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Abstract—The propagation of internal solitons of moderate amplitude in a two-layer ocean of variable depth
is studied in terms of the Gardner and Euler equations. An analytical solution is obtained with the use of
asymptotic expansions on a small parameter (bottom slope). The theoretical results are compared with the
numerical modeling results. The possibility of soliton shape preservation during pulse propagation is dis-
cussed. It is obtained that, as the initial amplitude increases, the pulse deviates from the soliton shape more

rapidly.
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INTRODUCTION

In the last decades, a change in polarity of solitary
internal waves (solitons) has been observed very often
in the coastal zones. In particular, this phenomenon
was reported in the Eastern Mediterranean [1], the
northwestern shelf of Australia [2], the South China
Sea (during the ASIAEX experiment) [3—11], the
New Jersey [12] and St. Lawrence [14] bays, the shelf
of Kamchatka [15], and in other places as well. This
phenomenon is caused by a change in sign of the inter-
nal-wave quadratic nonlinearity due to both lateral
variation in density stratification and decreasing depth
during wave propagation towards the shore. A change in
sign of soliton has been repeatedly modeled in terms of
nonlinear evolutionary equations of Korteweg—de Vries
type and its generalizations from different regions
of the World Ocean [2, 5, 16—18]. Numerical mod-
eling in terms of the Euler equations also verifies
the change in soliton polarity, for example, in the
Andaman Sea [19] and Konstanz Lake [20], and pro-
vides a good fit with the observations in St. Lawrence
Bay [14].

In theory, beyond the zone of change in quadratic
nonlinearity sign, the adiabatic transformation of
internal wave soliton is usually considered when the
ocean parameters change in such a gentle manner that
soliton preserves its shape in every moment of time;
only its amplitude and length change. The reconstruc-
tion of internal wave soliton in different shelf zones of
the World Ocean is studied in terms of the Gardner
equation [17, 18, 21—23]; this allows researchers to
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find the relationship between soliton amplitude and
the local medium parameters. The calculations show
that adiabatic transformation of soliton can take place
within considerable areas of shelf zones, where non-
linearity does not change sign and the change in
medium parameters is quite gentle [17, 18]. The
numerical integration of nonlinear Euler equations for
internal waves in the shelf zone of Oregon, in the
framework of the CODE experiment, is also an exam-
ple of the adiabatic propagation of soliton [24].

A detailed analysis of how soliton polarity changes
when changing only the sign of quadratic nonlinearity
has been made in [21, 22, 25, 26]; that when changing
only the sign of cubic nonlinearity was made in [27]. In
these publications, the area where soliton loses its
shape due to a change in nonlinearity sign has been
shown, as well as the further transformation of soliton
not in accord with the adiabatic theory.

However, the gentle character of change in
medium parameters and distances to the points where
the nonlinearity sign changes is a necessary, though
not sufficient, condition of adiabatic propagation of
solitons. In the present work, the transformation of the
internal wave soliton in a two-layer ocean of linearly
and gently changing depth is studied in detail. Analyt-
ical results obtained by the asymptotic theory are com-
pared to those obtained numerically by the Gardner
and Euler equations. The aim of this analysis is to clar-
ify the range of applicability for the asymptotic model
and determine the additional conditions for the adia-
batic transformation of soliton. The theory of adia-
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batic transformation of soliton in an inhomogeneous
ocean is described in Section 1. The data of numerical
calculations are given in Section 2. The results are
summarized in the Conclusions. The numerical mod-
els are presented in the Appendix.

1. ADIABATIC APPROXIMATION
OF THE GARDNER EQUATION
IN A HORIZONTALLY
INHOMOGENEOUS MEDIUM

The dynamics of long nonlinear internal waves of
moderate amplitude in a two-layer ocean of variable
depth is described by the generalized Gardner equa-
tion [1, 16, 28]
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This equation is written for the modified shift of the
interface between the ocean layers
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The other parameters of Eq. (1) are set by the follow-
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Zero in the right part of Eq. (1) means the initial point
from which the wave propagates. The upper layer has
the constant thickness /;, while the lower one has vari-
able depth A,(x); Ap/p is the density surge at the inter-
face between the layers and g is the free-fall accelera-
tion.

As is clearly seen, the coefficient of quadratic non-
linearity o changes its sign in the point where the
thicknesses of two layers become equal, while the coef-
ficient of cubic nonlinearity o, is always negative.
Note that the Gardner equation (1) with variable coef-
ficients is not integrable, but has two important con-
servation integrals: the one of mass flow

T &(s, x)ds = Of &, x)dt =T (¢, 0)dr )
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and the one of energy flow

j £2(s, x)ds = j 2, x)dt = jn2(z, 0)d. Q)

In the case when ocean depth changes slowly, the
soliton can be described, in the first approximation, by
the expression

£ = A

1+ Beh[y(s —wx)]’

where A, B, x, and y are interrelated parameters
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The shape of soliton found from Eq. (4) depends on
the sole parameter (amplitude): at small amplitudes,
the shape of soliton is closer to that by the Korteweg—
de Vries equation, while at high ones (B — 0) soliton
tends to the limiting, so called “thick,” soliton, whose
amplitude is found as follows:
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Here, the parameters of soliton depend on local
depth, while amplitude is arbitrary. The change in
amplitude of soliton with depth can be found analyti-
cally using the law of energy flow preservation from
Eq. (3) [17, 29].
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From whence we obtain the following transcendent
equation relative to the parameter B(x) directly con-
nected with the amplitude of wave from Eq. (6):
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Hence, we can find the value of amplitude of soliton in
any point x. Note that, for the Korteweg—de Vries
equation (small amplitudes), the width y of soliton
from Eq. (5) tends to infinity at an amplitude tending
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Fig. 1. Scheme of the problem.

to zero. As amplitude grows, the soliton becomes more
of a “Gardner type,” and its width first decreases and
then increases and tends to infinity at the amplitude of
thick soliton tending to the limiting amplitude (13).
Now it is clear that, in extreme cases of small and big
amplitudes, when the soliton width is big, the asymp-
totic theory should not work. The condition for appli-
cability of the asymptotic theory is small width of soli-
ton (in fact, small length of nonlinearity) when com-
pared to the characteristic change in depth.

To construct concrete dependences, let us consider
the transformation of long solitary waves of moderate
amplitude in the concrete numerical chute with two-
layer stratification and gently sloping bottom (Fig. 1).
The length of the sloped part of the chute is 57 km;
total depth of the basin changes from H, = 100 m to
H, = 43 m; bottom slope k = 0.001; the interface
between two layers of liquid (picnocline) is located at
the depth 4, = 30 m from the surface. The density
surge Ap/p is 0.01. The turning point is where the
coefficient of quadratic nonlinearity becomes zero (at
a distance of 40 km, where total depth is 60 m). At big
depths, the coefficient of quadratic nonlinearity is
negative, while it is positive at small ones.

The dependence of coefficients in Eq. (1) on the
coordinate is shown in Fig. 2. All coefficients change
quite smoothly and monotonously. The dependence of
width of the “Gardner type” soliton on the amplitude
of the same soliton is shown in Fig. 3. The points indi-
cate the ratios between length and amplitude of the
solitons, whose dynamics is modeled in the present
work. For the chosen solitons (¢ = 3.3 m, A =403.2 m;
a=73m,A=3112m;a=9.7m,A=298.6m; a=
129 m, A = 309.2 m; a = 17.5 m, A = 453.6 m), the
family of curves was constructed in terms of adiabatic
theory (8). These curves describe the dependence of
dimensionless amplitude a/a, (the ratio between
amplitude of reconstructing soliton in the point x and
that of the initial soliton) on the distance x to the turn-
ing point (Fig. 4).
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Fig. 2. Change in coefficients of the model with distance.

Note that the lengths of the chosen initial solitons
are no more than one percent of the distance to the
turning point (i.e., the adiabatic theory is applicable in
this case).

As was noticed in [22], where only the change in
coefficient of quadratic nonlinearity with distance was
considered, the amplitude of nearly limiting soliton, in
terms of the adiabatic theory, decreases with distance
almost following the linear law, while soliton con-
stantly remains limiting. Such a behavior for ampli-
tude of limiting soliton is also observed when all coef-
ficients of the Gardner equation change during the
propagation of soliton (Fig. 4, curve 5).

Solitons with small initial amplitude (Fig. 4, curves /
and 2) behave first as those of the “Korteweg—de Vries
type,” but their shape approach the limiting one as
depth decreases and then amplitude decreases linearly.
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Fig. 3. Curve showing the dependence of width of the
Gardner soliton on amplitude of the same soliton.
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Fig. 4. Dependence of dimensionless amplitude a/a; on
distance x in terms of the adiabatic theory.

Obviously, as the point of zero nonlinearity is
approached, the width of soliton in the adiabatic the-
ory grows with no limit and, beginning at a particular
moment, adiabatic theory becomes inapplicable in
principle.

Qualitatively, the change in amplitude of soliton in
terms of the adiabatic theory in a situation, when all
the parameters of model equation (1) change, is very
similar to the change in amplitude when the only
changing parameter is that of quadratic nonlinearity
[22]. Note that it is the parameter of quadratic nonlin-
earity that determines soliton behavior when
approaching the turning point.

Below, the limits of applicability for the adiabatic
theory are estimated on the basis of a comparison
between the results of numerically modeling soliton
propagation in terms of both the Gardner asymptotic
equation and the Euler equations.

2. RESULTS OF NUMERICAL MODELING

Numerical modeling was implemented for the
conditions described above. When the initial soliton-
like pulses (Gardner equation solitons) were set in
terms of the Euler equations, the sloped bottom was
joined to the flat bottom site at which the initial pulse
had been set. The initial amplitudes of solitonlike
pulses were also chosen in accord with solitons men-
tioned above (—3.3, —7.3, -9.7, —12.9, and —17.5 m).
The biggest width of the initial pulse was about 453.6 m,
which is much less than the scale of medium inho-
mogeneity (1.1% of the distance to the turning point).
Transformation of solitons was also modeled in terms
of the numerical model based on the Gardner equa-

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS Wol. 51 No. 1

tion. Figure 5 exhibits the results of modeling solitons
with initial amplitudes of —3.3, —9.7, and —17.5 m (in
terms of both models). Here, the solid line indicates
the transformation of the initial soliton calculated by
the Gardner equation; the dashed line indicates the
same transformation in terms of the Euler full-nonlin-
ear model. In Gardner equation (1), coordinate x is
the evolutionary variable and the pulse calculated by
the evolutionary model is shown on the time scale
located on top, in the points x, whose values are indi-
cated below the x axis. In the full-nonlinear model, in
the same points x, the time record of wave is drawn
(also seen in the figure). For illustrative purposes, the
thick solid line indicates the bottom position relative
to the x axis.

In all three cases, a wave moves faster in the Gard-
ner model than in the full-nonlinear one, as was
reported in [30, 31].

The higher the amplitude of the initial soliton is,
the earlier the soliton shape is lost; soliton generates a
positive “step” before the turning point (40 km) in
terms of both numerical models. This “step” is higher
in the Gardner model than in the full-nonlinear one.

The initially thick soliton with an amplitude of
17.5 m almost immediately (5 km after the start) gen-
erates a noticeable “step” and loses soliton shape.
After the turning point (40 km), the generation of sec-
ondary solitons of positive polarity starts; the higher
the amplitude of the initial soliton is, the more intense
generation is. The secondary positive soliton gener-
ated from the initially thick one (Fig. 5¢) also becomes
thick, as was reported in [22]. The number of second-
ary solitons in the Gardner model is bigger than in the
full-nonlinear one in all cases. Also, in all cases, the
amplitude of the negative part of the pulse is higher in
the full-nonlinear model, while the amplitude of sec-
ondary solitons is higher in the Gardner model.

A comparison of how amplitudes of solitons
change in the analytical and numerical models is
shown in Fig. 6. The propagation of the soliton with
the lowest amplitude of 3.3 m (Fig. 6a) is described by
the adiabatic theory for the first 20 km, half of the dis-
tance to the turning point. At large distances, a wave
loses its soliton shape, as is seen in Fig. 5, where the
positive “step” is seen after passing the 20-km mark.
The curves corresponding to the analytical and both
numerical models diverge, but both numerical models
demonstrate a good fit between each other.

The soliton with the initial amplitude of 7.3 m has
smaller width relative to that with the amplitude of
3.3 m (see Fig. 3) and demonstrates adiabatic propa-
gation to the distance of 15 km (Fig. 6b), or one-third
of the way to the turning point. After this, curves
diverge, but, analogously to the first case, both numer-
ical models demonstrate a good fit between each other
in how the wave amplitude depends on the distance to
the turning point. It can be stated that the scenario of
pulse change in this case, implying moderate ampli-
tude and being implemented in the full-nonlinear
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(dashed line) and the Gardner (solid line) models when passing the point of zero quadratic nonlinearity.
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Fig. 6. Change in amplitude of propagating soliton normalized to the initial amplitude ay = 3.3 (a), 7.3 (b), 9.7 (¢), 12.9 (d), and
17.5 m (e) with distance to the turning point. The adiabatic theory domain is indicated with a solid line, full-nonlinear model is
shown by a pointed line, and the Gardner model is shown by a dashed line.
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model, fits the Gardner approximate model very well,
as was reported earlier in [30—32].

Soliton with the amplitude of 9.7 m (Fig. 6¢) is the
narrowest of all of them. It seems that the narrowest
pulse is to propagate in accord with the adiabatic the-
ory to bigger distances; however, the modeling results
show its propagation to a distance as small as 12—
13 km. The pulse shape significantly differs from the
soliton one (see Fig. 5¢). The numerical models begin
to diverge here, beginning from a distance of 20 km,
and the amplitude of the wave in the full-nonlinear
model exceeds that in the Gardner model in the
respective points. Note that difference between the
models is 5—7%, but the curves converge again by the
turning point.

Soliton with an initial amplitude of 12.9 m
(Fig. 6d) propagates adiabatically only the first 5 km.
At a distance of 7—8 km, the numerical models begin
to diverge and, analogously to the previous case, the
Gardner model gives smaller values of the negative
part of the wave in the respective points relative to the
full-nonlinear one. The difference between these
models is no more than 7%, and the curves nearly con-
verge again by the turning point.

Finally, soliton with the initial amplitude of 17.5 m
differs from the soliton shape as soon as the start of the
path and leaves the adiabatic patter of propagation at a
distance of 5 km (Fig. 6e). At a distance of 10 km,
numerical curves begin to diverge and they converge
again by the turning point, like in the previous case.

Thus, even far from the turning points, where the
coefficient of quadratic nonlinearity changes its sign,
and at a quite gentle change in depth, the adiabatic
propagation of soliton takes place only in the very lim-
ited zone, whose size sharply falls as the soliton shape
approaches a thick soliton. This is explained by the
presence of two characteristic scales in the Gardner
soliton: a kink scale, which represents the forefront
and back of the soliton, and the width of the soliton
proper, which is the distance between kinks. The
dynamics of thick solitons is considered in detail from
the viewpoint of kink theory in [33—35]. In the
smoothly inhomogeneous medium, a soliton can exist
and be described by one formula if the distance
between kinks tends to zero and their velocities are
equal. In this case, the soliton is nowhere near a thick
soliton. As amplitude grows, the soliton in the inho-
mogeneous medium loses its integrity and its transfor-
mation is the transformation of each particular kink.
This process is described well in [27]. In this case, the
adiabatic theory for the transformation of soliton as a
single pulse is inapplicable.

CONCLUSIONS

Thus, in terms of three models—adiabatic, Gard-
ner, and full-nonlinear—transformations of internal
wave solitons of different amplitudes in a basin with a
sloped bottom and two-layer stratification have been
compared. It has been found that the adiabatic propa-
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gation of soliton takes place in the limited zone. The
higher the amplitude of the initial soliton is, the faster
the soliton loses its soliton shape and generates a
“step” of an opposite polarity. As the amplitude
approaches the limiting one, soliton in the inhomoge-
neous medium loses its integrity and its fronts (kinks)
possess their own dynamics. In this case, the adiabatic
theory becomes inapplicable and the pulse loses its
soliton shape.

APPENDIX

The system of full Euler equations describing the
motion of nonviscous incompressible stratified liquid
in the vertical plane, in a Boussinesq approximation, is
solved numerically:

U, + UVU = -Vp — pgk,
p, +UVp =0,
VU =0,

p = u.
Po

The system is solved in 2D space (i.e., all physical val-
ues are functions of x, z, and 7). Here, U = (u, w) is the
velocity vector, u is the velocity along the horizontal x
axis, w is the velocity along the vertical z axis, 7 is the
time, p,is the seawater density, p, is the constant char-
acteristic density (in Boussinesq approximation, p,=
po(1 + p)), p is the dimensionless correction to den-
sity, and g is the free fall acceleration.

In the spatial sense, the computational domain has
length L and height H. The bottom is described by
function z = A(x), with Hbeing the biggest depth of the
basin. The right and left boundaries are open. At the
ocean surface, the “solid top” approximation is used:
w = 0 at z= 0. The boundary condition at the bottom
is set as impermeability condition v, =0 at z = —H,
where v, is the velocity along the normal to the sur-
face. The procedure of numerical solution of the sys-
tem is based on an implicit predictor—corrector two-
stem finite difference scheme.

The density field in the initial time moment is ini-
tialized in accord with the following expression:

p(X,Z,f = 0) = pmean(z —T](X,ZJ)),

%
where p,ean(z) = —0.005tank % ,Nx, 2, t=0) =

F(x)®(z); z* is the picnocline depth; ®(z) is the solu-
tion of boundary problem for vertical structure of
mode. Horizontal disturbance F(x) was set as Gardner
soliton (4) with the desired parameters. The horizontal
and vertical velocity components were set as follows:

w2t = 0) = cF) 2R wix, 2.1 = 0) = —cd(z) 4L
dz dx

The bottom topography was also set: A(x) = 0.001x.
The model parameters are as follows: vertical step is
Vol. 51
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1 m, horizontal step is 28 m, and time step is 2 s. For
the model with the chosen parameters, the Courant—
Friedrichs—Lewy stability criterion is satisfied.

A study of nonlinear dynamics in terms of Gardner
equation (1) was made using numerical integration on
the basis of an implicit pseudospectral scheme [36],
implying the control of preservation for mass (2) and
energy (3) integrals; this model has been repeatedly
used by us to solve similar problems [29, 37—42]. The
spatial interval was chosen proceeding from the sup-
posed velocity of disturbances and evolutionary time
and was expanded when necessary. The numerical
scheme was tested on the accurate solitons of the
Gardner equation with constant coefficients; addi-
tionally, the results were compared to those obtained at
a double number of resolution points.
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