
LIMIT THEOREMS FOR NUMBER OF EDGES
IN THE GENERALIZED RANDOM GRAPHS

WITH RANDOM VERTEX WEIGHTS

Z.S. HU, V.V. ULYANOV, AND Q.Q. FENG

Abstract. We get central limit type theorems for the total num-
ber of edges in the generalized random graphs with random vertex
weights under different moment conditions on the distributions of
the weights.

Complex networks attract increasing attention of researchers in var-
ious fields of science. In last years numerous network models have
been proposed. Since the uncertainty and the lack of regularity in real-
world networks, these models are usually random graphs. Random
graphs were first defined by Paul Erdős and Alfréd Rényi in their 1959
paper ”On Random Graphs”, see [5], and independently by Gilbert
in [7]. The suggested models are closely related: there are n isolated
vertices and every possible edge occurs independently with probability
p : 0 < p < 1. It is assumed that there are no self-loops. Later the
models were generalized. A natural generalization of the Erdős and
Rényi random graph is that the equal edge probabilities are replaced
by probabilities depending on the vertex weights. Vertices with higher
weights are more likely to have many neighbors than vertices with small
weights. Vertices with extremely high weights could act as the hubs
observed in many real-world networks.

The following generalized random graph model was first introduced
by Britton et al., see [3]. Let {1, 2, ..., n} be the set of vertices, and
Wi > 0 be the weight of vertex i, 1 ≤ i ≤ n. The edge probability of
the edge between any two vertices i and j is equal to

pij =
WiWj

Ln +WiWj

,

where Ln =
∑n

i=1Wi denotes the total weight of all vertices, and the
weights Wi, i = 1, 2, . . . , n can be taken to be deterministic or random.
If we take all Wi-s as the same constant: Wi ≡ nλ/(n − λ) for some
0 < λ < n, it is easy to see that pij = λ/n holds for all 1 ≤ i < j ≤ n.
That is, the Erdős–Rényi random graph with p = λ/n is a special case
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of the generalized random graph. There are many versions of the gen-
eralized random graphs, such as Poissonian random graph (introduced
by Norros and Reittu in [11] and studied by Bhamidi et al.[1]), rank-1
inhomogeneous random graph (see [2]), random graph with given pre-
scribed degrees (see [4]), etc. Under some common conditions (see [9]),
all of the above mentioned random graph models are asymptotically
equivalent, meaning that all events have asymptotically equal proba-
bilities. The updated review on the results about these inhomogeneous
random graphs see in Chapters 6 and 9 in [12].

In the present paper we assume that Wi, i = 1, 2, . . . , n, are indepen-
dent identically distributed random variables distributed as W . Let
En be the total number of edges in a generalized random graph with
vertex weights W1,W2, . . . ,Wn. In [8], under the conditions that W has
a finite or infinite mean, several weak laws of large numbers for En are
established, see also Ch.6, [12]. For instance, in [8] and Ch.6, [12], it is
proved that En/n tends in probability to EW/2, provided EW is finite.

Note that

En =
1

2

n∑
i=1

Di,

where Di, i = 1, 2, . . . , n is a degree of vertex i, i.e. the number of
edges coming out from vertex i. It is clear, the random variables Di, i =
1, 2, . . . , n are dependent ones. The aim of the present paper is to refine
the law of large numbers type results for En and to get central limit
type theorems under different moment conditions for W . In Theorem 1
we assume that EW 2 < ∞. It implies normal limit distribution for
{En} after proper normalization. In Theorem 2 we assume that the
distribution of W belongs to the domain of attraction of a stable law
F with characteristic exponent α : 1 < α < 2. Then we prove that the
limit distribution for normalized En is F .

Theorem 1. If EW 2 <∞, then

2En − nEW√
n (2EW + Var(W ))

d−→ N(0, 1).

Proof. Put for all integer n ≥ 1

bn =
1

2
nEW, cn =

1

2

√
nVar(W ).(1)

For any t ∈ R, we have

E exp
{
it
En − bn
cn

}
= E exp

{ it
cn

( ∑
1≤i<j≤n

Iij − bn
)}

= E
(
E
(

exp
{ it
cn

( ∑
1≤i<j≤n

Iij − bn
)}∣∣∣W1, · · · ,Wn

))
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= E
(
e−itbn/cn

∏
1≤i<j≤n

Ln + eit/cnWiWj

Ln +WiWj

)
:= EeYn ,

where

Yn =
∑

1≤i<j≤n

log
Ln + eit/cnWiWj

Ln +WiWj

− itbn
cn

=
1

2

n∑
i=1

n∑
j=1

log
Ln + eit/cnWiWj

Ln +WiWj

− itbn
cn
−

n∑
i=1

log
Ln + eit/cnW 2

i

Ln +W 2
i

(2)

and log(·) is the principal value of the complex logarithm function.
By using the Maclaurin series expansion of log(1 + x) for complex x

with |x| < 1, we have that

| log(1 + x)|
|x|

−→ 1,
| log(1 + x)− x|

|x|2
−→ 1

2
as |x| → 0.

Hence there exists some constant c0 > 0 such that | log(1 + x)| ≤ 2|x|
and | log(1 + x)− x| ≤ |x|2 hold for any |x| ≤ c0.

Clearly, for any fixed t, there exists n0 = n0(t) ∈ N such that for all
n ≥ n0 and any 1 ≤ i, j ≤ n one has∣∣∣(eit/cn − 1)WiWj

Ln +WiWj

∣∣∣ ≤ |eit/cn − 1| ≤ |t|/cn ≤ c0.

Thus, since

Ln
n
→ EW a.s. and

∑n
i=1W

2
i

n
→ EW 2 a.s.,(3)

we have for any n ≥ n0∣∣∣ n∑
i=1

log
Ln + eit/cnW 2

i

Ln +W 2
i

∣∣∣ ≤ n∑
i=1

∣∣∣ log
(

1 +
(eit/cn − 1)W 2

i

Ln +W 2
i

)∣∣∣
≤ 2|eit/cn − 1|

n∑
i=1

W 2
i

Ln +W 2
i

≤ 2
|t|
cn

∑n
i=1W

2
i

Ln
→ 0 a.s.(4)

and

1

2

n∑
i=1

n∑
j=1

log
Ln + eit/cnWiWj

Ln +WiWj

− itbn
cn

=
1

2

n∑
i=1

n∑
j=1

log
(

1 +
(eit/cn − 1)WiWj

Ln +WiWj

)
− itbn

cn
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=
1

2

n∑
i=1

n∑
j=1

(eit/cn − 1)WiWj

Ln +WiWj

− itbn
cn

+O1

n∑
i=1

n∑
j=1

(eit/cn − 1)2W 2
i W

2
j

(Ln +WiWj)2

=
1

2

(
eit/cn − 1− it

cn
+

t2

2c2n

) n∑
i=1

n∑
j=1

WiWj

Ln +WiWj

+
1

2

( it
cn
− t2

2c2n

) n∑
i=1

n∑
j=1

WiWj

Ln +WiWj

− itbn
cn

+O1

n∑
i=1

n∑
j=1

(eit/cn − 1)2W 2
i W

2
j

(Ln +WiWj)2

:= I1 + I2 + I3,(5)

where |O1| ≤ 1/2. By (3) and the inequality |eix−1−ix+x2/2| ≤ |x|3/6
for any x ∈ R, we have

|I1| ≤
|t|3

12c3n

n∑
i=1

n∑
j=1

WiWj

Ln
=
|t|3Ln
12c3n

−→0 a.s.(6)

Similarly, by (3) and the inequality |ex − 1| ≤ |x|, we get

|I3| ≤
t2

2c2n

n∑
i=1

n∑
j=1

W 2
i W

2
j

L2
n

=
t2

c2n

( 1

n

n∑
i=1

W 2
i

)2( n
Ln

)2
−→0 a.s.(7)

Recalling the definition (1) for bn and cn, we have

I2 =
1

2

( it
cn
− t2

2c2n

)( n∑
i=1

n∑
j=1

WiWj

Ln
−

n∑
i=1

n∑
j=1

W 2
i W

2
j

Ln(Ln +WiWj)

)
− itbn

cn

= it
Ln − nEW√
nVar(W )

− t2Ln
nVar(W )

− 1

2

( it
cn
− t2

2c2n

) n∑
i=1

n∑
j=1

W 2
i W

2
j

Ln(Ln +WiWj)
.

Moreover, by (3) we get

n∑
i=1

n∑
j=1

W 2
i W

2
j

Ln(Ln +WiWj)
≤

n∑
i=1

n∑
j=1

W 2
i W

2
j

L2
n

=

(∑n
i=1W

2
i

)2
L2
n

→
(EW 2

EW

)2
a.s.

The central limit theorem yields

I2
d−→ itN− t2EW/Var(W ),(8)

where N is a standard normal random variable. Now, it follows from
(2)–(8) that

Yn
d−→ itN− t2EW/Var(W ).
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Hence, by noting that |eYn| ≤ 1 and applying the Lebesgue domi-
nated convergence theorem, we get that, for any t ∈ R,

E exp
{
it
En − bn
cn

}
= EeYn → E exp{itN− t2EW/Var(W )}

= exp{−(1/2)t2(1 + 2EW/Var(W ))}.

Thus, Theorem 1 is proved. �

In the following theorem we get convergence of the sequence {En}
under weaker moment conditions on Wi’s.

Theorem 2. Let W,W1,W2, · · · be a sequence of i.i.d. nonnegative
random variables and

W1 + · · ·+Wn − nEW
an

d−→ F,(9)

where F is a stable distribution with characteristic exponent α : 1 <
α < 2, then

2En − nEW
an

d−→ F.

Before we start to prove the theorem, let us state some properties of
the distribution of W .

If (9) holds true, then an (see e.g. [6], ch.XVII, §5) is a regularly
varying function with exponent 1/α satisfying

nEW 2I(W ≤ an) ∼ a2n,(10)

and there exists some constant c > 0 and h(x), a slowly varying func-
tion at ∞, such that

P (W > x) ∼ cx−αh(x).(11)

We shall use the following lemma.

Lemma 1. If (11) holds with α : 1 < α < 2, then we have

EW 2I(W ≤ x) ∼ cα

2− α
x2−αh(x),

EWI(W ≥ x) ∼ c
2− α
α− 1

x1−αh(x).

The proof of the lemma see e.g. [6], ch.XVII, §5.
Now we are ready to prove Theorem 2.

Proof. Let bn = (1/2)nEW and cn = (1/2) an with an from (10). As
in the proof of Theorem 1, for any t ∈ R, we also write

E exp
{
it
En − bn
cn

}
= EeYn
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with new definition for cn and

Yn =
1

2

n∑
i=1

n∑
j=1

log
Ln + eit/cnWiWj

Ln +WiWj

− itbn
cn
−

n∑
i=1

log
Ln + eit/cnW 2

i

Ln +W 2
i

.

For the last sum for any n ≥ n0, where n0 = n0(t) is defined in the
proof of Theorem 1, we have (cp. (4))∣∣∣ n∑

i=1

log
Ln + eit/cnW 2

i

Ln +W 2
i

∣∣∣ ≤ 2
|t|
cn

∑n
i=1W

2
i

Ln
.

Similarly to (5), we get

1

2

n∑
i=1

n∑
j=1

log
Ln + eit/cnWiWj

Ln +WiWj

− itbn
cn

=
1

2

n∑
i=1

n∑
j=1

(eit/cn − 1)WiWj

Ln +WiWj

− itbn
cn

+O1

n∑
i=1

n∑
j=1

(eit/cn − 1)2W 2
i W

2
j

(Ln +WiWj)2

=
1

2

(
eit/cn − 1− it

cn

) n∑
i=1

n∑
j=1

WiWj

Ln +WiWj

+
1

2

it(Ln − 2bn)

cn
− 1

2

it

cn

n∑
i=1

n∑
j=1

W 2
i W

2
j

Ln(Ln +WiWj)

+O1

n∑
i=1

n∑
j=1

(eit/cn − 1)2W 2
i W

2
j

(Ln +WiWj)2

with |O1| ≤ 1/2. Due to Theorem’s condition we have (Ln−2bn)/(2cn)
d→

F . Since

|eix − 1| ≤ |x|, |eix − 1− ix| ≤ |x|2/2 for all x ∈ R,

in order to prove Theorem 2, we only need to show that

1

an

∑n
i=1W

2
i

Ln

p−→ 0,(12)

1

a2n

n∑
i=1

n∑
j=1

WiWj

Ln +WiWj

p−→ 0,(13)

1

an

n∑
i=1

n∑
j=1

W 2
i W

2
j

Ln(Ln +WiWj)

p−→ 0,(14)

1

a2n

n∑
i=1

n∑
j=1

W 2
i W

2
j

(Ln +WiWj)2
p−→ 0.(15)
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For any γ : α > γ > 0, we have E(W 2)(α−γ)/2 = EWα−γ <∞. Then by
Marcinkiewicz–Zygmund’s strong law of large numbers (see e.g. Theo-
rem 4.23 in [10]) we have

n−2/(α−γ)
n∑
i=1

W 2
i → 0 a.s.

Since an is a regularly varying function with exponent 1/α, then we
have 1/an = o(n−1/α+γ). Now choose γ > 0 such that

2/(α− γ)− 1− 1/α + γ < 0 and − 2/α + 1 + 2γ < 0.

Then we have

1

an

∑n
i=1W

2
i

Ln
=
n2/(α−γ)−1

an

∑n
i=1W

2
i /n

2/(α−γ)

Ln/n
= o(n2/(α−γ)−1−1/α+γ) −→ 0 a.s.

and

1

a2n

n∑
i=1

n∑
j=1

WiWj

Ln +WiWj

≤ 1

a2n

n∑
i=1

n∑
j=1

WiWj

Ln
=

n

a2n

Ln
n

= o(n−2/α+1+2γ)−→0 a.s.

Thus we get (12) and (13).
To prove (14), we write

1

an

n∑
i=1

n∑
j=1

W 2
i W

2
j

Ln(Ln +WiWj)

=
1

an

n∑
i=1

n∑
j=1

W 2
i W

2
j I(WiWj ≤ n)

Ln(Ln +WiWj)
+

1

an

n∑
i=1

n∑
j=1

W 2
i W

2
j I(WiWj > n)

Ln(Ln +WiWj)

≤ 1

an

n∑
i=1

n∑
j=1

W 2
i W

2
j I(WiWj ≤ n)

L2
n

+
1

an

n∑
i=1

n∑
j=1

WiWjI(WiWj > n)

Ln

≤ n2

anL2
n

n∑
i=1

n∑
j=1

W 2
i W

2
j I(WiWj ≤ n)

n2
+

n

anLn

n∑
i=1

n∑
j=1

WiWjI(WiWj > n)

n
.

Further, by (3) and by using the fact that E|Xn| → 0 implies Xn
p→ 0,

in order to prove (14), it is sufficient to show that

1

an
EW 2

1W
2
2 I(W1W2 ≤ n)−→0,(16)

n

an
EW1W2I(W1W2 > n)−→0.(17)

For any α ∈ (1, 2), we can choose δ > 0 satisfying 2−α−1/α+2δ < 0.
By Lemma 1, there exists some constant c1 = c1(α, δ) > 0 such that

EW 2I(W ≤ x) ≤ c1x
2−α+δ, EWI(W ≥ x) ≤ c1x

1−α+δ

hold for all x > 1. Hence
1

an
EW 2

1W
2
2 I(W1W2 ≤ n)
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=
1

an
E
(
W 2

2 I(W2 ≤ n)E(W 2
1 I(W1 ≤ n/W2)|W2)

)
+

1

an
E
(
W 2

2 I(W2 > n)E(W 2
1 I(W1 ≤ n/W2)|W2)

)
≤ c1
an

E
(
W 2

2 (n/W2)
2−α+δ

)
+

1

an
E
(
W 2

2 I(W2 > n)(n/W2)
2
)

=
c1n

2−α+δ

an
EWα−δ +

n2

an
P (W > n).

Since by (11) we have P (W > n) ∼ cn−αh(n) = o(n−α+δ) and 1/an =
o(n−1/α+δ), we get

1

an
EW 2

1W
2
2 I(W1W2 ≤ n) = o(n2−α−1/α+2δ)→ 0 as x→∞.

Thus, we get (16).
Similarly, we have

n

an
EW1W2I(W1W2 > n)

=
n

an
E
(
W2I(W2 ≤ n)E(W1I(W1 > n/W2)|W2)

)
+
n

an
E
(
W2I(W2 > n)E(W1I(W1 > n/W2)|W2)

)
≤ c1n

an
E
(
W2(n/W2)

1−α+δ
)

+
n

an
E
(
W2I(W2 > n)EW1

)
=
c1n

2−α+δ

an
EWα−δ +

n

an
EWE(WI(W > n))

≤ c1n
2−α+δ

an
EWα−δ +

c1n
2−α+δ

an
EW = o(n2−α−1/α+2δ)→ 0.

Hence (17), and then (14), are proved.
And (15) follows from (14). The proof of Theorem 2 is complete. �

References

[1] S. Bhamidi, R. van der Hofstad, J.S.H. van Leeuwaarden, ”Novel scaling lim-
its for critical inhomogeneous random graphs”, Ann. Probab., 40, 2299–2361
(2012).

[2] B. Bollobás, S. Janson, O. Riordan, ”The phase transition in inhomogeneous
random graphs”, Random Struct. Algorithms, 31, 3–122 (2007).

[3] T. Britton, M. Deijfen, A. Martin-Löf, ”Generating simple random graphs with
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