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Abstract. This chapter presents an approach to preference learning via ceteris paribus
preferences (i.e., preferences that hold ‘other things being equal’) over attribute subsets.
I provide semantics for such preferences based on formal concept analysis and show that
ceteris paribus preferences valid in a dataset correspond to implications valid in a certain
formal context built from this dataset. Preferences computed from a training dataset can
then be used to extend the preference relation to new objects based on the attributes they
have, but this approach may require exponential time. However, to compute preferences over
new objects induced by the preference theory behind the training dataset, it is not necessary
to compute this theory explicitly: an abduction algorithm for Horn formulae represented by
their characteristic models can be modified to obtain an algorithm for inducing preferences
between a pair of new objects that runs in time polynomial in the size of the training dataset.

2.1 Introduction and Motivation

The cross-table on the left-hand side of Figure 2.1 describes five cars, c1, . . . , c5, each of which
is either a minivan or an SUV, is either red or white from the outside and bright or dark
from the inside. This example is adapted from [34] and is also used in [199]. For instance,
c3 corresponds to a white minivan with bright interior. The diagram on the right-hand side
shows a subject’s preferences over these cars: c5 is the best, c4 is the worst, c1 is better than
both c2 and c3, which are incomparable. Based on this information, can we guess what red
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Figure 2.1: Example of a Preference Context.

car with bright interior the subject would rather buy: a minivan or an SUV? More generally,
given a set of alternatives described by sets of attributes and a preference relation over these
alternatives, can we derive preferences over new alternatives?

The approach to solving this problem presented here consists of two steps. We start
by generalizing observed preferences over individual alternatives to preferences over their
descriptions: from data, we derive statements such as “I prefer white cars to red cars”.
These derived statements can be used at the second step to predict preferences over new
objects. How exactly this is done depends on the semantics of the statements derived at the
first step. One way to interpret the statement above is that every white car is preferred to
every red car. This corresponds to the totalitarian semantics, which may not be the most
appropriate one in this case: indeed, such interpretation forces the subject to disregard all
other properties cars might have and even to prefer a hopelessly broken white car to a red
car in a perfect state.

In this chapter we subscribe to a variant of ceteris paribus semantics which dictates that
a subject preferring white cars to red cars must prefer every white car only to every red
car that is otherwise similar. Such preferences have been considered, for example, in modal
preference logics [237]. There, preferences over formulas φ and ψ are determined based on
a preference relation defined on possible worlds (nodes of a Kripke frame): ψ is preferred to
φ if worlds satisfying ψ are preferred to worlds satisfying φ. Ceteris paribus semantics puts
restrictions on which worlds should be compared. In [237], preferences are parameterized by
formulae sets: ψ is preferred to φ with respect to a formulae set Γ if every world satisfying
ψ is preferred to every world satisfying φ that satisfies the same formulae from Γ. The Γ
parameter makes it possible to be explicit about which other things must be equal rather
than relying on the usual ‘all other things being equal’ interpretation of the ceteris paribus
condition. Because of this, statements like “I prefer a white car to a red car provided that

the speed and the price are the same” can easily be expressed.
We follow this approach, but make a radical simplification: we consider only non-strict

preferences of the form φ ≼Γ ψ, where φ and ψ are atomic conjunctions and Γ is a set of
atomic formulae. This simplification allows us to treat φ, ψ, and Γ as attribute subsets
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rather than as formulae and use formal concept analysis as a framework for preference
learning. While obviously less expressive than the language of preference logics, the resulting
language is comparable in its expressive power with many of the languages used in artificial
intelligence for modeling preferences, including those of conditional preference networks and
their extensions [32] [33] [256]. One limitation is that our language only allows for non-strict
preferences (i.e., statements of the form “ψ is at least as good as φ”), whereas AI languages
are mostly concerned with strict preferences (i.e., statements of the form “ψ is better than
φ”). Although the approach presented here can be extended to strict preferences, they are
not our focus in this chapter.

2.2 Preliminaries

We start with a few definitions from formal concept analysis [127]. A (formal) context is
a triple K = (G, M, I), where G is called a set of objects, M is called a set of attributes,
and the binary relation I ⊆ G × M specifies which objects have which attributes. Formal
contexts are visualized by cross-tables similar to one on the left-hand side of Figure 2.1. In
this example, G = {c1, . . . , c5} and M consists of attributes corresponding to the columns of
the cross-table. The derivation operators (·)′ are defined for A ⊆ G and B ⊆ M as follows:

A′ = {m ∈ M | ∀g ∈ A(gIm)}
B′ = {g ∈ G | ∀m ∈ B(gIm)}

A′ is the set of attributes shared by objects of A, and B′ is the set of objects having all
attributes of B. For example, {SUV}′ = {c2, c4} is the set of all SUVs, and {c2, c4}′ =
{SUV, dark interior} is the set of all attributes that they share. For g ∈ G and m ∈ M , the
sets {g}′ and {m}′ are called object intent and attribute extent and sometimes denoted by g′

and m′, respectively. We will also refer to object intents as object descriptions.
The derivation operators form a Galois connection between the power sets of G and M .

The double application of (·)′ gives rise to two closure operators (one on objects and one on
attributes): (·)′′ is extensive, idempotent, and increasing. For this reason, sets A′′ and B′′ are
said to be closed. Thus, the closure of {SUV} equals to {SUV, dark interior}, which means
that we have only dark SUVs in our context. This is also captured by the notion of attribute
implication, which is an expression A → B, where A, B ⊆ M are attribute subsets. It holds
or is valid in a context K (notation: K |= A → B) if A′ ⊆ B′, i.e., every object of the context
with all attributes from A also has all attributes from B. A set L of implications is sound for
K if every implication from L is valid in K; it is complete for K if every implication valid in
K holds in all contexts for which L is sound. Note that an implication A → B corresponds
to a conjunction of definite Horn clauses with the same body.

A context is said to be object-reduced if none of its object intents can be represented
as an intersection of other object intents. It can be shown that reducing the context by
removing objects whose intents are intersections of other object intents does not affect the
validity of attribute implications. The implications valid in a context K are summarized
by the Duquenne-Guigues basis [132] which has the minimal number of implications among
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implication sets sound and complete for K. For our running example, the basis consists
of the following implications (here and below, we omit curly brackets and use shortened
attribute names when this does not lead to confusion):

bright → minivan, white
SUV → dark

red → dark
minivan, SUV, dark → M

red, white, dark → M
minivan, white, bright, dark → M

Our semantics for preferences will be based on the notion of a preference context introduced
in [198] which extends the notion of a formal context.

Definition 2.1 A preference context P = (G, M, I,≤) is a formal context (G, M, I) supplied
with a reflexive and transitive preference relation ≤ on G (i.e., ≤ is a preorder). We write
g < h, or h > g, if g ≤ h and h ̸≤ g.

Figure 2.1 shows an example of a preference context.

2.3 Ceteris Paribus Preferences

Now we will be working with ceteris paribus preferences as they are defined in [197] [199].
This section recalls the definition and a few results from those papers.

Definition 2.2 A set of attributes B ⊆ M is preferred ceteris paribus to a set of attributes
A ⊆ M with respect to a set of attributes C ⊆ M in a preference context P = (G, M, I,≤)
if ∀g ∈ A′∀h ∈ B′({g}′ ∩ C = {h}′ ∩ C → g ≤ h). In this case, we say that the ceteris
paribus preference A ≼C B is valid or holds in P , and we denote this by P |= A ≼C B.

Thus, B is preferred ceteris paribus to A with respect to C if, between two objects that
agree on all attributes from C, one with all attributes from B is always at least as good as
one with all attributes from A.

Example 2.1 The preference SUV ≼bright,dark minivan holds in the context from Figure 2.1,
but the stronger preference SUV ≼∅ minivan does not. For the latter preference to hold, it
is necessary that every minivan be at a least as good as every SUV. This is not true for the
minivan c3 and the SUV c2, which are incomparable. However, they have different interior
colour: therefore their existence does not contradict the weaker preference, which can be
interpreted as a preference of minivans over SUVs with the same interior colour.

Having defined the language and semantics for preferences, we say that a preference π follows
from (or is a semantic consequence of) a set of preferences Π (notation: Π |= π) if, whenever
all preferences from Π are valid in some preference context P (Π is sound for P ; P |= Π), the
preference π is also valid in P (P |= π). It is a coNP-complete problem to decide whether
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Figure 2.2: Part of the Ceteris Paribus Translation of the Preference Context from Figure
2.1: m1 stands for (minivan, 1), s2 stands for (SUV, 2), etc.

a given preference is a semantic consequence of a given preference set [199]. A set Π of
preferences is said to be complete for P if, for all preferences π, we have P |= π if and only
if Π |= π. As we will see, from a preference context P one can build a formal context K so
that preferences valid in P correspond to certain valid implications of K. Because of this,
computational tools developed for implications can be used to compute preferences.

Definition 2.3 The ceteris paribus translation of P = (G, M, I,≤) is a formal context
KP

∼ = (G × G, (M × {1, 2, 3}) ∪ {≤}, I∼), where

(g1, g2)I∼(m, 1) ⇐⇒ g1Im,
(g1, g2)I∼(m, 2) ⇐⇒ g2Im,
(g1, g2)I∼(m, 3) ⇐⇒ {g1}′ ∩ {m} = {g2}′ ∩ {m},
(g1, g2)I∼ ≤ ⇐⇒ g1 ≤ g2.

To avoid confusion with the derivation operators of the preference context P , we denote the
derivation operators of KP

∼ by (·)
∼

instead of (·)′.

Example 2.2 In Figure 2.2, we show part of the formal context resulting from the ceteris
paribus translation of the preference context from Figure 2.1. The object set of this new
context consists of pairs of objects of the original context. Original attributes are replaced
by three copies: (g1, g2) is associated with the first copy of an attribute m if g1 has m
in the original context; with the second copy, if g2 has m; and with the third copy, if g1

and g2 agree on m, i.e., either they both have m or neither of them does. The additional
preference attribute, ≤, is associated with (g1, g2) if g2 is at least as good as g1 according to
the preference relation of the preference context.

Definition 2.4 T∼(A ≼C B), the translation of a ceteris paribus preference A ≼C B, is the
implication (A × {1}) ∪ (B × {2}) ∪ (C × {3}) → {≤} of the formal context KP

∼ .

Example 2.3 The preference SUV ≼bright,dark minivan is translated into the implication
{(SUV, 1), (minivan, 2), (bright, 3), (dark, 3)} → {≤}. The preference is valid in the prefer-
ence context from Figure 2.1 and the implication is valid in the translated context. As it turns
out, the validity of ceteris paribus preferences is always preserved under this translation.
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Proposition 2.1 A ≼C B is valid in a preference context P = (G, M, I,≤) if and only if
its translation is valid in KP

∼ , i.e.: P |= A ≼C B ⇐⇒ KP
∼ |= T∼(A ≼C B).

Proof:

Case ‘⇒’: Suppose that P |= A ≼C B and (A × {1}) ∪ (B × {2}) ∪ (C × {3}) ⊆ (g1, g2)∼

for some g1 ∈ G and g2 ∈ G. Then, A ⊆ {g1}′, B ⊆ {g2}′, and ∀c ∈ C: g1Ic if and
only if g2Ic. The latter means that {g1}′ ∩ C = {g2}′ ∩ C. Since A ≼C B holds in P ,
we have g1 ≤ g2 and (g1, g2)I∼ ≤ as required.

√

Case ‘⇐’: Conversely, assume KP
∼ |= (A×{1})∪ (B×{2})∪ (C×{3}) → {≤}. We need to

show that g1 ≤ g2 whenever A ⊆ {g1}′, B ⊆ {g2}′, and {g1}′ ∩C = {g2}′ ∩C. Indeed,
in this case, we have (A× {1})∪ (B× {2})∪ (C × {3}) ⊆ {(g1, g2)}∼ and consequently
(g1, g2)I∼ ≤, i.e.: g1 ≤ g2.

√

2.4 Preference Prediction

We now come back to the question posed in the introductory section: You are buying a
red car with bright interior. Considering the preferences specified in Figure 2.1, will it be a
minivan or an SUV?

More generally, the problem is formulated as follows: given a preference context P and
two additional objects g and h with descriptions A and B, predict which of the two is better.
The purpose of this section is to propose a possible solution to this problem based on ceteris
paribus preferences introduced in the previous section.

One possible approach is to find a preference valid in P that forces a particular order for
A and B and, consequently, for g and h. If P |= D ≼F E with D ⊆ A, E ⊆ B, and F having
no attributes from A \ B and from B \ A (i.e., F ∩ A = F ∩ B), then we predict g ≤ h,
for otherwise the preference D ≼F E would not hold in the preference context P extended
with g and h. Similarly, if a preference E ≼F D with D, E, and F as above is valid in P , we
conclude h ≤ g. It is, of course, possible to obtain g ≤ h and h ≤ g, in which case we have
to postulate indifference between g and h.

Example 2.4 Let P be the preference context from Figure 2.1 and consider determining
preferences between cars c6 and c7 with descriptions {minivan, red,bright} and {SUV, red,bright},
respectively. As discussed in Example 2.1,

P |= SUV ≼bright,dark minivan. (2.1)

From this we conclude c7 ≤ c6, and, indeed, in the example from [34], of which our preference
context is only a part, c6 is preferred to c7. The problem, however, is that we also have

P |= minivan ≼∅ SUV, bright (2.2)

for the trivial reason that there are no SUVs with bright interior in our preference context
and, thus, there is no counter-example for this preference. This forces us to state c6 ≤ c7.
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However, there is an important difference between preferences (2.1) and (2.2). The first
preference is supported by data: the preference context contains four pairs of SUVs and
minivans with the same interior colour ({c2, c4} × {c1, c5}), and, for each such pair, the
minivan is better than the SUV. Although the preference context contains no evidence against
the second preference, it does not provide any evidence in favor of the second preference,
either: there are no objects in the preference context for which a preference of one over the
other could be explained with preference (2.2).

The example of above was an instance of a more general problem: whenever we need to
compare two objects with descriptions A and B such that at least one of A and B does not
occur in the object intent of any object from the preference context, we will always have
both P |= A ≼∅ B and P |= B ≼∅ A. This motivates the following definition:

Definition 2.5 A preference A ≼C B is supported by P = (G, M, I,≤) if P |= A ≼C B and
∃g ∈ A′∃h ∈ B′(g ̸= h and g′ ∩ C = h′ ∩ C).

It seems more appropriate to use only preferences supported by the preference context to
predict preferences over objects outside this context: a preference over attribute sets can be
used for predicting a preference between two objects only if it explains an observed preference
between some objects of the preference context. This would allow us to ignore the preference

minivan ≼∅ SUV, bright

for, although it is valid in the preference context, it is not supported by it. Note that this
preference is translated into the implication

{(minivan, 1), (SUV, 2), (bright, 2)} → {≤}

of the context KP
∼ with a zero support (i.e., {(minivan, 1), (SUV, 2), (bright, 2)}′ = ∅), to

use the terminology from association rule mining [2]. Preferences supported by P always
get translated into implications X → {≤} of KP

∼ with X ′ ̸= ∅. To sum up, we will use the
following rule for predicting preferences over new objects:

Definition 2.6 Let P = {G, M, I,≤} be a preference context and g, h ̸∈ G be two objects
with descriptions A ⊆ M and B ⊆ M respectively. We say that h is hypothetically preferred
to g with respect to P if P supports D ≼F E such that D ⊆ A, E ⊆ B, and F ∩A = F ∩B.

To determine whether h is hypothetically preferred to g, we need to find a preference D ≼F E
described in Definition 2.6 or make sure that no such preference is supported by P . One way
to achieve this is to generate a semantically complete set of preferences valid in P , ignore
those that are not supported by P and see if A ≼M\(A△B) B follows from the rest (where
A△B is the symmetric difference between A and B). Such preference set is described in [197]
based on the translation of preferences into implications of KP

∼ . Unfortunately, computing
preferences as implications is essentially equivalent to enumerating Horn prime implicates
(with a fixed positive literal) of a Boolean formula specified by the set of its satisfying
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assignments, and no output-polynomial algorithm is known for this [161]. Furthermore, this
preference set can itself be exponential in the size of the preference context. A more efficient
method is thus desirable.

In [159] a polynomial-time algorithm is proposed for abduction using Horn theories repre-
sented by their characteristic models. A model of a Horn theory is characteristic if it cannot
be obtained as the intersection of other models. The representation of a Horn theory by
its set of characteristic models is essentially the same as the representation of an implica-
tion set by an object-reduced context for which this implication set is sound and complete.
The abduction algorithm works fine also on a set of models that contains some (or all) non-
characteristic models. In terms of formal concept analysis, the goal of the algorithm is, given
a context K = (G, M, I), a set A ⊆ M , and an attribute m ∈ A′′ \ A, to find, if it exists,
a minimal (with respect to subset inclusion) explanation E ⊆ A such that K |= E → {m}
and E ′ ̸= ∅. This suggests a strategy for determining if h is hypothetically preferred to g as
described in Definition 2.6: assume that h is indeed preferred to g and find an explanation
for this in the translated context KP

∼ . If g ≤ h were part of the preference context P , the
context KP

∼ would contain an object (g, h) with

(g, h)∼ = (A × {1}) ∪ (B × {2}) ∪ ((M \ (A△B)) × {3}) ∪ {≤},

where A and B are the attributes of g and h, respectively. This attribute subset is the
description of the fact that g ≤ h. A proof that h is hypothetically preferred to g can be
achieved through finding a minimal explanation for ≤ among the other attributes of (g, h)∼.
In fact, it is not even necessary to find a minimal explanation; it is enough to make sure
that an explanation exists. Note though that an explanation E must be such that E∼ does
not consist only of pairs of the form (g, g), g ∈ G, since Definition 2.5 requires a preference
to be supported by two different objects.

This is the rationale behind Procedure 2.1 which is an adaptation of the abduction
algorithm from [159] for our problem. We describe the algorithm without resorting to the
translation KP

∼ : the algorithm works directly on P . In addition to P , the algorithm receives
attribute sets A and B, which should be thought of as descriptions of two objects that must
be preferentially ordered with respect to each other. The algorithm returns true if the object
described by B is hypothetically preferred to the object described by A and false otherwise.

Procedure 2.1 predict preference(A, B, P )
Input: Object intents A, B ⊆ M , and a preference context P = (G, M, I,≤).
Output: true if P supports D ≼F E for some D ⊆ A, E ⊆ B, F ⊆ M , such that

(F ∩ A) = (F ∩ B), otherwise false.
1 For all g ∈ G do
2 D := A ∩ g′

3 For all h ∈ G\{g} with g ≤ h do
4 E := B ∩ h′

5 F := (M\(A△B)) ∩ (M\(g′△h′))
6 if P |= D ≼F E then return true
7 return false
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To find a required preference D ≼F E supported by P , Procedure 2.1 iterates through all
pairs of different objects (g, h) of P such that g ≤ h. For each such pair, it forms the weakest
preference that would explain both g ≤ h and the assumed preference of the object described
by B over the object described by A. The left-hand side of this preference must ‘match’
both g′ and A; therefore, the algorithm sets D := A ∩ g′. Similarly, the right-hand side is
E := B ∩ h′. The attributes in the ceteris paribus condition must ‘match’ the similarity
between g and h, as well as the similarity between A and B. Thus, F is set to contain all
attributes on which there is no disagreement between g′ and h′ and between A and B: each
attribute from F belongs to both g′ and h′ or to none of them and to both A and B or to
none of them; (recall that A△B is the symmetric difference between A and B). It is easy
to see that, if the resulting preference D ≼F E is valid in P , it satisfies the description in
Definition 2.6 making it possible to conclude that the object described by B is hypothetically
preferred to the object described by A. On the other hand, every preference supported by
P must ‘match’ a pair of objects g ≤ h in the sense of Definition 2.5. If, after iterating
through all pairs g ≤ h, we have not built a preference D ≼F E explaining why B should
be preferred to A, then no such preference is supported by P , and the algorithm answers
negatively.

Example 2.5 Consider again cars c6 and c7 from Example 2.4. We show how Procedure
2.1, finds a preference explaining c7 ≤ c6 on preference context from Figure 2.1. Here, A =
{SUV, red, bright} and B = {minivan, red, bright}. The algorithm starts by assigning g = c1

and h = c5, where c′1 = {minivan, white, dark} and c′5 = {minivan, red, dark}, computes
necessary intersections, and considers the resulting preference

∅ ≼bright,dark minivan, red

stating that a red minivan is always at least as good as any other car with the same in-
terior colour. This preference holds in P ; therefore the algorithm returns true and termi-
nates. Now, let us try Procedure 2.1 to find a preference suggesting c6 ≤ c7. In this case,
A = {minivan, red, bright}, B = {SUV, red, bright}, and the first pair (c1, c5) results in the
preference

minivan ≼bright,dark red,

which does not hold in P , because P contains cars c5 > c4 with the same interior colour,
c5 being a minivan and c4 being red. The next pair to be considered (c2, c1) produces the
preference

∅ ≼red,white,bright,dark ∅,
which does not hold due to the same counter-example c5 > c4. The pair (c2, c5) yields

∅ ≼bright,dark red,

and the same counter-example works here, too. The algorithm proceeds by deriving candi-
date preferences from pairs {c3}× {c1, c5} and {c4}× {c1, c2, c3, c5}, all of which are falsified
by P . Thus, we conclude that c6 ̸≤ c7 and, combining this with c7 ≤ c6, decide that c6 is
strictly preferred to c7.
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It is easy to see that Procedure 2.1 is polynomial in the size of its input. To be more precise,
let n = |G|, m = |M |, and k = | ≤ |. Then there are k − n iterations of the inner for-loop
in total in the worst case, since the two nested loops iterate through all the pairs g ≤ h
of P for different g and h. At each iteration, we compute E and F applying set-theoretic
operations to subsets of M which subsumes the time needed to compute D. Then we test
if the resulting preference D ≼F E holds in P . For this, we have to search through all
pairs g ̸≤ h of P trying to find one with D ⊆ g′, E ⊆ h′, and F ∩ g′ = F ∩ h′. Assuming
that set-theoretic operations over subsets of M take time O(m), this can be done in time
O((n2 − k)m), resulting in the overall time of O(m(k − n)(n2 − k)).

Another way to check if a preference holds in a preference context is given by Procedure
2.2 below. This algorithm will generally be more efficient if, for each attribute m ∈ M , we
precompute its extent m′.

Procedure 2.2 check preference(D ≼F E, P )
Input: a ceteris paribus preference D ≼F E over M , and preference context P = (G, M, I,≤).
Output: true if P |= D ≼F E, otherwise false.
1 X :=

⋂
m∈D m′

2 Y :=
⋂

m∈E m′

3 For all g ∈ X do
4 For all h ∈ Y do
5 if g ̸≤ h and (g′ ∩ F ) = (h′ ∩ F ) then return false
6 return true

To verify that P |= D ≼F E, we then need to compute X = D′ and Y = E ′ using |D| − 1
and |E| − 1 intersections, respectively. After this, we check if there are objects g ∈ X and
h ∈ Y that agree on all attributes from F , but for which g ̸≤ h. If we can find such objects,
the preference does not hold; otherwise, it does. This optimization does not lead to a better
worst-case theoretical complexity, but it may result in a considerable speed-up in practice:
instead of spending O(m) time on each of O(n2 − k) pairs, we would only consider pairs
from D′ × E ′. Further optimizations may include precomputing, for each m ∈ M , all pairs
of objects that agree on m: {(g, h) ∈ G2 | g′ ∩ {m} = h′ ∩ {m}}.

2.5 Related Work

Preferences have been studied in many fields as diverse as philosophy, psychology, decision
theory, and economics, to give a few examples [34]. They are of fundamental interest for
many applications of artificial intelligence, and several preference representation languages,
as well as various approaches to learning preferences from data, have been proposed by AI
researchers [103] [124]. On the other hand, a number of approaches to modeling various
notions of preferences have been developed within preference logics — notably modal pref-
erence logics. The key principle here is to extend a given preference relation on individual
outcomes to sets of outcomes in one of several reasonable ways and, based on that, derive
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preferences between propositions about these outcomes. Paper [27] provides a discussion on
the relation between preference logics and AI preference languages.

In this chapter, we focused on logical preference theories restricted to preferences be-
tween conjunctions of atomic propositions. We are interested in ceteris paribus preferences,
i.e.: preferences that hold between propositions other things being equal. In the classical
preference logic of von Wright [246] ceteris paribus preferences between propositions are re-
quired to hold only when all other things —those not mentioned in the propositions being
compared— are equal. Similarly, in CP-nets, one of the best-known preference modeling AI
formalisms [32], a preference of one attribute value over another is conditioned by values of
all other variables being identical.

In [237] a more general logic is described where it is possible to explicitly specify which
other things must be equal for a preference to hold. Similar extensions have been developed
for CP-nets [256], and a unifying framework was proposed in [27] in the form of what they
call a ‘prototypical’ preference logic, expressive enough to encode CP-nets and many of their
extensions.

The language we use here can be regarded as a syntactic fragment of this prototypical
logic, but our semantics follows that of the logic from [237] and, thus, is slightly different from
the approach taken in [27]. In particular, we interpret preferences on arbitrary preorders,
whereas [27] requires the preference relation on outcomes to be a total preorder. Another
difference is that the semantics based on preference contexts (being essentially a variant of
possible-world semantics of modal logics) allows for objects with identical descriptions to be
treated as different entities, thus, taking into account a possibility that the language used
for their description might not cover all aspects relevant to determining preferences. This
is not allowed in [27], as well as in many other AI preference languages, which makes them
incapable of handling cases when two identically described outcomes are preferred to different
sets of outcomes — a situation that very well may happen when building a preference model
from real-life data.

2.6 Conclusion and Outlook

In this chapter we presented semantics for ceteris paribus preferences based on preference
contexts, which extend formal contexts as defined in formal concept analysis. Based on
this, we proposed a two-step method for predicting preferences over objects described by
attribute sets. The first step consists in extracting ceteris paribus preferences over attribute
subsets from a preference relation defined on objects in the training set. The second step is
to predict preferences over new objects based on preferences over attribute sets extracted at
the previous step.

The first step is computationally hard, and it can result in an exponentially large set of
preferences, thus making the second step hard, too. However, we have shown that explicit
computation of preferences over attribute sets is not necessary for predicting preferences over
new objects: exactly the same prediction can be achieved by a modification of an abduction
algorithm developed for Horn theories represented by their characteristic models. Presented
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with a couple of objects, the algorithm will compute, in polynomial time (in the size of the
training dataset), a ceteris paribus preference forcing this or that preferential order between
the two objects if such a preference is supported by the training dataset. This shortcut is
made possible by representing ceteris paribus preferences as implications of a special formal
context whose size is quadratic in the size the original dataset.

It remains to see how well the approach to preference learning presented in this chapter
works in practice. It may be possible that, in application to real-life data, it will be necessary
to take into account statistical considerations by using for prediction preferences that admit
exceptions, but only those that are supported by a large volume of data. This is easy with
the proposed approach: instead of translating preferences into implications, they could be
translated into association rules satisfying certain thresholds for confidence and support [2].
Another possibility (also interesting from the scalability point of view) is to randomize the
polynomial-time prediction algorithm in such a way that it guarantees certain accuracy in
prediction.
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