Systems of resultants

Yaroslav Abramov *†‡

Abstract

Writing down convenient explicit formulas for systems of resultants is an important but essentially open problem. In this paper I'll give such a formula derived from the ordinary multivariate resultant.

Acknowledgements I'm very thankful for A.L. Gorodentsev for useful discussions. The author is partially supported by AG Laboratory SU-HSE, RF government grant, ag. 11.G34.31.0023

1 Intro

Fix some algebraically closed field $\, \mathbb{k} \,$.

Problem 1. Given a system of polynomial equations

$$\begin{cases}
f_0(x_0, \dots, x_n) = 0 \\
\dots \\
f_m(x_0, \dots, x_n) = 0
\end{cases}$$
(1)

 $\deg f_i = N_i ,$

$$f_j(x_0, \dots, x_n) = \sum_{\substack{\sum_i s_i = N_j}} a_{j,s_0,\dots,s_n} x_0^{s_0} \cdot \dots \cdot x_n^{s_n}.$$

How to determine if there exists a non-zero solution of (1)?

It is well-known after [WdW] that there exists a finite set of polynonials on $a_{j,s_0,...,s_n}$ with integer coefficients $R_l(a) \in \mathbb{Z}[a_{j,s_0,...,s_n}]_{j,s_0,...,s_n}$, such that

(there exists a non-zero solution of (1))
$$\iff \forall l \ R_l(a) = 0$$

Such a set of polynomials ($R_l(a)$) is called a system of resultants.

Example. Let deg $f_j = 1$, j = 0, ..., m, $f_j(x) = \sum_i a_{ji} x_i$. Then the system of resultants is the set of maximal minors of matrix

$$\begin{pmatrix} a_{00} & \dots & a_{0n} \\ \dots & \dots & \dots \\ a_{m0} & \dots & a_{mn} \end{pmatrix}$$

Problem 2. Given a system of polynomial equations

$$\begin{cases}
f_0(x_0, \dots, x_n) = 0 \\
\dots \\
f_n(x_0, \dots, x_n) = 0
\end{cases}$$

$$\deg f_i = N_i,$$
(2)

^{*}The author is partially supported by AG Laboratory SU-HSE, RF government grant, ag. 11.G34.31.0023

[†]Laboratory of Algebraic Geometry, SU-HSE, 7 Vavilova Str., Moscow, Russia, 117312

 $^{^{\}ddagger}$ zroslav@qmail.com

$$f_j(x_0,\ldots,x_n) = \sum_{\substack{j: s_i = N_j}} a_{j,s_0,\ldots,s_n} x_0^{s_0} \cdot \ldots \cdot x_n^{s_n}.$$

How to determine if there exists a non-zero solution of (2)?

It is also well-known (see [GZK] for a modern explanation) that there exist an irreducible polynonial on $a_{j,s_0,...,s_n}$ with integer coefficients

$$R(a) \in \mathbb{Z}[a_{j,s_0,\ldots,s_n}]_{j,s_0,\ldots,s_n},$$

such that

(there exists a non-zero solution of (2)) $\iff R(a) = 0$

Such a polynomial (R(a)) is called a **resultant** and also denoted as $R(f_0, \ldots, f_n)$

Example. Let $f_i(x) = \sum_j a_{ij} x_j$ then $R(f_0, \dots, f_n) = \det(a_{ij})$.

Example. Let $f(x,y) = \sum_{i} a_{i}x^{i}y^{n-i}$, $g(x,y) = \sum_{i} b_{i}x^{i}y^{m-i}$, $a_{0} \neq 0$, $b_{0} \neq 0$. Then

$$R(f(x,y),g(x,y)) = Res(f(z,1),g(z,1))$$

where Res is a famous Sylvester determinant.

$$\det \begin{pmatrix}
a_0 & a_1 & \dots & a_n \\
& a_0 & a_1 & \dots & a_n \\
& & \ddots & \ddots & & \ddots \\
& & & a_0 & a_1 & \dots & a_n \\
b_0 & b_1 & \dots & b_m & & & \\
& & b_0 & b_1 & \dots & b_m & & & \\
& & & \ddots & \ddots & & \ddots & \\
& & & & b_0 & b_1 & \dots & b_m
\end{pmatrix}$$

2 Results on resultants

Consider the system

$$\begin{cases}
f_0(x_0, \dots, x_n) = 0 \\
\dots \\
f_m(x_0, \dots, x_n) = 0
\end{cases}$$

$$\deg f_j = n_j,$$

$$f_j(x_0, \dots, x_n) = \sum_{\substack{\sum s_i = n_j}} a_{j,s_0,\dots,s_n}.$$
(3)

Fix some positive integer numbers m_i , $i=0,\ldots,n$, and k_{ij} , $i=0,\ldots,n$; $j=0,\ldots,m$, such that $m_i=k_{ij}+n_j$. Consider polynomials

$$A_{ij}(x_0, \dots, x_n) = \sum_{\substack{\sum s_l = k_{ij}}} b_{i,j,s_0,\dots,s_n} x_0^{s_0} \cdot \dots \cdot x_n^{s_n}$$

with indeterminate coefficients $b_{i,j,s_0,...,s_n}$.

I will consider

$$R(\sum_{j=0}^{m} A_{0j}f_j, \sum_{j=0}^{m} A_{1j}f_j, \dots, \sum_{j=0}^{m} A_{nj}f_j)$$

as a polynomial in b_{i,j,s_0,\dots,s_n} for various i,j,s_0,\dots,s_n .

Theorem 1. System (3) has a non-zero solution iff

$$R = R(\sum_{j=0}^{m} A_{0j} f_j, \sum_{j=0}^{m} A_{1j} f_j, \dots, \sum_{j=0}^{m} A_{nj} f_j) \equiv 0$$

as a polynomial in the coefficients $b_{i,j,s_0,...,s_n}$ of A_{ij} . Thus, coefficients of R form the system of resultants of $f_0,...,f_m$.

Example. Let $f_j(x) = \sum_i a_{ij} x_i$ and $\deg A_{ij} = 0$ then

$$R(\sum_{j=0}^{m} A_{ij} f_j)_{i=0}^n = \sum_{J \subset \{0,\dots,m\}, |J|=n+1} \det(a_{ij})_{i=0,\dots,n,j \in J} \prod_{j \in J} b_j.$$

Proof. Assume the contrary. For $x \in \mathbb{P}^n$ I put

$$H_x = \{(A_{ij})_{ij} \mid \sum_{j=0}^m A_{ij}(x) f_j(x) = 0, i = 0, \dots, n\}.$$

The condition $R \equiv 0$ is equivalent to

$$\bigoplus_{i=0}^{n} \bigoplus_{j=0}^{m} S^{k_{ij}}(\mathbb{k}^{n+1}) = \bigcup_{x \in \mathbb{P}^n} H_x$$

If x is not a solution of (3) then H_x is a codimension (n+1) linear subspace in

$$V = \bigoplus_{i=0}^{n} \bigoplus_{j=0}^{m} S^{k_{ij}}(\mathbb{k}^{n+1}).$$

If there are no non-zero solutions of (3) then V is a union of n-parametric family of codimension (n+1) subspaces. We get the contradiction.

Remark. In [GZK] there is a definition of mixed resultant for sections of very ample linear bundles L_0, \ldots, L_n on a dimension n projective variety. Theorem 1 can be generalised to the case of sections of very ample linear bundles

$$f_j \in H^0(X, L_j), j = 0 \dots, m$$

on a dimension n projective variety X. Consider a system of very ample line bundles C_{ij} , $0 \le i \le n$, $0 \le j \le n$, s.t. $B_i = C_{ij} \otimes L_j$ for all i, j. Then the system of resultants is just the collection of coefficients of

$$R(\sum_{j=0}^{m} A_{ij} \otimes f_j)_{i=0}^{n}$$

considered as a polynomial in indeterminate

$$A_{ij} \in H^0(X, C_{ij}).$$

Remark. We get only the set-theoretical (not the scheme-theoretical) system of resultants.

There are also some related results (which may be used for simplification of calculations and which can be proved by almost exactly the same prooftext):

Theorem 2. Let $\deg f_0 \ge \deg f_1 \ge \ldots \ge \deg f_m$ and $k_{ij} = \deg f_i - \deg f_j$. Then system (3) has a non-zero solution iff

$$R(f_0 + \sum_{j=n+1}^m A_{0j}f_j, f_1 + \sum_{j=n+1}^m A_{1j}f_j, \dots, f_n + \sum_{j=n+1}^m A_{nj}f_j) \equiv 0$$

as a polynomial on coefficients of A_{ij} .

Consider vector subspaces V_{ij} of $S^{k_{ij}}(\mathbb{k}^{n+1})$, such that

$${A_{ij}(x) \mid A_{ij} \in V_{ij}} = \mathbb{k}$$

for all $x \in \mathbb{k}^{n+1}$.

Example. $V_{ij} = S^{k_{ij}}(\mathbb{k}^{n+1})$

Example. $V_{ij} = \{\sum_{l=0}^{n} a_{lij} x_l^{k_{ij}}\}$

Theorem 3. System (3) has a non-zero solution iff

$$R = R(\sum_{j=0}^{m} A_{0j} f_j, \sum_{j=0}^{m} A_{1j} f_j, \dots, \sum_{j=0}^{m} A_{nj} f_j) \equiv 0,$$

(where $A_{ij} \in V_{ij}$) as a polynomial on $\bigoplus_{i=0}^{n} V_i$. Thus, coefficients of R form the system of resultants of f_0, \ldots, f_m .

Remark. Theorem 3 is a generalisation of Theorem 1.

Consider vector subspaces V_i of $\bigoplus_{i=0}^m S^{k_{ij}}(\mathbb{k}^{n+1})$, such that

$$\{(A_{i0}(x), A_{i1}(x), \dots, A_{im}(x) \mid (A_{0m}, A_{1m}, \dots, A_{im}) \in V_i\} = \mathbb{k}^{m+1}$$

for all $x \in \mathbb{k}^{n+1}$

Example. $V_i = \bigoplus_{j=0}^m S^{k_{ij}}(\mathbb{k}^{n+1})$

Example. $V_i = \bigoplus_{i=0}^m V_{ij}$

Example. $V_i = \{(\sum_{l \neq 0} a_{li0} x_l^{k_{i0}} + b x_0^{k_{i0}}, \dots \sum_{l \neq n} a_{lin} x_l^{k_{in}} + b x_n^{k_{in}}, \sum_{l=0}^n a_{li(n+1)} x_l^{k_{i(n+1)}}, \dots, \sum_{l=0}^n a_{lim} x_l^{k_{im}})\}$

Theorem 4. System (3) has a non-zero solution iff

$$R = R(\sum_{j=0}^{m} A_{0j} f_j, \sum_{j=0}^{m} A_{1j} f_j, \dots, \sum_{j=0}^{m} A_{nj} f_j) \equiv 0$$

(where $(A_{i0}, A_{i1}, \ldots, A_{im}) \in V_i$) as a polynomial on $\bigoplus_{i=0}^n V_i$. Thus, coefficients of R form the system of resultants of f_0, \ldots, f_m .

Remark. Theorem 4 is a generalisation of Theorem 3.

References

[Sh] Shakirov, New and old results in resultant theory, arXiv:0911.5278 [math-ph]

[GZK] Gelfand, Zelevinskiy, Kapranov, "Discriminants, Resultants and Multidimensional Determinants"

[WdW] B. L. Wan Der Warden, "Algebra"

[BKL] Bykov, Kytmanov, Lazman, "Elimination theory in polynomial algebra"

[E] Encarnacion, "An Efficient Method for Computing Resultant Systems", Applicable Algebra in Engineering, Communication and Computing, 9, 1998, p. 243-245