BV 1.23E-08 1.23E-08 1.23E-08 1.23E-08 BV 1.20E-08 4.27E-08 1.20E-08 4.27E-08

RGO 0% 0% 0% 0% RGO 0% 0% 0% 0%
MBV 1.98E-07 1.46E+01 6.93E+00 2.80E-07 MBV 1.71E-04 1.39E+00 7.11E-02 2.92E-04

F21

FCN 90000 90000 90000 90000

F29

FCN 90000 90000 90000 90000
 t-test / 1 1 0 t-test / 1 0 0

BV 2.06E-09 6.61E-08 6.61E-08 2.06E-09 BV 1.21E-08 8.87E-06 9.24E-08 1.21E-08
RGO 0% 0% 0% 0% RGO 0 0 0 0%
MBV 2.83E-01 9.18E+01 6.21E+00 2.34E-04 MBV 2.43E-01 2.24E+00 9.44E-01 1.46E-01

F22

FCN 90000 90000 90000 90000

F30

FCN 90000 90000 90000 90000
 t-test / 1 1 0 t-test / 1 1 0

BV 7.23E-03 2.19E+00 1.31E+01 3.09E+00 BV 9.58E-04 9.58E-04 3.22E-03 5.16E-03
RGO 0% 0% 0% 0% RGO 0% 0% 0% 0%
MBV 6.16E+01 4.72E+05 6.17E+03 1.07E+02 MBV 2.63E-02 4.17E-01 1.59E-01 3.23E-02

F23

FCN 90000 90000 90000 90000

F31

FCN 90000 90000 90000 90000
 t-test / 1 1 0 t-test / 1 1 0

BV 2.06E-09 6.80E-03 6.61E-08 2.10E-08 BV 1.85E-08 4.86E-08 1.65E-07 1.31E+00
RGO 0% 0% 0% 0% RGO 0 0% 0% 0%
MBV 2.89E-01 1.45E+02 1.34E+01 5.09E-03 MBV 9.96E-03 9.26E+00 7.21E+00 7.77E+01

F24

FCN 90000 90000 90000 90000

F32

FCN 90000 90000 90000 90000
 t-test / 1 1 -1 t-test / 0 1 1

BV 0 0 0 0 BV 0 6.77E-07 9.95E-13 0
RGO 32% 6% 14% 23% RGO 12% 0% 0% 4%
MBV 9.43E-03 1.51E+02 8.95E+01 1.15E-02 MBV 5.84E-03 5.03E-02 3.37E-02 6.01E-03

F25

FCN 71536 86612 85632 81352

F33

FCN 82696 90000 90000 89041
 t-test / 1 1 0 t-test / 1 1 0

BV 3.95E-09 2.23E-02 3.95E-09 3.95E-09 BV 4.96E-08 1.94E-02 3.59E-05 7.24E-08
RGO 0% 0% 0% 0% RGO 0% 0% 0% 0%
MBV 2.84E-01 9.97E+01 4.29E+01 3.75E-01 MBV 1.55E-02 2.16E-01 1.51E-01 9.99E-01

F26

FCN 90000 90000 90000 90000

F34

FCN 90000 90000 90000 90000

 t-test / 0 0 0 t-test / 1 1 1
BV 1.53E-06 3.04E-06 7.40E-03 1.53E-06 BV 4.26E-07 4.26E-07 4.26E-07 4.26E-07

RGO 0% 0% 0% 0% RGO 0% 0% 0% 0%
MBV 3.12E-02 1.30E-01 9.63E-02 3.24E-02 MBV 2.00E+00 1.42E+02 4.89E+01 6.00E-01

F27

FCN 90000 90000 90000 90000

F35

FCN 90000 90000 90000 90000
 t-test / 1 0 0 t-test / 1 1 0

BV 1.83E-03 3.22E-03 2.03E-03 1.61E-02 BV 5.49E-07 5.13E-02 4.63E-05 5.49E-07
RGO 0% 0% 0% 0% RGO 0% 0% 0% 0%
MBV 1.52E+00 1.73E+01 1.38E+01 2.02E+00 MBV 1.33E+01 1.48E+02 6.28E+01 1.58E+01

F28

FCN 90000 90000 90000 90000

F36

FCN 90000 90000 90000 90000
 t-test / 0 0 0 t-test / 1 1 0

0 10000 30000 50000 70000 90000
10

-6

10
-4

10
-2

10
0

10
2

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS

NGHS

DBPSO

0 10000 30000 50000 70000 90000
10

-10

10
-5

10
0

10
5

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

Fig.16 Convergence graph of the low-dimensional F4 Fig.17 Convergence graph of the low-dimensional F7

Table 11. The high-dimensional function optimization results of ABHS, BHS, NGHS and DBPSO

 ABHS BHS NGHS DBPSO ABHS BHS NGHS DBPSO
BV 0 1.60E-06 0 1.35E+02 BV -278.383977 -253.178301 -247.205974 10233.71184

RGO 100% 0% 100% 0% RGO 0% 0% 0% 0%

MBV 0 7.72E-06 0 1.86E+02 MBV 100.033756 343.866819 410.293866 16549.8686
3

F1

FCN 62234 90000 16535 90000

F21

FCN 90000 90000 90000 90000
 t-test / 1 0 1 t-test / 1 1 1

BV 7.82162 15.31827 45.53963 1210.60138 BV 1970.91705 5687.88402 4314.02218
31917.3948

6
RGO 0% 0% 0% 0% RGO 0% 0% 0% 0%
MBV 679.92240 817.69248 1063.4419 2422.02256 MBV 6373.8376 18240.2003 11912.2755 44480.9849

F2

FCN 90000 90000 90000 90000

F22

FCN 90000 90000 90000 90000
 t-test / 1 1 1 t-test / 1 1 1

BV 0 1.25E-07 0 1.04E+00 BV 7.59E+06 4.14E+07 3.37E+07 1.83E+08
RGO 38% 0% 10% 0% RGO 0% 0% 0% 0%
MBV 0.033037 0.056922 0.137763 1.046698 MBV 7.98E+07 1.23E+08 1.26E+08 3.31E+08

F5

FCN 79758 90000 82710.66 90000

F23

FCN 90000 90000 90000 90000
 t-test / 1 0 1 t-test / 1 1 1

BV 0 5.19E-47 0 1.79E-02 BV 8.19E+05 1.06E+06 1.13E+06 1.41E+09
RGO 100% 0% 100% 0% RGO 0% 0% 0% 0%
MBV 0 2.53E-31 0 8.72E-02 MBV 1.42E+07 1.53E+07 2.94E+07 2.49E+09

F8

FCN 80371 90000 33583 90000

F26

FCN 90000 90000 90000 90000
 t-test / 0 0 1 t-test / 1 1 1

BV 0 0.004456 0 49.121522 BV -164.708843 -162.982001 -162.212717
437.845174

7
RGO 100% 0% 100% 0 % RGO 0% 0% 0% 0%
MBV 0 0.008674 0 60.948356 MBV -117.310561 -74.904286 -93.683347 900.790971

F9

FCN 59870 90000 13953 90000

F27

FCN 90000 90000 90000 90000
 t-test / 1 0 1 t-test / 1 1 1

BV 6.965127 7.962070 10.949991 221.388412 BV -3.23E+02 -3.12E+02 -3.10E+02 -9.58E+01
RGO 0% 0% 0% 0% RGO 0% 0% 0% 0%
MBV 13.156419 13.257949 13.934090 256.261875 MBV -3.09E+02 -2.87E+02 -2.86E+02 -4.82E+01

F10

FCN 90000 90000 90000 90000

F29

FCN 90000 90000 90000 90000
 t-test / 0 0 1 t-test / 1 1 1

BV -12442.114 -12134.971 -11677.452 -6878.777 BV -2.88E+02 -2.87E+02 -2.86E+02 -2.87E+02
RGO 0% 0% 0% 0 % RGO 0% 0% 0% 0%
MBV -11946.553 -11729.410 -10767.115 -6277.884 MBV -2.87E+02 -2.86E+02 -2.86E+02 -2.86E+02

F11

FCN 90000 90000 90000 90000

F34

FCN 90000 90000 90000 90000
 t-test / 0 0 1 t-test / 1 1 1

BV 0 0.005828 1.900188 19.942523 BV 2.24E+02 4.01E+02 4.71E+02 7.64E+02
RGO 90% 0% 0% 0% RGO 0% 0% 0% 0%
MBV 0.156398 0.398168 2.274827 19.951260 MBV 5.13E+02 6.17E+02 5.83E+02 9.39E+02

F12

FCN 62350 90000 90000 90000

F35

FCN 90000 90000 90000 90000
 t-test / 0 1 1 t-test / 1 0 1

0 10000 30000 50000 70000 90000
10

-6

10
-4

10
-2

10
0

10
2

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS

NGHS

DBPSO

0 10000 30000 50000 70000 90000
10

-10

10
-5

10
0

10
5

Number of evaluations
F

un
ct

io
n

V
al

ue

ABHS

BHS
NGHS

DBPSO

Fig.18 Convergence graph of the low-dimensional F12 Fig.19 Convergence graph of the low-dimensional F20

0 10000 30000 50000 70000 90000
-455

-440

-425

-410

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

0 10000 30000 50000 70000 90000

400

450

500

550

600

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

Fig.20 Convergence graph of the low-dimensional F21 Fig.21 Convergence graph of the low-dimensional F26

0 10000 30000 50000 70000 90000
-140

-135

-130

-125

-120

-115

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS

NGHS

DBPSO

Fig.22 Convergence graph of the low-dimensional F28 Fig.23 Convergence graph of the low-dimensional F31

0 10000 30000 50000 70000 90000

10
2.1

10
2.2

10
2.3

10
2.4

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

Fig.24 Convergence graph of the low-dimensional F34 Fig.25 Convergence graph of the low-dimensional F36

0 10000 30000 50000 70000 90000

10
-10

10
0

10
10

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

0 10000 30000 50000 70000 90000
500

1000

1500

2000

2500

3000

3500

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

Fig.26 Convergence graph of the high-dimensional F1 Fig.27 Convergence graph of the high-dimensional F2

0 10000 30000 50000 70000 90000
10

-2

10
-1

10
0

10
1

10
2

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

0 10000 30000 50000 70000 90000

10
-100

10
0

10
100

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

Fig.28 Convergence graph of the high-dimensional F5 Fig.29 Convergence graph of the high-dimensional F8

0 10000 30000 50000 70000 90000

-12000

-10000

-8000

-6000

-4000

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS

NGHS

DBPSO

0 10000 30000 50000 70000 90000
10

-1

10
0

10
1

10
2

10
3

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

Fig.30 Convergence graph of the high-dimensional F11 Fig.31 Convergence graph of the high-dimensional F12

0 10000 30000 50000 70000 90000

10
4

10
5

10
6

Number of evaluations

F
un

ct
io

n
V

al
ue

ABHS

BHS
NGHS

DBPSO

Fig.32 Convergence graph of the high-dimensional F22 Fig.33 Convergence graph of the high-dimensional F23

Fig.34 Convergence graph of the high-dimensional F26 Fig.35 Convergence graph of the high-dimensional F29

Fig.36 Convergence graph of the high-dimensional F34 Fig.37 Convergence graph of the high-dimensional F35

5.2 0-1 knapsack problem

The 0-1 knapsack problem (0-1 KP) is one of the classical NP-complete problems, which can be

described as Eq. (24):

()
1

n

i i
i

M a x f x p x
=

= ∑

1.

0 1 1, 2 , ,

n

i i
i

i

w x C
s t

x o r i N
=

⎧ ≤⎪
⎨
⎪ = = …⎩

∑

(24)

where ix indicates whether item i is included in the knapsack or not; N is the number of items; pi is the

profit of item i; wi is the weight of item i ; C is the knapsack capacity. When the total weight exceeds

the limit C, the penalty function is introduced to fix the fitness and lead the algorithm to search in the

feasible area effectively as Eq. (25):

() () ()

1

m a x 0 ,
n

i i
i

M a x F x f x g

g w x C

λ

=

= − ×

= −∑
 (25)

where λ , called the penalty coefficient, is a big constant which guarantees that the fitness of the best

infeasible solution is poorer than that of the worst feasible solution.

ABHS was verified and compared with BHS, NGHS and DBPSO on the low-dimensional and

high-dimensional 0-1 KPs. Ten low-dimensional 0-1 KP instances used in [51] are adopted as the

low-dimensional benchmarks. As there is no high-dimensional 0-1 KP benchmark, ten

high-dimensional cases are generated following the instruction in [49]; that is, the weight wi is the

integer between 5 and 20 and the profit pi is randomly set between 50 and 100. The details of the

low-dimensional and high-dimensional 0-1 KPs used in this paper are described in Table 12 and Table

13, respectively. ABHS, BHS, NGHS and DBPSO ran on each 0-1 KP instance 50 times independently.

The optimization results are given in Table 14 and Table 15.

Table 12. The parameters of the low-dimensional 0-1 knapsack problems

Instance D Maximum FCN Parameter

Kp1 10 10000 w=(95,4,60,32,23,72,80,62,65,4,6),C=269,p=(55,10,47,5,4,50,8,61,85,87)

Kp2 20 10000
w= (92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83, 25, 96, 70, 48, 14, 58), C

= 878, p = (44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 40, 77, 15, 61, 17, 75, 29,75,

Kp3 4 10000 w=(6,5,9,7),C =20, p=(9,11,13,15)

Kp4 4 10000 w=(2,4,6,7),C =11, p=(6,10,12,13)

Kp5 15 10000

w= (56.358531, 80.874050, 47.987304,89.596240, 74.660482, 85.894345,

51.353496, 1.498459, 36.445204,16.589862, 44.569231, 0.466933,37.788018,

57.118442, 60.716575), C = 375, p = (0.125126, 19.330424,58.500931,

35.029145, 82.284005, 17.410810, 71.050142, 30.399487,9.140294, 14.731285,

98.852504, 11.908322, 0.891140, 53.166295, 60.176397)

Kp6 10 10000 w=(30,25,20,18,17,11,5,2,1,1), C=60, p=(20,18,17,15,15,10,5,3,1,1)

Kp7 7 10000 w=(31,10,20,19,4,3,6),C=50, p=(70,20,39,37,7,5,10)

Kp8 23 10000

w= (983, 982, 981, 980, 979, 978, 488, 976, 972, 486, 486, 972, 972, 485, 485,

969, 966, 483, 964, 963, 961, 958, 959), C = 10000, p = (981, 980, 979, 978,

977, 976, 487, 974, 970, 485, 485, 970, 970, 484, 484, 976, 974, 482, 962, 961,

959, 958, 857)

Kp9 5 10000 w=(15,20,17,8,31),C=80, p=(33,24,36,37,12)

Kp10 20 10000

w= (84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14, 48, 70, 96, 32, 68, 92), C

= 879, p = (91, 72, 90, 46, 55, 8, 35, 75, 61, 15, 77, 40, 63, 75, 29, 75, 17, 78,

40, 44)

Table 13. The parameters of the high-dimensional 0-1 knapsack problems

Instance Dimension Capacity Maximum FCN

Kp11 100 1100 15000

Kp12 500 4000 20000

Kp13 1000 10000 30000

Kp14 1200 14000 40000

Kp15 1400 15000 40000

Kp16 1600 18000 50000

Kp17 1800 20000 50000

Kp18 2000 22000 50000

Kp19 2200 24000 60000

Kp20 2500 26000 60000

The optimization of the low-dimensional 0-1 KP instances is simple, thus all the algorithms find the

global optima of each case. However, BHS suffers from low dimensionality and its performance is

greatly impaired because of the improper parameters so that it even cannot find the maximum profit

with 100% success rate on the 4-dimensional 0-1 KPs, of which the search space is only 16. With the

increasing of the dimension, 0-1 KPs become more and more complicated. From the results of Table 15,

we can observe that ABHS gains an overwhelming performance over the other three algorithms on the

high-dimensional 0-1 KPs and it achieves the best results on all the instances. DBPSO maybe is not

suitable for solving these high-dimensional 0-1 KPs as its performance is obviously poorer than that of

ABHS, BHS and NGHS. Thus, only the average convergence curves of ABHS, BHS and NGHS are

drawn in Fig.38-47 for depicting their performance clearly. Fig. 38-47 show that BHS and NGHS both

have a quick convergence speed at the beginning of the iteration due to the serial updating mechanism.

However, BHS and NGHS are likely to be harassed by the local optima so that their searching

efficiency and effectiveness are spoiled. ABHS gradually exceeds BHS and NGHS and obtains the best

search accuracy and convergence speed finally. BHS surpasses NGHS on Kp11 and Kp12. But with the

increasing of the dimension, the instances are more complex and the performance of BHS becomes

worse than that of NGHS as the abandonment of the pitch adjustment operator weakens its

optimization ability.

Table 14. The results of ABHS, BHS, NGHS and DBPSO on the low-dimensional 0-1 knapsack problems

 ABHS BHS NGHS DBPSO ABHS BHS NGHS DBPSO
SR 100% 78% 100% 100% SR 100% 82% 100% 100%
Best 295 295 295 295 Best 52 52 52 52
Mean 295 295 295 295 Mean 52 51.62 52 52
Std.dev 0 1.20 0 0 Std.dev 0 0.94 0 0

Kp1

t-test / 1 0 0

Kp6

t-test / 1 0 0
SR 100% 92% 100% 100% SR 100% 62% 100% 100%
Best 1024 1024 1024 1024 Best 107 107 107 107
Mean 1024 1023.52 1024 1024 Mean 107 105.64 107 107
Std.dev 0 1.63 0 0

Kp7

Std.dev 0 2.86 0 0
Kp2

t-test / 1 0 0 t-test / 1 0 0
SR 100% 98% 100% 100% SR 100% 94% 100% 100%
Best 35 35 35 35 Best 9767 9767 9767 9767
Mean 35 34.86 35 35 Mean 9767 9766.8 9767 9767
Std.dev 0 0.98 0 0 Std.dev 0 0.85 0 0

Kp3

t-test / 0 0 0

Kp8

t-test / 1 0 0
SR 100% 98% 100% 100% SR 100% 98% 100% 100%
Best 23 23 23 23 Best 130 130 130 130
Mean 23 22.98 23 23 Mean 130 129.76 130 130
Std.dev 0 0.14 0 0 Std.dev 0 1.68 0 0

Kp4

t-test / 0 0 0

Kp9

 t-test / 0 0 0

SR 100% 88% 100% 100% SR 100% 94% 100% 100%
Best 481.07 481.07 481.07 481.07 Best 1025 1025 1025 1025
Mean 481.07 476.50 481.07 481.07 Mean 1025 1024.64 1025 1025
Std.dev 0 13.28 0 0 Std.dev 0 1.42 0 0

Kp5

t-test / 1 0 0

Kp10

t-test / 0 0 0

0 2000 6000 10000 14000
6750

6800

6850

6900

6950

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

0 4000 8000 12000 16000 20000

2.4

2.5

2.6

2.7

2.8

2.9
x 10

4

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

Fig.38 Convergence graph of Kp11 Fig.39 Convergence graph of Kp12

0 6000 12000 18000 24000 30000
5.8

5.9

6

6.1

6.2

6.3

6.4

6.5
x 10

4

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

0 10000 20000 30000 40000

8.2

8.3

8.4

8.5

8.6

8.7

x 10
4

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

Fig.40 Convergence graph of Kp13 Fig.41 Convergence graph of Kp14

Table 15. The results of ABHS, BHS, NGHS and DBPSO on the high-dimensional 0-1 knapsack problems

 ABHS BHS NGHS DBPSO ABHS BHS NGHS DBPSO
Best 6988 6988 6968 6676 Best 113575 112132 113512 74222
Mean 6959.5 6957.2 6939.1 6495.7 Mean 113353.2 111832.4 113216.2 73851.4
Std.dev 11.6344 11.3661 21.6904 72.5620 Std.dev 117.7744 134.1563 151.4718 321.6157

Kp11

t-test / 0 1 1

Kp16

t-test / 1 1 1
Best 28728 28638 28648 25232 Best 126495 124636 126373 83187
Mean 28568.4 28515.9 28421.3 24876.9 Mean 126209.6 124208.3 126136.5 82037.8
Std.dev 70.6192 65.5928 82.3136 127.7782 Std.dev 114.4706 178.7048 157.8829 520.5435

Kp12

t-test / 1 1 1

Kp17

t-test / 1 1 1
Best 64545 64143 64433 48356 Best 139768 137464 139726 91462
Mean 64341.8 63943.6 64158.4 47440.9 Mean 139415.3 137046.5 139345.0 90543.6
Std.dev 117.2271 94.3809 106.6808 416.3199 Std.dev 159.7364 173.2455 141.0533 432.6786

Kp13

t-test / 1 1 1

Kp18

t-test / 1 1 1
Best 86909 86150 86867 57161 Best 151338 148355 151310 99715
Mean 86740.7 85955.9 86677.8 56238.4 Mean 150868.7 147898.8 150845.2 98129.0
Std.dev 86.7676 107.0587 93.9446 369.2952 Std.dev 190.4204 201.1472 171.9146 488.8666

Kp14

t-test / 1 1 1

Kp19

t-test / 1 1 1
Best 97725 96416 97546 65888 Best 166404 162968 166240 112388
Mean 97364.2 96175.5 97223.0 65368.5 Mean 166045.4 162455.4 165654.1 110525.9
Std.dev 148.4963 130.1310 153.7824 267.2838 Std.dev 193.9732 222.6047 271.0752 577.0644

Kp15

t-test / 1 1 1

Kp20

t-test / 1 1 1

0 10000 20000 30000 40000
8.8

9

9.2

9.4

9.6

9.8
x 10

4

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

0 10000 20000 30000 40000 50000

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14
x 10

5

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

Fig.42 Convergence graph of Kp15 Fig.43 Convergence graph of Kp16

0 10000 2,0000 30000 40000 50000
1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28
x 10

5

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

0 10000 20000 30000 40000 50000

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

x 10
5

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

Fig.44 Convergence graph of Kp17 Fig.45 Convergence graph of Kp18

0 12000 24000 36000 48000 60000
1.4

1.42

1.44

1.46

1.48

1.5

1.52

x 10
5

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

0 12000 34000 36000 48000 60000

1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68
x 10

5

Number of evaluations

P
ro

fit
s

ABHS

BHS
NGHS

Fig.46 Convergence graph of Kp19 Fig.47 Convergence graph of Kp20

6 Conclusion

In this paper, an improved adaptive binary Harmony Search algorithm is proposed to extend HS to

tackle binary-coded optimization problems efficiently and effectively. Based on the analysis on the

drawback of the standard HS with binary-coding, a new pitch adjustment rule is used in ABHS to

enhance the search ability. Two harmony memory consideration strategies (the bit selection strategy

and the individual selection strategy) and two updating mechanisms (the serial updating and the

parallel updating) are investigated, and a scalable adaptive strategy is developed for ABHS to improve

its optimization ability and robustness based on the parameter study. Finally, ABHS was verified and

compared with BHS, NGHS and DBPSO on the low-dimensional and high-dimensional functions as

well as 0-1 KPs. The experimental results show that ABHS is superior to BHS, NGHS and DBPSO in

terms of the search accuracy and the convergence speed especially on the complicated optimization

problems, which demonstrates that the proposed ABHS is an effective optimization tool and can be

widely used in the scientific and engineering fields.

Acknowledgements

This work is supported by the Research Fund for the Doctoral Program of Higher Education of China

(20103108120008), ChenGuang Plan (2008CG48), the Projects of Shanghai Science and Technology

Community (10ZR1411800 & 10JC1405000), National Natural Science Foundation of China (Grant

No. 60834002, 60804052 & 61074032), Shanghai University “11th Five-Year Plan” 211 Construction

Project and the Mechatronics Engineering Innovation Group project from Shanghai Education

Commission.

References

[1] M.T. Ayvaz, Identification of Groundwater Parameter Structure Using Harmony Search Algorithm,
Studies in Computational Intelligence, 191 (2009) 129-140.
[2] M.T. Ayvaz, Application of Harmony Search algorithm to the solution of groundwater management
models, Advances in Water Resources, 32 (2009) 916-924.
[3] J. Brest, S. Greiner, B. Bokovic, M. Mernik, V. Zumer, Self-adapting control parameters in
differential evolution: A comparative study on numerical benchmark problems, IEEE Transactions on
Evolutionary Computation, 10 (2006) 646-657.
[4] Y.M. Cheng, L. Li, T. Lansivaara, S.C. Chi, Y.J. Sun, An improved harmony search minimization
algorithm using different slip surface generation methods for slope stability analysis, Engineering
Optimization, 40 (2008) 95-115.
[5] L.d.S. Coelho, V.C. Mariani, An improved harmony search algorithm for power economic load
dispatch, Energy Conversion and Management, 50 (2009) 2522-2526.
[6] S. Das, A. Mukhopadhyay, A. Roy, A. Abraham, B.K. Panigrahi, Exploratory power of the
harmony search algorithm: Analysis and improvements for global numerical optimization, IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41 (2011) 89-106.
[7] G. Fornarelli, A. Giaquinto, Adaptive particle swarm optimization for CNN associative memories
design, Neurocomputing, 72 (2009) 3851-3862.
[8] R. Forsati, M. Mahdavi, M. Kangavari, B. Safarkhani, Web page clustering using Harmony Search
optimization, in: Electrical and Computer Engineering, 2008, pp. 1601-1604.
[9] J. Fourie, S. Mills, R. Green, Visual Tracking Using Harmony Search, in: Z. Geem (Ed.) Recent
Advances In Harmony Search Algorithm, Springer Berlin / Heidelberg, 2010, pp. 37-50.
[10] Z.W. Geem, Harmony Search Algorithm for Solving Sudoku, in: B. Apolloni, R. Howlett, L. Jain
(Eds.) Knowledge-Based Intelligent Information and Engineering Systems, Springer Berlin /
Heidelberg, 2007, pp. 371-378.
[11] Z.W. Geem, Harmony Search in Water Pump Switching Problem, in: L. Wang, K. Chen, Y. Ong
(Eds.) Advances in Natural Computation, Springer Berlin / Heidelberg, 2005, pp. 445-445.

[12] Z.W. Geem, Optimal scheduling of multiple dam system using harmony search algorithm, in:
Proceedings of the 9th international work conference on Artificial neural networks, Springer-Verlag,
San Sebasti, Spain, 2007, pp. 316-323.
[13] Z.W. Geem, J. Kim, G. Loganathan, Music-Inspired Optimization Algorithm Harmony Search,
Simulation, 76 (2001) 60-68.
[14] Z.W. Geem, C.L. Tseng, New methodology, harmony search and its robustness, in: 2002 Genetic
and Evolutionary Computation Conference, 2002, pp. 174-178.
[15] Z.W. Geem, J.C. Williams, Ecological optimization using harmony search, in: Proceedings of the
American Conference on Applied Mathematics, World Scientific and Engineering Academy and
Society (WSEAS), Cambridge, Massachusetts, 2008, pp. 148-152.
[16] M. Gong, L. Jiao, X. Zhang, A population-based artificial immune system for numerical
optimization, Neurocomputing, 72 (2008) 149-161.
[17] J. Greblicki, J. Kotowski, Analysis of the Properties of the Harmony Search Algorithm Carried
Out on the One Dimensional Binary Knapsack Problem, in: 12th International Conference on
Computer Aided Systems Theory, EUROCAST 2009, Springer Verlag, 2009, p. 697-704.
[18] O. Hasanebi, F. Erdal, M.P. Saka, Adaptive harmony search method for structural optimization,
Journal of Structural Engineering, 136 (2010) 419-431.
[19] J. Kennedy, R. Eberhurt, A discrete binary version of the particle swarm algorithm, in: Proc. 1997
Conf. Systems, Man, Cybernetics,Piscataway, NJ, 1997, p.4107-4108.
[20] K. Lee, Z.W. Geem, A new meta-heuristic algorithm for continuous engineering optimization:
harmony search theory and practice, Computer Methods in Applied Mechanics and Engineering, 194
(2005) 3902-3933.
[21] H.Q. Li, L. Li, A Novel Hybrid Particle Swarm Optimization Algorithm Combined with Harmony
Search for High Dimensional Optimization Problems, in: 2007 International Conference on Intelligent
Pervasive Computing, 2007, pp. 94-97.
[22] H.Q, Li., L. Li, A Novel Hybrid Real-Valued Genetic Algorithm for Optimization Problems, in:
Computational Intelligence and Security, 2007, pp. 91-95.
[23] L.P. Li, L. Wang, Hybrid algorithms based on harmony search and differential evolution for
global optimization, in: 2009 World Summit on Genetic and Evolutionary Computation, Association
for Computing Machinery, Shanghai, China, 2009, pp. 271-278
[24] L. Li, Z. Huang, F. Liu, Q. Wu, A heuristic particle swarm optimizer for optimization of pin
connected structures, Computers & Structures, 85 (2007) 340-349.
[25] L. Li, G. Yu, S. Lu, G. Wang, X. Chu, An improved harmony search algorithm for the location of
critical slip surfaces in slope stability analysis, in: 5th International Conference on Intelligent
Computing, Springer-Verlag, 2009, pp. 215-222.
[26] M. Mahdavi, M. Chehreghani, H. Abolhassani, R. Forsati, Novel meta-heuristic algorithms for
clustering web documents, Applied Mathematics and Computation, 201 (2008) 441-451.
[27] M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving
optimization problems, Applied Mathematics and Computation, 188 (2007) 1567-1579.
[28] I. Montalvo, J. Izquierdo, R. Pérez-García, M. Herrera, Improved performance of PSO with
self-adaptive parameters for computing the optimal design of Water Supply Systems, Engineering
Applications of Artificial Intelligence, 23 (2010) 727-735.
[29] S. Mun, Z.W. Geem, Determination of individual sound power levels of noise sources using a
harmony search algorithm, International Journal of Industrial Ergonomics, 39 (2009) 366-370.
[30] S. Ngonkham, P. Buasri, Harmony search algorithm to improve cost reduction in power
generation system integrating large scale wind energy conversion system, in: World
Non-Grid-Connected Wind Power and Energy Conference, 2009, pp. 1-5.
[31] M. Omran, M. Mahdavi, Global-best harmony search, Applied Mathematics and Computation,
198 (2008) 643-656.
[32] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, Problem definitions
and evaluation criteria for the CEC 2005 special session on real-parameter optimization, KanGAL
Report, 2005005 (2005).
[33] Q.K. Pan, P.N. Suganthan, M.F. Tasgetiren, A Harmony Search Algorithm with Ensemble of
Parameter Sets, in: Evolutionary Computation, 2009. CEC '09, 2009, pp. 1815-1820
[34] Q.K. Pan, P.N. Suganthan, J.J. Liang, M.F. Tasgetiren, A local-best harmony search algorithm
with dynamic subpopulations. Engineering Optimization, 42(2)(2009): p. 101-117.

[35] Q.K. Pan, P.N. Suganthan, M.F. Tasgetiren, J.J. Liang, A self-adaptive global best harmony search
algorithm for continuous optimization problems. Applied Mathematics and Computation, 216(3)
(2010) 830-848.
[36] P.M. Pardalos, M. Resende (Eds.), Handbook of Applied Optimization. Oxford University Press,

Oxford, 2002.

[37] P. M. Pardalos, E. Romeijn (Eds.), Handbook of Global Optimization. Kluwer Academic

Publishers, Dordrecht, the Netherlands, 1995.
[38] M. Saka, Optimum design of steel sway frames to BS5950 using harmony search algorithm,
Journal of Constructional Steel Research, 65 (2009) 36-43.
[39] M. Saka, Optimum geometry design of geodesic domes using harmony search algorithm,
Advances in Structural Engineering, 10 (2007) 595-606.
[40] H. Sarvari, K. Zamanifar, A Self-Adaptive Harmony Search Algorithm for Engineering and
Reliability Problems, in: Computational Intelligence, Modelling and Simulation (CIMSiM), 2010, pp.
59-64.
[41] J.W. Seok, K.H. Il, L.B. Hee, Hybrid Simplex-Harmony search method for optimization problems,
in: 2008 IEEE Congress on Evolutionary Computation, Hong Kong, China, 2008, pp. 4157-4164.
[42] N. Taherinejad, Highly reliable harmony search algorithm, in: European Conference on Circuit
Theory and Design Conference Program, IEEE Computer Society, 2009, pp. 818-822.
[43] C. Wang, Y. Huang, Self-adaptive harmony search algorithm for optimization, Expert Systems
with Applications, 37 (2010) 2826-2837.
[44] L. Wang, Y.F. Mao, Q. Niu, M.R. Fei. A Multi-Objective Binary Harmony Search Algorithm. in:
2nd International Conference on Swarm Intelligence, Chongqing, China, 2011, p. 74-81.
[45] L. Wang, X. Wang, J. Fu, L. Zhen, A novel probability binary particle swarm optimization
algorithm and its application, Journal of software, 3 (2008) 28-35.
[46] L. Wang, X.T. Wang, J.S. Yu, Naphtha cracking furnace fault diagnosis based on adaptive
quantum ant colony algorithm, CIESC, 60 (2009) 401-408.
[47] L. Wang, Y. Xu, Y. Mao, M. Fei, A Discrete Harmony Search Algorithm, in: Int. Conf. on Life
System Modeling and Simulation, LSMS 2010 and Int. Conf. on Intelligent Computing for Sustainable
Energy and Environment, 2010, pp. 37-43.
[48] X. Wang, X.Z. Gao, S.J. Ovaska, A Hybrid Optimization Method for Fuzzy Classification
Systems, in: Hybrid Intelligent Systems, HIS '08, 2008, pp. 264-271.
[49] Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, Q. Tian, Self-adaptive learning based particle swarm
optimization, Information Sciences, 181 (2011) 4515-4538.
[50] S.Z. Zhao, P.N. Suganthan, Q.K. Pan, M.F. Tasgetiren, Dynamic multi-swarm particle swarm
optimizer with harmony search. Expert Systems with Applications, 38(4) (2011) 3735-3742.
[51] D. Zou, L. Gao, S. Li, J. Wu, Solving 0-1 knapsack problem by a novel global harmony search
algorithm, Applied Soft Computing, 11 (2011) 1556-1564.

