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This article suggests and compares the properties of some nonlinear Markov-switching

filters. Two of them are sigma point filters: the Markov switching central difference Kalman

filter (MSCDKF) and MSCDKFA. Two of them are Gaussian assumed filters: Markov switching

quadratic Kalman filter (MSQKF) and MSQKFA. A small scale financial MS-DSGE model is

used for tests. MSQKF greatly outperforms other filters in terms of computational costs. It also is

the first or the second best according to most tests of filtering quality (including the quality of

quasi-maximum likelihood estimation with use of a filter, RMSE and LPS of unobserved

variables).
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are a key instrument of

macroeconomic analysis. They are widely used by central banks and other organizations across

the world [Tovar (2009)]. The Markov switching dynamic stochastic general equilibrium (MS-

DSGE) is a generalization of DSGE models which suggests a switching of regimes. The different

regimes have different parameter values (such as for preferences, technologies, and the

exogenous process).

The linearized DSGE models are the main focus of the empirical literature [Tovar

(2009)]. However, linear approximations cannot capture important effects such as the influence

of risk on economic decisions (which makes them inappropriate for some themes such as asset

pricing). The second order approximation is much closer to the true solution [Collard and

Juillard (2001)]. An additional advantage of nonlinear approximations usage is sharper

likelihood [An and Schorfheide 2007, Pichler (2008)]. Recent papers developed some

deterministic filters which greatly outperform previously used particle filters [Andreasen (2013),

Ivashchenko (2014), Kollmann (2015)].

Linearized MS-DSGE models are used in the almost all papers [Liu et. all. (2011);

Lhuissier and Zabelina (2015)]. Techniques for nonlinear approximations of MS-DSGE models

were developed recently [Maih (2014), Foerster et. all. (2014)] in contrast to well known

nonlinear approximation techniques for DSGE models [Collard and Juillard (2001), Schmitt-

Grohe and Uribe (2004)].

The  aim  of  this  paper  is  to  suggest  a  fast  deterministic  filter  for  the  estimation  of

nonlinear MS-DSGE models. Maih and Bining suggest a filter which is based on idea of Sigma

point Kalman filters [Binning and Maih (2015)]. However, it has strange collapsing rule

(variance is equal to the weighted average of variance conditions on regimes). Thus, filters are

constructed and compared in terms of speed and accuracy. The Markov switching quadratic

Kalman filter (MSQKF) is a Gaussian assumed filter and uses collapsing before forecasting
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similar to [Binning and Maih (2015)]. The Markov switching quadratic Kalman filter accurate

(MSQKFA) is a Gaussian assumed filter and uses collapsing after forecasting similar to [Kim

(1994)]. These two filters are generalizations of the quadratic Kalman filter from [Ivashchenko

(2014)]. The other two filters are Markov switching central difference Kalman filter (MSCDKF)

and Markov switching central difference Kalman filter accurate (MSCDKFA) which are

generalizations of the central difference Kalman filter [Andreasen (2013)]. We do not use

particle filters because of the much higher computational costs for the same level of accuracy

compared to deterministic filters [Andreasen (2013), Ivashchenko (2014), Kollmann (2015)].

The rest of the paper is organized as follow: Section 2 describes the general filtering

scheme and each of the filters. The MS-DSGE model for testing is described in Section 3.

Section 4 presents results and discussion. Some conclusions are drawn in Section 5.

2. Filtering scheme

2.1 The general filtering scheme

The purposes of filter usage in DSGE related themes are: to compute the model variable

vector Xt density condition on vectors of observed variables Y1, …, Yt; to compute the observed

variables Y1,…, Yt density and likelihood. The phrase “compute density” means to compute the

parameters of the density approximation (usually moments of density). In some specific cases

this approximation is equal to the density (for example in a normal distribution). The procedure

of the most filters can be presented as loop of the following steps:

1. Compute initial density Xt

2. Compute density of Yt as function of density Xt

3. Compute likelihood of Yt

4. Compute conditional density of Xt|Yt

5. Compute density of Xt+1 as functions of density Xt|Yt

6. Move to step 2
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The 4 filters differ only at step 5. The suggested model of the data generating process

(DGP) is (1)–(3) and a discrete Markov-switching process for the regime variable rt, where Xstate,t

is the vector of state variables (a subset of model variable vector Xt) and t and ut are vectors of

independent shocks (model innovations and measurement errors) that have a zero-mean normal

distribution.  is a constant equal to one and related to perturbation with respect to uncertainty. It

is a second order approximation of the MS-DSGE model that can be computed with RISE

toolbox [Maih (2015)].

ttt uHXY (1)

ttstatet XZ , (2)

ttrtrrt ZZAZAAX
ttt 111 ,2,1,01 (3)

The difference from the usual DSGE model second order approximation is the existence

of regime dependence. The each of filter steps is described below.

2.2 Compute the density of Yt as function of the density of Xt

The initial information for this step is that the density of Xt is a normal mixture. The

linear equation for the observed variables (1) means that the density of Yt is a normal mixture

with the same probabilities of regimes and following expectations and variances (conditional on

the regime):

tsttsts XHEuHXEYE (4)

ttsttsts uVHXHVuHXVYV .' (5)

2.3 Compute the likelihood of Yt

The initial information for this step is that the density of Yt is a normal mixture. It means

that the likelihood can be computed according to formula (6).
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2.4 Compute the conditional density of Xt|Yt

The initial information for this step is that the density of Xt is a normal mixture and the

vector of observation Yt. The linear equation (1) allows the computation conditional on the

regime and observation density the same way as the Kalman filter (7)–(9).

tstss XHVYVK 1' (7)

tstststts YEYKXEYXE | (8)

HKIXVHKIYXV sNtssNtts XX
|

(9)

t

ttt

t

tt
tt Yp

srpsrYp
Yp

YsrpYsrp |;| (10)

Equation (10) shows the probability of regime s on condition of the observed variables.

p(Yt) is the likelihood (computed at step 2.3) and p(Yt|rt=s) has a normal density.

2.5 Compute density of Xt+1 as functions of the density of Xt|Yt (version

MSQKF)

The initial information for this step is the density for the vector of model variables Xt

(normal mixture).

The first step is the computation of the expectation and variance of vector Xt on the

condition of the future state (11)–(12).

sN

k
tk

t

ttt
tts XE

srp
krsrpkrpsrXE

1 1

1
11, )(

)|()(
|E (11)
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The next step is the approximation (collapsing rule): we believe that the density of vector

Xt is a normal mixture with regime probabilities p(rt+1=s) and Gaussian densities with moments

Es,1 and Vs,1.

Knowledge of the conditional density of Xt gives us the density of Zt.  It  allows  us  to

compute the conditional moments of the future vector of variables Xt+1.

111 ,,,,0 ttt rtrtrt ZEZZ (13)

1111111111111 ,,0,,0,2,,0,1,0,,,2,,1,0,1 ttttttttttttt rtrtrrtrrrtrtrrtrrrt ZZBZBBZZAZAAX (14)

1111111 ,2,0,,2,0,1 ttttttt rrrrtrrrt VvecBBZVvecBBXE (15)

11

11

111111 ,2,2,0,0,1
tt

tt

tttttt
rr

rr
rrrrrrt VVvecvec

VvecVvec
BBVvecBBXVvec (16)

The formulas (13)–(16) are similar to formulas from [Ivashchenko (2014)]. The

difference is that these formulas became formulas for moments, conditional on the regime. The

last action of this step is an approximation. We suggest that the density of Xt+1 is  a  normal

mixture with moments according to (15)–(16).

2.6 Compute the density of Xt+1 as functions the of density of Xt|Yt (Version

MSQKFA)

Knowing the conditional density of Xt gives us the density of Zt. However, this density is

conditional on rt, while equation (3) is conditional on rt+1.  Thus,  we  have  to  use  all  possible

combinations of regimes, and compute the expectation and variance of the Xt+1 condition on rt

and rt+1.

ttt rtrtrt ZEZZ ,,,,0 (17)

tttttttttttttt rtrtrrtrrrtrtrrtrrrrt ZZBZBBZZAZAAX ,,0,,0,2,,0,1,0,,,2,,1,0,,1 1111111
 (18)

tttttttt rrrrtrrrrt VvecBBZVvecBBXE
11111 ,2,0,,2,0,,1 (19)
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Formulas (17)–(20) are almost the same as (13)–(16). The difference is the conditions for

conditional moments. The expectation and variance of the future vector Xt+1 conditional on the

future regime (rt+1) are the following:
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11

1

1
111 ,|

)(
)|()(

| (21)

11
1

1,1,1,
1

1

)(
)|()(

tsts

N

k
tsktsktsk

t

ttt
s XEXEXVXEXE

srp
krsrpkrpV

s

(22)

The last action is an approximation (collapsing rule): we suggest that the density of Xt+1

is a normal mixture with regime probabilities p(rt+1) and conditional moments computed

according to (21)–(22).

2.7 Compute the density of Xt+1 as functions of the density of Xt|Yt (Version

MSCDKF)

The beginning of this approach is similar to MSQKF. The first step is the computation of

the expectation and variance of vector Xt on condition of the future state (11)–(12). The next step

is the approximation (collapsing rule): we believe that the density of vector Xt is a normal

mixture with regime probability p(rt+1=s) and Gaussian densities with moments Es,1 and Vs,1.

Knowing the conditional density of Xt gives us the density of Zt.

The  next  step  is  computing  the  points  around the  mean,  conditional  on  the  regime and

corresponding to their future values of model variable vector (23)–(25). The matrix U can be

computed with Cholesky factorizations, eigenvalue decomposition, singular value decomposition

(implemented in the filters code) or other techniques. The parameter h is a tuning parameter. The

recommended value for normal density is h2=3.

1:
00
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The last step is the approximation: we believe that the density of Xt+1 is a normal mixture

with regime probabilities p(rt+1) and conditional moments computed according to (26)–(29).
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2.8 Compute the density of Xt+1 as functions of the density of Xt|Yt (Version

MSCDKFA)

The beginning of this approach is similar to MSQKFA. Knowing the conditional density

of Xt gives us the density of Zt. However, this density is a condition of rt, while equation (3) is a

condition of rt+1.  Thus,  we  have  to  use  all  possible  combinations  of  regimes,  and  compute  the

expectation and variance of the Xt+1 conditional on rt and rt+1.

The  next  step  is  computing  the  points  around the  mean conditional  on  the  regime,  and

corresponding to their future values of the model variable vector for each possible future regime

(30)–(32). The formulas (30)–(32) differ from (23)–(25) only in the regime conditions.
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The next step is the approximation: we approximate the moments of the Xt+1 condition for

the regimes rt and rt+1 according to (33)–(36).

Z

Z
tt

tt

Z
tttttt

tttt

N

k
Nk

rrt
Zkrrt

N

k

rrtkrrtkrrt
rrtttttrr

X
h

Nh
h

X
h

XXX
XrrXEXE

0

0,,,12

2

2
,,,1

1
2

0,,,1,,,1,,,1
0,,,1111,

1

1

111

11

2

2
2

,|

(33)

11111 ,,2,,22

2

,,1,,12,
ˆˆ

4
1ˆˆ

4
1

tttttttttt rrrrrrrrrr BB
h

hBB
h

V (34)

],...,,[ˆ
,,,1,,,12,,,12,,,11,,,11,,,1,,1 1111111 ZttZtttttttttttt NrrtNrrtrrtrrtrrtrrtrr XXXXXXB (35)

]2,...,2[ˆ
0,,,1,,,1,,,10,,,11,,,11,,,1,,2 1111111 ttZttZtttttttttt rrtNrrtNrrtrrtrrtrrtrr XXXXXXB  (36)

The expectation and variance of the future vector Xt+1 condition  on  the  future  regime

(rt+1) is computed the same way as MSQKFA (formulas (21)–(22)). The last approximation

(collapsing) assumes that the density of Xt+1 is a normal mixture with regime probabilities p(rt+1)

and conditional moments computed according to (21)–(22) and (33)–(36).

3 The MS-DSGE model and tests descriptions

The  model  that  is  used  for  the  test  is  a  financial  one  that  is  similar  to  the  one  used  in

[Ivashchenko (2014)]. The system of rational expectation equations (restrictions and first-order

conditions) in terms of stable variables contains the following: a budget restriction (37), an

exogenous rule for dividend growth (38), an exogenous number of bonds bought by the

government (39), and an amount of stocks equal to one (40), and the optimal conditions of (41)–

(43) with an additional exogenous process (zA,S,t,  zA,B,t, zA,C,t). The description of the variables is

presented in Table 1.

tI
d

tt
sr

tt
c zeqbeqbe tttt

,11 11 (37)

tDttt zsdd ,1 (38)

tBt zb , (39)
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1tq (40)

11,11,, 1)ln( ttPtttSAt dzs
t

z eeEe (41)

1,111,, )ln( tPtttttBAt zssr
t

z eEe (42)

tCAttt zcc ,, (43)

Tab. 1. DSGE model variables

Variable Description Stationary variable
Bt Value of bonds bought by households at period t ttt SBb /

Ct Consumption at time t tttPt SCZc /ln ,

Dt Dividends at time t ttt SDd /ln
Rt Interest rate at time t tt Rr ln
St Price of stocks at time t 1/ln ttt SSs
Qt Amount of stocks bought by households at period t tt Qq

t
Lagrange multiplier corresponding to budget restriction

of households at period t tt

ZA,B,t
Exogenous process corresponding to near-rationality of

households with its bond position tBAtBA Zz ,,,,

ZA,C,t
Exogenous process corresponding to near-rationality of

households with its consumption tCAtCA Zz ,,,,

ZA,S,t
Exogenous process corresponding to near-rationality of

households with its stocks position tCAtCA Zz ,,,,

ZB,t
Exogenous process corresponding to bond amount

sold by the government tBtB Zz ,,

ZD,t Exogenous process corresponding to dividends growth tDtD Zz ,,

ZI,t
Exogenous process corresponding to households

income tTtT Zz ,,

ZP,t Exogenous process corresponding to price level 1,,, ln tPtPtP ZZz
All exogenous processes are AR(1) with following parameterization (44):

tttttt zz *,1*,,*,1,*,1,*,0*, )1( (44)

The difference of this MS-DSGE from that used in [Ivashchenko (2014)] is the following:

1,A,B=0, 1,A,C=0, 1,A,S=0 ; there is switching (with 2 regimes) for parameters 1,* and standard

deviation of all exogenous shocks. The MS-DSGE model is estimated with quarterly data from

1985 Q4 to 2015 Q3. The following data are used: MSCI USA price return, MSCI USA gross

return (obspg,t), and the 3-month euro-dollar deposit rate. The first 4 quarters are used as a pre-

sample (for better initialization of the filter). The maximum likelihood estimation is used.
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A few tests of filtering quality are done. The first is a test of the estimation quality. The

second order approximation of the MS-DSGE model with parameter values from the maximum

likelihood estimation is used as DGP. 120 observations were generated 100 times. The model is

estimated for each of the generated data with the different filters (MSQKF, MSQKFA,

MSCDKF, MSCDKFA and a filter that uses a linear approximation of the model [Kim (1994)]).

RMSE of estimation (relative to the linear filter) is presented in Table 2. The designation for the

linear approximation based filter is MSKFA.

The estimation results give a small probability of regime switching (3.5% and 8.53%).

Persistent regimes are common results for MS-DSGE models. However, this can influence filter

performance. Thus, the previous test is repeated with a change in DGP parameters (the transition

probability is set to 0.45). The corresponding results are presented at Table 3.

The  next  test  is  the  estimation  of  computational  costs  and  their  dependence  on  the

number of variables. The simple modifications of the model are done for this test. The lags are

changed in equation (44). Instead of the first lag we use the second, the fifth and the tenth. This

forces the creation of auxiliary variables and increases the size of the model. The time of filtering

is measured for these modifications of the model.

The  last  tests  are  related  to  filtering  quality.  RMSE  of  filters  are  calculated.  Formula  (45)

describes RMSE for the updated values of variables. Table 5 presents RMSE for model variables

in  the  last  period.  The  same  100  calculations  (as  for  estimation  test)  are  used.

draw

N

i
itiititupdated NYYXEXRMSE

draw

draw

drawdrawdrawdraw
/,...,|

1

2
,,1,,, (45)

The density filtering quality is measured by log-predictive-score (LPS): the likelihood of

unobserved variables according to the updated variable density (p(regimet,  Xt|Y1,…,Yt)). The

numeric conditional variance matrix of the updated model variables has 4 eigenvalues that are

close to zero (3 observed variables and 1 static variable). These values are counted as exactly

zero for computing LPS.
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4 Results and discussion

RMSE of the parameter estimation is presented in Table 2. All filters that use the second

order estimation are much more accurate than the linear one. RMSE became about 10 times

smaller. This improvement is much larger than for the DSGE model [Ivashchenko (2014)]. It is

related to using a shorter sample (120 observations vs 400 observations) and quarterly data

(which makes the estimated standard deviation of shocks larger). Markov switching gives

additional advantages to nonlinear filters because it estimates regime probabilities more

accurately. The errors in regime identification make the estimation of regime specific parameters

doubtful.

Tab. 2. RMSE of parameters estimation

RMSE
parameter parameter

value MSKFA MSQKF /
MSKFA

MSQKFA /
MSKFA

MSCDKF /
MSKFA

MSCDKFA
/ MSKFA

p(regt+1=2| regt=1) 3.50E-02 4.02E-02 1.55E-01 1.59E-01 1.70E-01 1.66E-01
p(regt+1=1| regt=2) 8.53E-02 5.60E-02 1.89E-01 1.78E-01 1.86E-01 2.26E-01

ln( ) -6.21E-02 3.82E-02 4.01E-02 5.82E-02 4.88E-02 4.11E-02
2.55E-01 6.02E-01 1.71E-02 1.31E-02 1.31E-02 1.18E-02

0,B -3.26E-01 2.51E+00 1.33E-02 1.09E-02 1.21E-02 1.06E-02
0,D -1.09E-02 3.71E-02 1.48E-01 2.18E-01 1.34E-01 1.73E-01
0,I 1.29E+01 8.35E+00 1.29E-01 8.62E-02 9.40E-02 1.22E-01
0,P 3.10E-02 3.24E-02 3.09E-01 2.79E-01 2.42E-01 2.59E-01

1,B (reg. 1) -7.81E-01 7.85E-01 1.60E-01 1.37E-01 1.43E-01 1.51E-01
1,D(reg. 1) 7.56E-01 1.15E+00 5.62E-02 6.15E-02 7.03E-02 5.34E-02
1,I(reg. 1) 8.74E-01 8.37E-01 1.25E-01 1.92E-01 7.31E-02 1.64E-01
1,P(reg. 1) 9.75E-01 2.23E-01 3.65E-02 3.61E-02 3.11E-02 2.70E-02

std of AB (reg. 1) 3.14E-01 1.22E+00 2.08E-01 2.03E-01 2.54E-01 1.90E-01
std of AC (reg. 1) 4.59E-02 2.66E+00 1.71E-02 1.53E-02 1.90E-02 1.75E-02
std of AS (reg. 1) 3.60E-03 6.20E-01 6.85E-02 7.48E-02 9.33E-02 8.80E-02
std of B (reg. 1) 6.34E-01 3.33E+00 3.66E-02 3.69E-02 3.06E-02 3.74E-02
std of D (reg. 1) 4.86E-01 4.09E+00 1.60E-02 1.89E-02 2.20E-02 1.66E-02
std of I (reg. 1) 2.74E+00 5.16E+00 2.06E-01 2.13E-01 1.86E-01 2.04E-01
std of P (reg. 1) 3.01E-01 2.25E+00 9.30E-03 6.74E-03 6.52E-03 7.76E-03

1,B (reg. 2) 9.90E-01 6.25E-01 2.88E-01 2.66E-01 3.14E-01 2.31E-02
1,D(reg. 2) -8.28E-02 3.21E-01 2.74E-01 1.76E-01 3.86E-01 1.76E-01
1,I(reg. 2) 9.90E-01 5.70E-01 1.73E-01 1.13E-01 1.66E-02 3.80E-02
1,P(reg. 2) -1.91E-01 5.28E-01 1.64E-01 2.95E-01 2.51E-01 2.81E-01

std of AB (reg. 2) 1.00E-06 2.58E-01 4.74E-03 1.76E-01 4.07E-03 2.02E-01
std of AC (reg. 2) 1.00E-06 1.08E+00 1.81E-04 2.35E-04 1.64E-04 4.89E-03
std of AS (reg. 2) 1.00E-06 1.56E-01 3.59E-03 5.20E-02 2.04E-01 2.79E-02
std of B (reg. 2) 8.33E-03 4.14E-01 1.44E-02 7.43E-02 1.50E-02 8.18E-02
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std of D (reg. 2) 7.79E-02 8.51E-01 1.93E-02 7.90E-02 1.69E-02 7.80E-02
std of I (reg. 2) 5.69E-01 1.69E+00 1.42E-01 4.43E-01 4.11E-01 3.01E-01
std of P (reg. 2) 2.88E-03 9.68E-01 1.40E-01 9.33E-03 7.06E-03 7.03E-02

mean - 1.38E+00 1.05E-01 1.23E-01 1.15E-01 1.08E-01
root-mean-square - 2.27E+00 1.40E-01 1.62E-01 1.65E-01 1.41E-01

median - 7.05E-01 9.65E-02 8.26E-02 7.17E-02 7.99E-02

The comparison of nonlinear filters demonstrates the small advantage of MSQKF

according to mean and root-mean-squared aggregate measures. The use of the median gives

some advantage to MSCDKFA. However, it is not a dominance of one filter over another. Each

of the filters produces the best quality of estimation for some of the parameters. There is a

notable spread in the relative performance from 1.64e-4 (std of AC (reg. 2) MSCDKF) to

4.43e-1 (std of I (reg. 2) MSQKFA).  The  usage  of  absolute  RMSE  instead  of  relative

influences the choice of the best filters. MSQKF and MSCDKF are the best according to mean

RMSE, while MSCDKF is the best according to root-mean-square RMSE and median RMSE.

Thus, the estimation quality produced by all filters is very close, and advantage of MSQKF is

insignificant.

However, there was a result for persistent regimes; if regimes are not persistent then the

picture is different (see Table 3). RMSE for most variables and filters became smaller. The

improvement of linear filter quality is greater than for others. Thus, the relative performance of

nonlinear filters worsens. This can be explained by the better identification of regime

probabilities.

It was natural to expect that the later implementation of collapsing rule (MSQKFA and

MSCDKFA) should produce a better quality of estimation (especially in situations of low regime

persistence). However, this does not happen. The best relative performance was achieved by

MSQKF, and MSCDKF was better than MSCDKFA.
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Tab. 3. RMSE of parameters estimation in case of high probability of switching

RMSE

parameter
MSKFA MSQKF /

MSKFA
MSQKFA /

MSKFA
MSCDKF /

MSKFA
MSCDKFA /

MSKFA
p(regt+1=2| regt=1) 9.36E-02 1.85E-01 2.23E-01 2.48E-01 2.79E-01
p(regt+1=1| regt=2) 1.09E-01 1.72E-01 1.99E-01 2.44E-01 2.42E-01

ln( ) 1.75E-02 7.81E-02 8.43E-02 1.41E-01 1.18E-01
8.92E-02 2.00E-01 1.98E-01 2.19E-01 2.46E-01

0,B 2.64E-01 1.95E-01 2.00E-01 2.70E-01 2.64E-01
0,D 3.02E-02 2.13E-01 2.20E-01 2.54E-01 2.64E-01
0,I 5.36E+00 1.87E-01 1.99E-01 2.59E-01 2.96E-01
0,P 2.71E-02 2.87E-01 2.86E-01 3.54E-01 3.43E-01

1,B (reg. 1) 5.35E-01 1.39E-01 1.53E-01 1.61E-01 1.73E-01
1,D(reg. 1) 5.01E-01 1.11E-01 1.14E-01 1.31E-01 1.36E-01
1,I(reg. 1) 2.72E-01 7.28E-02 8.48E-02 9.00E-02 9.23E-02
1,P(reg. 1) 6.55E-01 1.20E-01 1.26E-01 1.29E-01 1.44E-01

std of AB (reg. 1) 2.66E-01 2.22E-01 2.36E-01 2.70E-01 2.69E-01
std of AC (reg. 1) 4.80E-02 7.01E-01 7.03E-01 6.85E-01 6.69E-01
std of AS (reg. 1) 7.85E-02 3.10E-01 3.26E-01 3.14E-01 3.82E-01
std of B (reg. 1) 2.62E-01 4.38E-01 4.35E-01 4.95E-01 5.06E-01
std of D (reg. 1) 3.80E-01 1.17E-01 1.22E-01 1.34E-01 1.44E-01
std of I (reg. 1) 1.42E+00 2.79E-01 2.78E-01 3.68E-01 4.04E-01
std of P (reg. 1) 2.35E+00 1.34E-02 1.61E-02 1.99E-02 2.41E-02

1,B (reg. 2) 5.00E-02 1.92E-01 2.50E-01 2.44E-01 3.21E-01
1,D(reg. 2) 9.07E-02 4.18E-01 4.44E-01 4.49E-01 4.93E-01
1,I(reg. 2) 1.21E-02 1.61E+00 1.69E+00 1.59E+00 1.79E+00
1,P(reg. 2) 2.35E-01 5.16E-01 4.74E-01 5.88E-01 5.82E-01

std of AB (reg. 2) 7.10E-03 1.66E-01 1.38E-01 1.27E-01 1.43E-01
std of AC (reg. 2) 7.18E-04 2.03E-01 1.60E-01 1.70E-01 1.80E-01
std of AS (reg. 2) 4.60E-03 1.23E-01 1.18E-01 1.24E-01 1.16E-01
std of B (reg. 2) 1.11E-02 6.33E-01 6.49E-01 6.61E-01 6.60E-01
std of D (reg. 2) 4.05E-02 2.64E-01 2.69E-01 2.75E-01 2.71E-01
std of I (reg. 2) 4.08E-01 5.23E-01 5.48E-01 5.59E-01 6.38E-01
std of P (reg. 2) 1.42E+00 6.86E-03 1.02E-02 1.33E-02 1.30E-02

mean 5.01E-01 2.90E-01 2.99E-01 3.19E-01 3.40E-01
root mean of MSE 1.15E+00 4.15E-01 4.30E-01 4.33E-01 4.70E-01

median 1.01E-01 1.97E-01 2.10E-01 2.51E-01 2.66E-01

Table 4 demonstrates the dependence of computation time on the number of variables. It

shows the time of the likelihood calculation excluding the time for solution approximations. The

growth  of  the  model  size  leads  to  a  much  higher  share  of  the  time  required  for  solution

approximation. It makes the use of all filters almost equivalent for large models. The MSKF
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sometimes is faster than the time required for a second order solutions because it requires only a

linear solution. The MSQKF is the fastest nonlinear filter.

Tab. 4. Time for likelihood calculation (sec) for model with 2 states

nX 10 14 26 46
nZ 14 18 30 50

Solution 5.77E-02 9.21E-02 6.80E-01 2.35E+01
MSKF (including solution) 9.51E-02 1.20E-01 6.49E-01 2.23E+01

MSQKF 1.58E-01 2.90E-01 4.98E-01 1.10E+00
MSQKFA 2.65E-01 5.09E-01 9.17E-01 2.93E+00
MSCDKF 2.98E-01 3.85E-01 7.52E-01 1.89E+00

MSCDKFA 5.35E-01 7.04E-01 1.42E+004.36E+00
* PC used: Intel core i5 3.4 GHz; 8 Gb RAM; Windows 7.

The time for  filtering  (without  the  time for  the  solution)  for  version  of  filters  with  late

collapsing is about 1.8 times longer. MSQKF filtering is 1.3–1.9 times faster than MSCDKF .

However, there is not a monotone dependence of the advantage on the model size. This differs

from the situation with computational costs of QKF and CDKF [Ivashchenko (2014)] because of

the improved quality of the filter code.

Tab. 5. RMSE of updated unobserved variables

Variable Parameters MSKFA MSQKF MSQKFAMSCDKFMSCDKFA
ct estim 2.37E+01 5.23E-01 5.34E-01 4.81E-01 5.46E-01
ct true 2.66E+00 4.56E-01 4.56E-01 4.55E-01 4.55E-01
dt estim 1.53E+01 9.54E-01 1.03E+00 1.05E+00 9.98E-01
dt true 1.99E+011.39E+001.39E+00 3.14E+00 3.26E+00

t estim 1.69E+01 3.91E-01 3.97E-01 3.57E-01 4.02E-01
t true 1.72E+00 3.43E-01 3.43E-01 3.40E-01 3.40E-01

zB,t estim 7.28E+00 4.53E-01 4.69E-01 4.74E-01 4.89E-01
zB,t true 1.51E+01 4.70E-01 4.71E-01 9.32E-01 9.55E-01
zD,t estim 4.72E+00 2.97E-01 2.85E-01 3.11E-01 3.01E-01
zD,t true 4.88E+00 3.29E-01 3.29E-01 4.65E-01 5.11E-01
zI,t estim 1.84E+015.96E+005.70E+00 5.67E+00 6.41E+00
zI,t true 7.54E+017.08E+007.09E+00 9.85E+00 9.81E+00
zP,t estim 6.00E+00 2.83E-01 2.71E-01 3.03E-01 2.98E-01
zP,t true 8.67E+00 2.89E-01 2.88E-01 6.91E-01 6.63E-01

mean (RMSE /
RMSE of MSKFA) estim 100.00% 8.64% 8.49% 8.59% 9.17%

mean(RMSE /
RMSE of MSKFA) true 100.00% 9.52% 9.52% 12.76% 12.96%

median(RMSE /
RMSE of MSKFA) estim 100.00% 6.22% 6.04% 6.51% 6.38%

median(RMSE /
RMSE of MSKFA) true 100.00% 7.00% 7.00% 13.06% 13.01%
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The next test checks quality of filtering. Table 5 presents RMSE of the updated

unobserved variables (E(Xt|Y1,…,Yt)) for true and estimated values of the parameters. MSQKF

and MSQKFA produce almost the same quality of filtering for the true values of the parameters.

MSCDKF and MSCDKFA produce much worse performances. However, for estimated

parameter values all 4 nonlinear filters are very similar. MSQKFA is slightly better, but choice

between the MSQKF and the MSCDKF depends on the aggregate measure. Thus, the predictable

advantage of late collapsing is observed for filtering quality (in contrast to estimation quality).

An interesting detail is related to the comparison of filtering quality in the true and

estimated points of the parameter space. The quality of the filters improves for 5 variables and

worsens for 2 (c and limdaa). It is unclear why all the filters improve the same variable filtering

quality. This could be related to some properties of the variance matrix. MSKFA has large

changes in filtering quality while for MSQKF and MSQKFA the change in filtering quality is

small. MSCDKF and MSCDKFA have a notable improvement and a minor decrease of quality

respectively. The result is a significant improvement of the relative quality of filtering for these

two filters for estimated parameter values.

RMSE of filtered variables (E(Xt|Y1,…,Yt-1))  can  be  used  as  a  measure  of  filter  quality.

The results are presented in Table A1 (see appendix). It produces almost the same picture:

MSQKF and MSQKFA are better for true parameter values; the close performance of filters for

the estimated values of parameters (MSCDKF is better according to the mean while the

MSQKFA is better according to the median). The difference is a larger improvement of MSKFA

compared to other filters for the move from the true to the estimated values of the parameters.

The quality of regime identification is another important property of the filters. Figures

1–2 show the mean RMSE of regime 1 probabilities (p(regime=1| Y1,…,Yt)) for the true and the

estimated parameters values. MSKF has a significantly worse performance, which motivates us

to drop it from the plots. The first 4 observations (used for pre-filtering and having a

significantly worse performance) are also dropped.
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Fig. 1. RMSE of updated regime 1 probability (the true values of parameters).

The performance of the 4 filters are very similar for true parameter usage. There are some

time points where the MSQKF and the MSQKFA have a slightly better performance but the

difference is small. The average error is about 5–10%. The average performance does not change

for the estimated parameters. However, the performance of filters became less correlated and a

smaller number of observations were required for achieving an “average” result. It should be

noted that the small probabilities of switching makes the Monte-Carlo estimation with 100 draws

not a very accurate measure of regime identification quality.
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Fig. 2. RMSE of updated regime 1 probability (the estimated values of parameters).
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The filters produce not a point estimation of unobserved variables, but a density

estimation. LPS is a measure of density fit quality. It is the log-likelihood (according to the

filtered density) of the unobserved variables. Figures 3–4 present plots for the median LPS of the

four nonlinear filters. MSKFA is dropped because of its significantly worse performance. The

first 4 observations are also dropped. The median is used because of outliers near the moments of

switching.
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Fig. 3. The median LPS of updated unobserved variables, including regime (the true values of parameters).
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Fig. 4. The median LPS of updated unobserved variables, including regime (the estimated values of parameters).
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It is clear that MSQKF and MSQKFA slightly outperform MSCDKF and MSCDKFA for

true parameter values. However, the advantage of these filters is unclear for estimated values.

The median value of the median LPS (for samples: 5–120 and 21–120) are: -1.64e+12 and -

1.67e+12 for MSKF; -3.77 and -3.68 for MSQKF; -3.70 and -3.50 for MSQKFA; -3.95 and -

3.77 for MSCDKF and; -4.08 and -3.95 for MSCDKFA. Thus, MSQKFA is the best while

MSQKF is the second best.

5 Conclusions

his paper develops filters for the estimation of nonlinear MS-DSGE models. 4 nonlinear

filters are constructed and tested with a small-scale MS-DSGE model. They are Gaussian

assumed filters (MSQKF and MSQKFA) and sigma point filters (MSCDKF and MSCDKFA).

The  test  of  estimation  quality  shows  a  small  advantage  for  MSQKF.  However,  this  is

sensitive to aggregate performance measures, and all filters give very similar results. The

advantage of MSQKF increases for DGP with higher switching probabilities.

The test of computational costs shows a significant advantage for MSQKF. However, for

models with a large number of parameters almost all the time is spent finding the solution

approximation. MSQKF is about 60% faster (without taking in account the time for solution

approximation) than the second fastest filters (MSQKFA and MSCDKF) depending on the size

of the model.

The RMSE-test of filtering quality shows MSQKFA is better. MSQKF is the first or the

second best according to the most aggregate measures. The advantage of MSQKF and MSQKFA

is significant for true parameter values. The advantage decreases for estimated parameter values.

The density-test of filtering shows a small advantage for MSQKFA and MSQKF. This advantage

is clear and stable for true parameters. However, it became less stable for estimated parameters.

Thus, MSQKF is overall the best investigated filters according to filtering quality, and it

also has much lower computational costs.
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Appendix

Tab. A1. RMSE of filtered unobserved variables

Variable Parameters MSKF MSQKF MSQKFA MSCDKF MSCDKFA
ct estim 1.87E+01 1.09E+00 1.05E+00 1.05E+00 1.13E+00
ct true 6.61E+00 1.09E+00 1.09E+00 1.26E+00 1.25E+00
dt estim 8.58E+00 5.87E+00 5.84E+00 5.81E+00 5.63E+00
dt true 8.03E+00 6.00E+00 6.00E+00 5.94E+00 5.94E+00

t estim 1.32E+01 8.13E-01 7.87E-01 7.89E-01 8.38E-01
t true 4.94E+00 8.21E-01 8.21E-01 9.45E-01 9.38E-01

st estim 2.07E+01 6.30E+00 6.28E+00 6.11E+00 6.18E+00
st true 1.73E+01 6.29E+00 6.29E+00 6.74E+00 6.73E+00
rt estim 1.39E+01 3.12E+00 3.12E+00 3.03E+00 3.09E+00
rt true 3.02E+01 3.25E+00 3.25E+00 3.84E+00 3.84E+00

zB,t estim 7.19E+00 7.32E-01 7.18E-01 7.26E-01 7.20E-01
zB,t true 1.14E+01 7.41E-01 7.36E-01 7.40E-01 7.41E-01
zD,t estim 1.79E+00 4.43E-01 4.36E-01 4.30E-01 4.30E-01
zD,t true 3.36E+00 4.41E-01 4.41E-01 5.41E-01 5.38E-01
zI,t estim 1.64E+01 5.86E+00 5.66E+00 5.77E+00 6.68E+00
zI,t true 5.66E+01 7.44E+00 7.44E+00 8.70E+00 8.77E+00
zP,t estim 5.00E+00 4.74E-01 4.59E-01 4.79E-01 4.64E-01
zP,t true 8.59E+00 4.88E-01 4.88E-01 7.43E-01 7.47E-01

obspg,t estim 1.91E+01 6.10E+00 6.08E+00 5.92E+00 5.99E+00
obspg,t true 1.63E+01 6.10E+00 6.10E+00 6.53E+00 6.53E+00

mean (RMSE / RMSE of
MSKFA) estim 100.00% 24.54% 24.23% 24.06% 24.55%

mean (RMSE / RMSE of
MSKFA) true 100.00% 7.47% 7.34% 10.46% 9.91%

median (RMSE / RMSE of
MSKFA) estim 100.00% 23.59% 23.36% 22.88% 23.10%

median (RMSE / RMSE of
MSKFA) true 100.00% 5.79% 5.71% 8.75% 9.06%
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