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1. Introduction

Let X be a projective manifold of dimension n, a symmetric differential of degree m
is a section of the m-th symmetric power of the sheaf of holomorphic 1-forms, SmΩ1

X . A
symmetric differential w of degree m is of rank 1 if it can be locally written in the form
w|U = fµm, where µ ∈ H0(U,Ω1

X) and f ∈ O(U). Symmetric differentials of degree
1, i.e. holomorphic 1-forms, are trivially of rank 1. Holomorphic 1-forms µ on compact
projective manifolds X have the following properties:

i) µ ∈ H0(X, Ω1
X) are closed (and locally exact).

ii) The presence of a nontrivial holomorphic 1-form µ implies the existence of a
holomorphic map to an abelian variety A(X), f : X → A(X) and µ = f∗u with
u ∈ H0(A(X), Ω1

A(X)).

iii) The presence of a nontrivial holomorphic 1-form µ imply that the abelianization
of π1(X) is infinite.

In this work we will give an extension of these properties for rank 1 symmetric differentials
of all degrees.

The notions of closed and locally exact symmetric differentials will be generalized
to symmetric differentials of all degrees (and arbitrary rank). In essence a symmetric
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differential w of degree m is closed (locally exact) if around the general point (all points)
of X w is the product of m exact 1-differentials. It will be shown that any symmetric
differential of rank 1, w, on a projective manifold X is locally of the form w|U = (df)⊗m,
outside of a locus of codimension 1. Hence w is closed, but not necessarily locally exact.
This result will be derived from the existence of a ramified covering g : X ′ → X for
which g∗w = µm, where µ is a holomorphic 1-form on X ′. As a consequence, one has
that the singular foliation Fw defined by w either has a nonalgebraic integral or gives a
fibration over a curve.

With respect to property ii) it will be shown that the presence of a nontrivial sym-
metric differential, w, of rank 1 of degree m on a projective manifold X implies the
existence a holomorphic map into a quotient of an abelian variety Aw by a cyclic group,
f : X → Aw/Zd (d | m), and w is is the pullback of an orbifold symmetric differential
on Aw/Zd.

The topological property iii) will have the following counterpart: there is a divisor E
which is contracted by the map f : X → Aw/Zd for which π1(X \E) is infinite (in fact,
π1(X \E) has a subgroup of finite index with infinite abelianization). The divisor E can
be chosen to have the following negative property: if S is a general complete intersection
of X of dimension 2, then E ∩ S is negative divisor of S. Thus if X has dimension two,
then there is a contraction of X to compact singular complex surface X ′ with the image
of E consisting of a finite set of points. It is clear in the case when dim f(X) = 2 but
we show that it holds even if f(X) is a curve.

The above results are also extended to twisted symmetric differentials of rank 1, i.e.
sections of Sm(Ω1

X) ⊗ L, where L ∈ Picτ (X) is a C∗-flat line bundle on X. Apart
from their independent interest, twisted symmetric differentials of rank 1 appear in
the decomposition of closed symmetric differentials of higher rank. Twisted symmetric
differentials of rank 1 inherit some of the geometric properties of twisted holomorphic
differentials which were studied by Green-Lazarsfeld, Beauville and Simpson [GrLa87],
[Be92], [Si93] to understand the cohomology locus S1(X) = {L ∈ Picτ (X)|H1(X,L) 6=
0}. The case where L is torsion is similar to the nontwisted case. In the case where L is
nontorsion one obtains that the presence of a nontrivial w ∈ H0(X,SmΩ1

X ⊗ L) of rank
1 on X implies the existence of a holomorphic map into a smooth curve of genus ≥ 1,
p : X → B, such that w is the pullback of twisted orbifold symmetric differential on the
curve B. Moreover, there is a divisor N with the same negative properties as E above
such that π1(X \N) is hyperbolic and the induced foliation Fw gives a fibration over a
curve.

2. Closed symmetric differentials

x
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It is well known that in the case of holomorphic 1-forms, µ, the presence of a non-
trivial closed differential µ implies the topological property that the 1st-Betti number
dim H1(X,C) 6= 0. The condition of µ being closed, is necessary since there are simply
connected complex of manifolds of dimension ≥ 3 with nontrivial holomorphic 1-forms.
In the case X is a compact kahler manifold, the connection between holomorphic 1-forms
and the homology of X is always present since all holomorphic 1-forms are closed and
can be stated in the stronger form: the dimension of H0(X, Ω1

X) determines the 1st-Betti
number of X.

For differentials of higher degree the kahlerian condition on X is not sufficient to
guarantee a link between the presence of symmetric differentials on X and the topology
of X. An example of this fact is the noninvariance of the space of symmetric differentials
on families of smooth projective manifolds Xt despite all Xt having the same underlying
topological manifold (see [BoDeO06] for an example of a family of simply connected pro-
jective surfaces for which the general member of the family has no symmetric differentials
while some special members have infinitely many).

To expect to derive topological properties one needs to introduce, as is done in the
case of holomorphic 1-forms, the notion of closed symmetric differentials.

Definition 2.1. Let w ∈ H0(X,SmΩ1
X) be a symmetric differential on a smooth complex

manifold X. The symmetric differential w is:

i) exact on an open subset U if w|U = (df1)m1 ...(dfk)mk , where
∑k

i=1 mi = m, fi ∈
O(U) and dfi ∧ dfj 6= 0.

ii) locally exact on X if there is an open covering of X, {Ui}, such that w|Ui is exact.

iii) closed on X if it is exact in a neighborhood of a general point of X.

Remarks:

i) the definition of a closed differential presented here is general (in particular, it is not
specific to rank 1 symmetric differentials).

ii) the condition of a symmetric differential being closed or exact is not linear for degrees
≥ 2.

iii) the condition of being locally exact and the condition of being closed coincide for
symmetric differentials of degree 1, but that is no longer true for higher degrees even
in the case of rank 1. This fact is reflected nontrivially on the topological geometric
properties that can be derived from either type of symmetric differentials of rank 1, see
next section.

The next proposition describes the locus where a closed symmetric differential fails to
be locally exact and describes the local form of closed but non locally exact symmetric
differentials.

3



Proposition 2.2. Let w ∈ H0(X, SmΩ1
X) be a closed symmetric differential of rank 1.

The locus where w is not locally exact is the divisor D ⊂ (w)0 ((w)0 =
∑k

i=1 miDi the
zero divisor w) with D = ∪αDα, α ∈ {i| m 6 |mi}.
Proof. Any x ∈ X has a neighborhood Ux where

w|Ux
= fµ′m (2.1)

with f ∈ O(Ux) and µ′ ∈ H0(Ux,Ω1
X) not vanishing outside codimension 2. If x ∈

X \ (w)0, then f has an m-th root on Ux (shrink Ux if necessary) and one has

w|Ux
= µm (2.2)

with µ ∈ H0(X, Ω1
X). Since w is closed, there is a neighborhood Uy of a general point

of y ∈ Ux where w|Uy = (dg)m. This implies that µ is closed on the whole Ux and hence
locally exact on Ux. The same argument also shows that if x ∈ D0 and f in (2.1) has
locally an m-th root, then w is exact on some open Ux containing x. Hence by covering
X \D with such Ux, it follows that w is locally exact on X \D0.

If x is a general point in D, then there is a sufficiently small neighborhood Ux of
x and a local system of coordinates where D ∩ Ux = {z1 = 0} and f = zmα

1 with
m 6 |mα. If w was locally exact at x, then after possible shrinking the neighborhood Ux,
the following holds zmα

1 µ′m = (dh)m, where the left side is as in (2.1) and h ∈ O(Ux).
This is impossible since the order of vanishing of the right side along D is a multiple of
m. Hence D is the locus where w is not locally closed.

The next step consists of showing that all symmetric differentials of rank 1 on pro-
jective manifolds are closed. This result will be a consequence of the result stating that
there are ramified coverings where the pullback of the symmetric differentials of rank
1 are the m-th power of a global holomorphic 1-forms. To achieve this last result it
is useful to translate symmetric differentials of degree m on X to sections of the line
bundle OP(Ω1

X)(m) on the Pn−1-bundle P(Ω1
X) over X . Given a symmetric differential

w ∈ H0(X,SmΩ1
X) on X we denote by:

Zw ⊂ P(Ω1
X)

the divisor of P(Ω1
X) defined by the zero locus of the section of OP(Ω1

X)(m) associated
with w.

The subvariety Zw can be decomposed into the sum of the horizontal and vertical
components relative to the projection π : P(Ω1

X) → X:

Zw = Zw,h + Zw,v (2.3)

The vertical component is the pullback of the divisor of zeros of w, Zw,v = π∗D0. The
differential w is of rank 1 if the horizontal divisor is of the form:
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Zw,h = mZ (2.4)

As described before (2.4) is equivalent to the symmetric differential w to be locally of
the form w|U = fµm, with µ ∈ H0(U,Ω1

X) and f ∈ O(U). A symmetric differential
of rank 1 defines at every x ∈ X \D0 a single hyperplane in TxX passing through the
origin (in general a symmetric differential of degree m defines a cone on TxX defined by
a homogeneous polynomial of degree m).

Theorem 2.3. Let X be a projective manifold and w ∈ H0(X,SmΩ1
X) symmetric dif-

ferential of rank 1, then the following holds:

i) if m divides the multiplicity of all components of the zero divisor of w, then there
is an unramified cyclic covering of degree d|m, g : X ′ → X, where g∗w = µm with
µ ∈ H0(X ′, Ω1

X′).

ii) otherwise, there is a ramified covering of degree d, d|m, g : X ′ → X, where X ′ is
smooth and g∗w = µm with µ ∈ H0(X ′, Ω1

X′). The covering X ′ can be such that it has
a cyclic Zd action and the quotient variety X ′/Zd has a birational morphism onto X.

iii) w is closed (moreover, it is locally exact in case i)).

Proof. Given a symmetric differential w of degree m and rank 1 on X, we can find a
covering {Ui} of X where w|Ui = fiµ

⊗m
i , fi ∈ O(Ui) and µi = Ω1

X(Ui). If all the fi have
an m-th root, then one has w|Ui = µ̄⊗m

i with µ̄i ∈ Ω1
X(Ui). On the intersections Uij ,

µ̄i = εijµ̄j , with εij m-th roots of unity. Associated with the 1-cocycle {εij} ∈ H1(X,Zm)
there is an unramified covering g : X ′ → X of degree d, d|m, where the pullback of the
1-cocycle becomes cohomologous to zero. Hence one can multiply the pullbacks g∗µ̄i by
m-th roots of unity to form a holomorphic 1-form µ on X ′ such that µm = g∗w. Since
global 1-forms on X ′ are closed, it follows that the µ̄i are closed and finally that w is
closed.

In the case some of the fi have no m-th in O(Ui), one needs to show that there is a
smooth ramified covering g : X ′ → X where the fi acquire m-th roots and g∗w = µ⊗m

with µ ∈ H0(X ′,Ω1
X′).

The divisor Zw in P(Ω1
X) associated with w has the decomposition Zw = mZ +

π∗D0, where Z is an horizontal divisor and D0 is the divisor of zeros of w. The line
bundle O(Z) is of the form O(Z) ' OP(Ω1

X)(1) ⊗ π∗L, where L is a line bundle on X

satisfying Lm = O(−D0), since O(Zw) ' OP(Ω1
X)(m). The twisted holomorphic 1-form

µ̃ ∈ H0(X, Ω1
X ⊗L) corresponding to the canonical section of O(Z) satisfies µ̃m⊗ s = w,

s is the canonical section associated with the zero divisor D0.

The desired covering g : X ′ → X follows from the standard covering constructions
(see [Bo78] and also [La01] for an overview of the covering constructions). The key
step is building an intermediate covering c : X ′′ → X for which c∗s = (s′′)m, where
s′′ ∈ H0(X ′′,O(D′′

0 )) and mD′′
0 = c∗D0. Consider the irreducible decomposition of the

zero divisor, D0 =
∑k

i=1 miDi and let r = gcd(m,m1, ...,mk). Then build the cyclic
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covering of X associated with (L∗)m/r = O(1/rD0), the reason for factoring r is to make
the cyclic covering irreducible but note that X ′′ is generically singular. The cyclic cover
c is such that c∗L = O(−D′′

0 ) and c∗D0 = mD′′
0 . Let s′′ be the canonical section of

O(D′′
0 ) such that s′′m = c∗s. To finalize, let g = σ ◦ c : X ′ → X where σ : X ′ → X ′′ is a

resolution of singularities of X ′′. Set D′
0 = σ∗D′′

0 and s′ = σ∗s′′ and µ = g∗µ̃⊗ s′, then
µm = g∗w as desired since g∗L = O(−D′

0), mD′
0 = g∗D0 and s′m = g∗s, completing

step i).

The variety X ′ can be constructed with an action of Zd since X ′′ has a cyclic action
and one can do an equivariant of X ′′ ([AbWa97].

The claim iii) follows from i) and ii) since away from the ramification locus w is locally
the m-th power of a holomorphic 1-form whose pullback by g is closed.

A symmetric differential w of rank 1 defines a foliation Fw whose leaves are the
hypersurfaces on which the pullback of w vanishes. Using theorem 2.3 one has that
there is a ramifified cover for which the pre-image of the leaves of Fw are the leaves of a
foliation defined by a holomorphic 1-form, this leads to:

Corollary 2.4. A symmetric differential of rank 1, w ∈ H0(X,SmΩ1
X), defines a sin-

gular holomorphic foliation Fw on X with the property that either:

i) Fw has a nonalgebraic integral, or

ii) Fw gives a fibration over a curve.

Proof. Theorem 2.3 gives a cyclic ramified covering f : X ′ → X for which f∗w = µ⊗m

with µ ∈ H0(X ′,Ω1
X′). The pre-image of the leaves of the foliation Fw are the leaves

of the foliation Fµ defined by the holomorphic 1-form µ on X ′, for which the desired
dichotomy holds. If Fw has a 1-dimensional family of compact leaves, then so does Fµ

and hence there is a map onto a curve h : X ′ → C ′ whose fibers are the leaves of Fµ.
Moreover the map h comes from the Albanese map aX′ : X ′ → A(X ′) composed with the
quotient map p : A(X ′) → A/Tµ, where Tµ is the maximal abelian subvariety of A(X ′)
contained in a leaf of the form µ′ ∈ H0(A(X ′), Ω1

A(X′)) whose pullback is a∗X′µ′ = µ.
The cyclic action on X ′ induces a cyclic action on A(X’) which descends to A/Tµ (µ′ is
an eigenvector for the associated linear action on H0(A(X ′), Ω1

A(X′))). The curve C ′ is
just the image of X ′ under the map p ◦ aX′ which is an equivariant map for the cyclic
action, hence the map h : X ′ → C ′ descends to a map f : X → C, where C is the cyclic
quotient of C ′, giving the desired fibration on X.
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3. Holomorphic maps and topological properties

The purpose of this section is to describe the complex geometric and topological
properties associated with the presence of symmetric differentials of rank 1 on a projective
manifold.

3.1. Structure theorem.

As a starting point, it will be shown that if a complex manifold X has a symmetric
differential of rank 1 that is locally exact, then there are purely topological implications
on X.

Proposition 3.1. Let X be a compact complex manifold with a nontrivial locally exact
w ∈ H0(X, SmΩ1

X) of rank 1. Then π1(X) is infinite, in fact, π1(X) has a subgroup
with infinite abelianization.

Proof. The condition of local exactness on w states that it exists an open covering of X
{Ui} where w|Ui = (dfi)m. Hence

dfi = εijdfj (3.1)

on Uij with εij an m-th root of unity. Associated with the 1-cocycle {εij} in H1(X,Zm),
there is a flat line bundle Lε and a finite unramified d-covering with d|m, f : X ′ → X,
where the pullback f∗Lε ' OX′ . The condition (3.1) gives a nontrivial element in µ ∈
H0(X, Ω1

X⊗Lε) and hence a nontrivial element of f∗µ ∈ H0(X ′, Ω1
X′) since f∗Lε ' OX′ .

The conclusion follows from the fact that if the abelianization of π1(X ′) is finite,
then the periods of f∗µ would be trivial and its integral would define a nonconstant
holomorphic function on X ′.

It was shown in the previous section that the hypothesis of the above proposition
hold if X is a kahler manifold and w is a m-symmetric differential of rank 1 for which
all multiplicities of the components of its zero divisor are divisible by m.

As was described and announced in the previous section, there are global symmetric
differentials of rank 1 which are not locally exact and different geometric properties
should be expected from their presence. One of the key differences is that in contrast with
the above proposition, there are simply connected compact kahler manifolds nontrivial
symmetric differentials of rank 1.
Example: there are simply connected surfaces with nontrivial closed differentials. The
example to be described is inspired in our previously example [BDeO06]. Let A3 be
a 3-dimensional abelian variety. Consider a surface X which is a smooth hypersurface
section of A3 of sufficiently high degree, invariant under the natural involution θ = −id
and passes through one and only one (for simplicity) of the fixed points of θ, call this
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point p. The claim is that the minimal resolution of X̃ of X/θ is one of the desired
examples.

The manifold X̃ is simply connected since H0(X̃, Ω1
X̃

) = H0(X, Ω1
X)θ = 0 (there are

no invariant forms under θ) and π1(X̃) is abelian. The fundamental group π1(X̃) is
abelian since π1(X) = π1(A3) = H1(A3,Z), π1(X) → π1(X/θ) is surjective (every loop
with base point the singular point of X/θ lifts to a loop with base point the fixed point
of X by θ) and π1(X̃) = π1(X/θ) (the exceptional locus is P1).

To produce a nontrivial symmetric differential of rank 1 on X̃ one picks the 1-
differential w ∈ H0(A3, Ω1

A3) which is trivial on TpX, then w2 induces the desired dif-
ferential on X̃. Denote the induced differential on X induced by w also by w. The
differential w2 is invariant under the involution and hence it induces a differential w̃2 on
X̃ \ E, where E is the (−2)-curve over the nodal singularity of X/θ. What remains to
be shown is that w̃2 extends to a holomorphic differential of degree 2 on the whole X̃.

To see this we opt for an explicit description. After the appropriate choice of coordi-
nates around p on A3, X can be locally described by {z3 = f(z1, z2)} where:

f(z1, z2) =
∞∑

l=1

∑

m1+m2=2l+1

am1m2z
m1
1 zm2

2 (3.2)

where l ≥ 1 (this form guarantees invariance under θ and dz3|TxX = 0). The differential
w is given by w = dz3 = df . Let X ′ be the auxiliary surface obtained by blowing up
X at p. This surface comes with the blow up map at p, σ : X ′ → X, and a double
cover map onto X̃, g : X ′ → X̃. A point in σ−1(p) has a neighborhood (U, (u, v)) on
which σ(u, v) = (u, uv) and g(u, v) = (u2, v). The condition for an invariant symmetric
differential on X ′ to be the pullback of a holomorphic differential on X̃ is that the
coefficients of the terms (du)k(dv)m−k must vanish along u = 0 with multiplicity at least
k. This is guaranteed for σ∗w2 since σ∗f = urh(u, v) with r ≥ 3 by (3.2). Note that
since the Taylor expansion of σ∗f have always u to an odd power, that the differential
w̃2 on X̃ induced from (σ∗df)2 can not be locally exact along E.

The example just described has the key characteristics of the general case as the
following result shows.

Theorem 3.2. (Structure Theorem) Let X be a projective manifold and w ∈ H0(X, SmΩ1
X)

a nontrivial symmetric differential of rank 1. If (w)0 =
∑

i liDi, Di irreducible, is the
zero divisor of w and E =

∑
j∈{i|m-li}Dj , then:

i) There is a holomorphic map from X to a quotient with isolated singularities of
an abelian variety Aw by a cyclic group Zd with d|m, aw : X → Aw/Zd, such that
w = aw

∗(u) and u ∈ H0(Aw/Zd, S
m
orbΩ1

Aw/Zd
).

ii) π1(X \E) is infinite. More precisely, π1(X \E) has a normal subgroup Γ for which
π1(X \E)/Γ is cyclic of order ≤ m and its abelianization, Γ/[Γ, Γ], is an infinite group.
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The divisor E is nonpositive in the sense that it is contracted to a point by the map
aw : X → Aw/Zd (dim aw(X) ≥ 1).

Proof. Recall that theorem 2.3 constructed a covering f : X ′ → X ramified over the
divisor E for which f∗w = µm, µ ∈ H0(X ′, Ω1

X′). The degree d of the constructed
covering map f is minimal among all the degrees of coverings f : X̃ → X with the
property that exists µ ∈ H0(X̃, Ω1

X̃
) satisfying f∗w = µm. Moreover, the covering

manifold X ′ is built with a Zd action and the covering f : X ′ → X factors through the
quotient X ′/Zd where the induced map σ : X ′/Zd → X a birational morphism.

The universal property of the Albanese implies that the action of Zd on X ′ induces
an action on the Albanese variety of X ′ with respect to which the Albanese map aX′ :
X ′ → A(X ′) is equivariant. The next two lemmas, of independent interest, will be used
to build an invariant abelian subvariety Aµ of A(X ′) with quotient A = A(X ′)/Aµ such
that: a translate of each connected component of E is contained in Aµ; µ is a pullback
of a differential on A; A/Zd only has isolated singularities.

Lemma 3.3. Let Y be a kahler manifold with a Zd action, aY : Y → A(Y ) the Albanese
map and u ∈ H0(Y, Ω1

Y ) an eigenvector associated with a faithful character of the induced
action on H0(Y, Ω1

Y ). Then there exists an invariant subtorus i : Tm ↪→ A(Y ), such that
u is induced from A(Y )/Tm and [A(Y )/Tm]/Zd is an orbifold with isolated singularities.

Proof. The action of Zd on A(Y ) is an affine action where the linear part of the action is
the dual of the faithful, by the hypothesis, action of Zd on H0(Y, Ω1

Y ). Associated with
the faithful linear action of Zd on A(Y ), one has a cyclic subgroup < f >⊂ End(A(Y ))
isomorphic to Zd where f is the endomorphism associated with the action of a generator
of Zd. From the action one also has the decomposition H0(Y, Ω1

Y )∗ =
⊕d−1

i=0 Eχi , where
the χi’s are the d characters of Zd.

Consider the endomorphisms I − fs ∈ End(A(Y )), where s|d but s 6= d, the identity
component of Ker (I − fs) is a subtorus Ts ⊂ A(Y ). Let Tm = SpansTs be the subtorus
consisting of the span of the subtori Ts and i : Tm ↪→ A(Y ) its embedding. Let u′ ∈
H0(A(Y ), Ω1

A(Y )) be the differential such that a∗Y u′ = u, then i∗u′ = 0 since Tm it is
the subtorus associated with the linear subspace

⊕
j Eχj where the χj are not faithful

characters. This implies that u′ and hence u are pullbacks of a differential u′′ on the
quotient torus A(Y )/Tm.

The quotient variety [A(Y )/Tm] have an induced Zd-action, the choice subtori Tm was
to guarantee that all characters associated to this action are faithful. This implies that
[A(Y )/Tm]/Zd is an orbifold with only isolated singularities (the set of fixed points for
the action is finite).

Lemma 3.4. Let Y be a kahler manifold with an action of a finite group G, and i : Z↪→Y
an invariant subvariety with connected components Z̄α. Then there exists an invariant
subtorus TZ of the Albanese A(Y ) with quotient A(Y, Z) = A(Y )/TZ for which
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a∗Y,Z(H0(A(Y,Z), Ω1
A(Y,Z))) = {µ ∈ H0(Y, Ω1

Y )|∀α, Z̄α ⊂ Lα, Lα ∈ Lµ} (3.3)

where aY,Z : Y → A(Y,Z) is the composition of the Albanese map with the quotient map
and Lµ the set of leaves of µ.

Proof. Let aY : Y → A(Y ) be the Albanese map and let Z = ∪Zi, Zi irreducible,
ii : Zi ↪→ Y be the inclusion maps and σi : Ẑi → Zi be resolutions of the Zi. For
each map ji = ii ◦ σi : Ẑi → Y comes a Lie group homomorphism ai : A(Ẑi) → A(Y ).
Each subtori ai(A(Ẑi)) is defined by the subspace Vi of H0(A(Y ), Ω1

Y ) consisting of the
differentials whose pullback to Zi is trivial. The subtorus TZ = Spani[ai(A(Ẑi))] by
construction contains a translate of aY (Z̄α) of each connected component Z̄α. Since
the subvariety Z is invariant this implies that the subspaces Vi are permuted under the
action and hence TZ is also invariant.

With respect to the equality (3.3), the inclusion a∗Y,Z(H0(A(Y,Z), Ω1
A(Y,Z))) ⊂ {µ ∈

H0(Y, Ω1
Y )|∀α, Z̄α ⊂ L,L ∈ Lµ} follows from the fact that a translate of aY (Z̄α) is

contained in TZ . To see the reverse inclusion, for each µ ∈ H0(Y, Ω1
Y ) denote by µ′ ∈

H0(A(Y ), Ω1
A(Y )) the differential for which a∗Y µ′ = µ, the condition that each Z̄α ⊂ L,

with L ∈ Lµ implies that ai(A(Ẑi)) are contained in leaves of µ′. Hence TZ is contained
in a leaf of µ′ from which follows that µ′ is the pullback of a differential on A(Y,Z)
finishing the proof.

Returning to the proof of theorem we observe two facts:

1) the holomorphic 1-form µ satisfying µ⊗m = f∗w is an eigenvector associated with
a faithful character of the Zd action on H0(X ′, Ω1

X′). This holds since d is the minimal
degree for the coverings where f∗w has a m-th root.

2) The pre-image of the ramification locus f−1E is Zd-invariant, in fact, the strict
pre-image of E is fixed by the action.

Let Aµ′ be the maximal abelian subvariety of A(X ′) that is contained in a leaf of
µ′, where µ′ is the differential on A(X ′) such that a∗X′µ′ = µ. The subtorus Aµ′ is
Zd-invariant, since µ′ is an eigenvector for the action. Let q : A(X ′) → Aw = A(X ′)/Aµ′

be the standard quotient map and aµ = q ◦ aX′ : X ′ → Aw.

The abelian subvarieties Tm and Tf−1(E) of A(X ′) coming respectively from applying
lemma 3.3 to pair (X ′, µ) and lemma 3.4 to the pair (X ′,f−1(E)) are contained in Aµ′

since they are both contained in the leaf of µ′ passing through the origin. Hence one has
all the desired properties: there is µ′′ ∈ H0(Aw, Ω1

Aw
) such that aµ

∗µ′′ = µ, aµ contracts
each connected component of f−1E to a point and that the Zd action descends to Aw

making Aw/Zd an orbifold with only isolated singularities. Finally we have the diagram:
10



X ′ aµ−−−−→ Aw

f

y g

y
X

aw−−−−→ Aw/Zd

(3.4)

The Zd-invariant symmetric differential µ′′⊗m gives a section u of the sheaf Sm
orbΩ

1
Aw/Zd

of symmetric m-th differentials on the orbifold Aw/Zd
(by definition). The pullback of

this symmetric differential is w finishing the proof of i).
Part ii) is a direct consequence of the theorem 2.3 as the theorem implies that

H1(X ′,Z) is infinite and therefore H1(X ′ \ f−1(E),Z) is also infinite. The induced
covering f : X ′ \ f−1(E) → X \E is a cyclic unramified covering of the degree d. Hence
the exact sequence 0 → π1(X ′ \ f−1(E)) → π1(X \ E) → Zd → 0 holds and part ii)
follows. The part of E being contracted follows from i).

Concerning the negative properties of the divisor E appearing in the Structure Theo-
rem one has two distinct cases: 1) aw(X ′) has dimension ≥ 2, then the relevant negative
property of the divisor E is that E is contracted via a holomomorphic map to a locus
of codimension ≥ 2; 2) aw(X ′) = 1, in this case E needs not have negative properties.
The next section addresses second case and it will be shown that one can find a divisor
N ⊂ E with negative properties,

.

3.2. Symmetric differentials induced from curves.

We consider the case when the symmetric differential of rank 1, w, on X is induced
from a curve C, i.e. there is a holomorphic map f : X → C and an orbifold symmetric
differential u in C such that f∗u = w. This occurs for example when in the structure
theorem the image aw(X) ⊂ Aw/Zd is curve. Note that in this case the foliation defined
by w is algebraic.

One of aims of this section is to show that also when w is induced from a curve one
can find a divisor N on X such that π1(X \N) is infinite and N has negative properties.
Actually, the result shown will be stronger: in the case w is induced from a curve one has:
either π1(X) is infinite or exists an N with the negative properties (a general complete
intersection S of dimension 2 in X has N ∩S as a negative divisor) such that π1(X \N)
is hyperbolic, i.e. it has a subgroup of finite index which surjects onto a free group Fn,
n ≥ 2. The negative properties of N follow from the fact that its connected components
are properly contained in the fibers of f .

11



Theorem 3.2 for the case w is induced from a curve gives in particular the following
diagram:

X ′ âµ−−−−→ C ′

f

y g

y
X

âw−−−−→ C

(3.5)

C ′ is the normalization of the curve aµ(X ′) in Aw and C is the quotient of C ′ by Zd

(also smooth). The symmetric differential w ∈ H0(X, SmΩ1
X) is the pullback w = âwu,

where u ∈ H0(C, Sm
orbΩ1

C′/Zd
).

To extract the desired geometric properties for X (i.e. the existence of a divisor
N ⊂ X with negative properties such that π1(X \N) is infinite) the only requirements
needed on X will be existence of a holomorphic map f : X → C such that the pullback
of an orbifold symmetric differential on C (relative to some orbifold structure on C) is
holomorphic on X.

Theorem 3.5. Let X be a projective manifold with a holomorphic map f : X → C
to a smooth curve C such that there is an orbifold symmetric differential u on C with
holomorphic pullback f∗u. Then X has a divisor N which is contained in the fibers of f
but does not contain any fiber such that:

i) π1(X \N) is infinite.

ii) If f∗u vanishes on any fiber, then π1(X \N) is hyperbolic.

Proof. One can assume the fibers of the map f are connected (if f is not connected
use the connected map from the Stein factorization of f and the fact that the orbifold
symmetric differentials are preserved via pullback by the finite map in the factorization).
If the genus of C is g ≥ 1, then i) is immediate and ii) follows from the arguments
described below for the case C = P1 plus the fact that the orbifold fundamental group
of an elliptic curve with nontrivial orbifold structure is hyperbolic.

What remains is the case C = P1. An orbifold symmetric differential u of P1 of
degree m is a meromorphic section of K⊗m

P1 whose poles, u|Ux = z−ldzm, have order
l < m (for z−ldzm to be resolved via a covering map t → td it needs l < m). Since the
deg K⊗m

P1 = −2m and the poles of u are of order < m, it follows, in particular, that there
are at least 3 distinct poles.

More generally, u has r poles pi ∈ P1 with orders li, i = 1, ..., r for which

r∑

i=1

li = 2m (3.6)
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The condition that the pullback f∗u is holomorphic implies that the multiplicities of
irreducible components Dij of the fibers Fi = f−1(pi) =

∑
j dijDij satisfy:

dij ≥ m/(m− li) (3.7)

This follows from the fact that the pullback of z−l(dz)m via a map ψ : (∆, t) → (∆, z)
given by ψ(t) = td is t(d−1)m−dl(dt)m. Let di = min(dij), then (3.7) gives also di ≥
m/(m− li).

Denote by Di ⊂ Fi the divisor that is union of all the Dij which have multiplicity di,
Ni the union of all irreducible components of Fi not in Di and N = ∪Ni. The fibration
f : X → P1 implies the following surjection between the fundamental group of X \ N
and the orbifold fundamental group of P1 with orbifold structure given by the multiple
fibers Di (see for example [CaKeOg]).

π1(X \N) → πorb
1 (P1|(d1, ..., dr)) → 1 (3.8)

πorb
1 (P1|(d1, ..., dr)) = π1(P1 \ {p1, ..., pr})/Rd1...dr , Rd1...dr is the smallest normal sub-

group of π1(P1 \{p1, ..., pr}) containing the γdi
i where the γi are the simple loops around

pi’s.

The orbifold fundamental group πorb
1 (P1|(d1, ..., dr)) is infinite if

r∑

i=1

1/di ≤ r − 2 (3.9)

and is hyperbolic if the strict inequality holds. Finally the bounds (3.7) and the equality
(3.6) give exactly (3.9) (

∑r
i=1 1/di ≤

∑r
i=1(m− li)/m = r− 2). Hence item i) is proved.

The hypothesis of item ii) (f∗u vanishes along a fiber of f), implies that one of
following holds: a) u vanishes somewhere on P1; b) f∗u vanishes along one of the fibers
Fi above the poles of u; c) f∗u vanishes along a fiber f−1(p) not over a pole. The case
a) and b) imply respectively that

∑r
i=1 li > 2m and one of the di > m/(m − li), hence∑r

i=1 1/di < r−2 and the hyperbolicity of π1(X\N) follows. The case c) implies that the
fiber f−1(p) is also multiple and hence the surjection π1(X\N) ³ πorb

1 (P1|(d1, ..., dr, dp))
with dp the multiplicity of the fiber over p holds. Since

∑r
i=1 1/di + 1/dp < (r + 1)− 2

the hyperbolicity of π1(X \N) is again guaranteed.

Corollary 3.6. Let X be a projective manifold with a symmetric differential w ∈
H0(X, SmΩ1

X) of rank 1 induced from a curve (via the map f : X → C). Then ei-
ther:

i) π1(X) is infinite.
or

13



ii) ∃N a divisor with π1(X \N) hyperbolic and whose connected components Ni ( Fi,
where Fi are fibers of f .

Proof. If the divisor of zeros (w)0 is trivial, then by theorem 2.3 π1(X) is infinite. Oth-
erwise by hypothesis and theorem 3.2 there is a fibration f : X → C onto a curve C
with f∗u = w, u an orbifold symmetric differential on C. The divisor of zeros (w)0 must
be contained in the fibers of f and we are in the case ii) of theorem 3.5 concluding the
proof.

Concerning what negativity properties one can obtain on divisors whose complement
has infinite fundamental group, the next definition sets the goal.

Definition 3.7. A divisor D on a projective manifold is said to be s-negative if its
intersection D∩S with a complete intersection S of dimension 2 is a negative divisor of
S.

Corollary 3.8. If X is a projective manifold with a nontrivial symmetric differential of
rank 1, then there is a s-negative divisor N with π1(X \N) infinite.

Proof. The Structure Theorem proves the result with N = E if dim aw(X) ≥ 2. The
case when the image aw(X) is a curve is settled using the N of corollary 3.6.

3.3. Twisted symmetric differentials of rank 1.

In this section one considers rank 1 twisted symmetric differentials, w ∈ H0(X, SmΩ1
X⊗

L), where L is a C∗-flat line bundle on X (or equivalently L has a trivial complex Chern
class). The space of C∗-flat line bundle on X will be denoted by Picτ (X). Twisted
symmetric differentials of rank 1 inherit some of the geometric properties of twisted
holomorphic differentials which were studied in [GrLa], [Be], [Si] and [Ar] to understand
the cohomology locus S1(X) = {L ∈ Picτ (X)|H1(X, L) 6= 0}. The relevance of twisted
symmetric differentials of rank one on the topic of closed symmetric differentials comes
from the fact that they appear naturally in the decomposition of closed symmetric dif-
ferentials of higher rank, see [BoDeO10].

Theorem 3.9. Let X be a projective manifold with a nontrivial twisted symmetric dif-
ferential of rank 1, w ∈ H0(X, SmΩ1

X ⊗L), for a non-torsion L ∈ Picτ (X). Then there
is a holomorphic map into a smooth curve of genus ≥ 1, p : X → B, such that:

i) L⊗l = p∗L0 with L0 ∈ Pic0(B)
14



ii) w⊗l = p∗u with u = H0(B, Slm
orbΩ

1
B ⊗ L⊗l

0 ).

Proof. The line bundle L ∈ Picτ (X) might not be divisible by m. So one does the abelian
Galois covering h : Y → X associated with the surjection of π1(X) to H1(X,Z)tor to
make h∗L ∈ Pic0(Y ) and hence divisible. Let L1 be such that L⊗m

1 = h∗L, then
h∗w ∈ H0(Y, Sm(Ω1

Y ⊗ L1)), before proceeding set w1 = h∗w. The next step is the use
of the straightforward generalization of theorem 2.3 for Ω1

Y ⊗L1 that gives a finite cyclic
ramified covering f : Y ′ → Y such that f∗w1 = µ⊗m with µ ∈ H0(Y ′,Ω1

Y ′ ⊗ f∗L1).

One then proceeds to apply the results of [Gr-La87], [Be92], [Si93]. The line bun-
dle L2 = f∗L1 has its dual L∗2 ∈ S1(Y ′) = {L ∈ Picτ (Y ′)|H1(Y ′, L) 6= 0}, since
H1(Y ′, L∗2) ' H0(Y ′,Ω1

Y ′ ⊗L2). From the work of Simpson [Si93] one has that since L∗2
is non torsion, L∗2 must be in a positive dimensional component of S1(Y ′). The results
of Green-Lazarsfeld [Gr-La87], then imply that there exists a v ∈ H0(Y ′, Ω1

Y ′) such that
the following sequence, coming from a derivative complex, is totally not exact at the
middle:

H0(Y ′, L2)
∧v−−−−→ H0(Y ′, Ω1

Y ′ ⊗ L2)
∧v−−−−→ H0(Y ′, Ω2

Y ′ ⊗ L2) (3.10)

that is, all α ∈ H0(Y ′, Ω1
Y ′ ⊗ L2) with α ∧ v = 0 are such that α 6= v ⊗ φ with φ ∈

H0(Y ′, L2).

The above gives in particular that there is a v ∈ H0(Y ′, Ω1
Y ′) such that µ∧ v = 0 and

µ 6= v ⊗ φ with φ ∈ H0(Y ′, L2) (a non-proportionality condition). These two conditions
give due to Beauville [Be92] a Castelnouvo-De Franchis type theorem. The Castelnuovo-
De Franchis type theorem states that Y ′ has a connected holomorphic map, q′ : Y ′ → C ′,
onto a curve of genus g ≥ 1,

µ ∈ H0(Y ′, q′∗Ω1
C′ ⊗ L2) (3.11)

and L2 ∈ Picτ (X, q′) (i.e L2 is flat and is trivial in one fiber of q′).

The cyclic action on Y ′ and the abelian action on Y have respectively f∗w1 and
w1 = h∗w as an invariant. Hence from the connected map q′ : Y ′ → C ′, whose fibers
are the leaves of the foliation defined by f∗w1, one obtains the following commutative
diagram where the horizontal maps are connected and their targets smooth curves.

Y ′ q′−−−−→ C ′

f

y f̄

y
Y

q−−−−→ C

h

y h̄

y
X

p−−−−→ B

(3.12)
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The map f̄ is a cyclic ramified covering and h̄ is an unramified Galois covering.
The line bundle L ∈ Picτ (X, p) since L2 ∈ Picτ (Y ′, q′). This implies L = p∗H ⊗

O(
∑

kiFi) with H ∈ Pic0(B), Fi the multiple fibers of p and
∑

ki/mi = 0 (mi the
multiplicities of the multiple fibers). If l = l.c.m{mi}, then line bundle O(

∑
kiFi)⊗l ∈

p∗Pic0(B). Hence there is a L0 ∈ Pic0(B) such that

L⊗l = p∗L0 (3.13)

.
and hence g(B) ≥ 1 since L0 is non-torsion. From (3.13) and (3.12) it follows that L⊗ml

2

is the pullback of an element in Pic0(X). More precisely, L⊗ml
2 = q′∗(h̄ ◦ f̄)∗L0. This

and (3.11) imply that µ⊗ml = q′∗t′ with t′ ∈ H0(C ′, SmlΩ1
C′ ⊗ (h̄ ◦ f̄)∗L0). The twisted

symmetric differential t′ is invariant under the cyclic action on C ′ and gives and element
t ∈ H0(C, Sml

orbΩ
1
C ⊗ h̄∗L0) which is invariant for the abelian action on C and hence gives

an the desired u ∈ H0(B, Slm
orbΩ

1
B ⊗ L⊗l).

Corollary 3.10. A twisted symmetric differential of rank 1, w ∈ H0(X,SmΩ1
X ⊗ L),

with L ∈ Picτ (X) non-torsion defines a singular holomorphic foliation Fw on X which
is a fibration over a curve.

Proof. Immediate consequence of the previous theorem.

Theorem 3.11. Let X be a projective manifold with w ∈ H0(X,SmΩ1
X⊗L) a nontrivial

twisted symmetric differential of rank 1. Then:
i) if L is torsion, then there is a s-negative divisor N of X such that π1(X \N) has

a subgroup G of finite index with infinite abelianization, G/[G,G].
ii) if L is non torsion, then π1(X) surjects onto π1(B) with B a curve with g(B) ≥ 1

and there is a s-negative divisor N of X such that π1(X \N) is hyperbolic.

Proof. i) follows from corollary 3.8 since there is an l such that L⊗l = O and hence w⊗l

is an ordinary symmetric differential of rank 1 on X.
ii) is a consequence of theorem 3.9 and the arguments of theorem 3.5. Consider the

holomorphic map p : X → C built in theorem 3.9 where g(C) ≥ 1. If none of the fibers of
p has multiplicity ≥ 2, then the twisted symmetric differential u = H0(B, Slm

orbΩ
1
B⊗L⊗l

0 )
such that w⊗l = p∗u found in theorem 3.9 would be in H0(C,SlmΩ1

C ⊗ L⊗l
0 ). This

situation would force g(C) ≥ 2 since L0 is non-torsion and Ω1
C ' O if C is elliptic. If

some fibers have multiplicity ≥ 2 then either π1(X) is hyperbolic (case all the irreducible
components of the multiple fibers have multiplicity equal to the multiplicity of the re-
spective fiber) or set N to be the union of all the irreducible components of the fibers
whose multiplicity differs from the multiplicity of the respective fiber. The conclusion
follows from the same arguments used in theorem 3.5.
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