
Journal o] Mathematical Sciences, Vol. 100, No. 6, 2000 
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A M E T R I C  SPACE: G E N E R A L I Z A T I O N S  
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1. I n t r o d u c t i o n  

The present paper addresses the theory of mappings f : I ~ X of bounded (~, a)-variation (see the 
definition in Sec. 2) which are defined on a compact interval [ of the real line R and take values in a metric 

or normed space X. We prove the structural theorem for these mappings (Lemma 4 and Theorem 5) and 

establish a compactness theorem in the space of mappings of bounded (~, a)-variation (Theorem 6), which 
in the classical case (X = IR, ~(p) = p, and a(t)  = t) reduces to the well-known Helly selection principle 
([13], Chap. 8, Sec. 4). We study properties of differentiability in the weak and strong senses for these 
mappings (Theorem 7) and generalize criteria due to Riesz [14], Medvedev [11] and the author [6] for the 
case of reflexive Banach space- and metric space-valued mappings (Corollaries 9 and 10). We show that  any 
absolutely continuous mapping f : I --+ X from I into a metric space X is a mapping of bounded (~, a)- 
variation with an appropriately chosen function (I) such that  ~ ( p ) / p  --+ oo as p --+ oo for any continuously 
differentiable function a : I -+ II~ such that  a' > 0 (Corollary 11). We prove an explicit formula for the 
(~, a)-variation of a smooth mapping (Theorem 12). Finally, we show (Theorem 13) that  any set-valued 
mapping with compact graph from a compact interval of the real line into subsets of a Banach space X that 
is of bounded (~5 cr)-variation with respect to the Hausdorff metric admits a regular selection of bounded 
(~, a)-variation with respect to the original norm in X (this result generalizes the previous results of the 
author on the existence of regular selections of set-valued mappings of bounded variation [2]-[6]). 

The short version of the main results of the present paper was presented at the International Conference 
Dedicated to the 90th Anniversary of the Birth of L. S. Pontryagin, August, 31-September, 6, Moscow, 1998 
([7]). 

2. Def in i t ions  

In what follows, we assume that  X and Y are metric spaces with respective distance functions dx( . ,  .) 

and dy(.,-) that  will, for the sake of brevity, be denoted by the same symbol d(-,-). Let • be the set of 
all continuous convex functions �9 : [0, c~[ --+ [0, oo[ such that  ~(p) = 0 if and only if p = 0. The set of all 
functions ~ E J~4 with l imp_~ ~ ( p ) / p  = oc will be denoted by A#. Suppose that  a : I --+ Y is a fixed injective 

mapping from the compact interval I = [a, b] C IR (a < b) into Y (later on, the assumptions on a will be 
made more str ict--see (4), (8) and (17)). 

Given a mapping f : I --+ X,  a partition T = {ti}~o of the interval I (i.e., a = to < tl < . . .  < tin-1 < 
t,, = b), and a function �9 E J~4, we set 

vo,~ T1 P. = ~ . d(a(t ,) ,  a(ti_:)).  
i=i d(a(ti) ,  a ( t i - 1 ) ) )  

The supremum of V~,r T] with respect to all partitions T of the interval I will be denoted by V~,r I) ,  

or simply by V~,~(f) if I is clear, and will be called the (total) B-variation of f with respect to or, or the 
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(g2, a)-variation of f on I. We denote by 

BV~,~(I; X) = {f : I ~ X I V,,~(f) < o~} 

the set of all mappings from I into X of bounded (~, a)-variation. 
In the special ease where 4)(p) = p, Y = R, and a( t )  = t, a mapping f : I -+ X of bounded (~, a ) -var ia t ion  

will be called a mapping of bounded variation (in the classical sense of C. Jordan),  its total (~, a)-var ia t ion 
will be writ ten as Vl(f,  I)  or Vl(f) ,  and the set of all these mappings will be denoted by BV~(I;X). 

A mapping f : I -4 X is said to be a-absolutely continuous if, for any r > 0, there exists 5(r > 0 such tha t  

if a <_ al < 51 <_ a2 < 52 <_ ...  <_ a,~ < bn ~ b and ~i~1 d(a(bi), a(ai)) <_ 6(E), then ~ 1  d(f(b~), f (a j )  < r 
We set 

AC~(I; X) = { f  : I --~ X [ f is ~r-absolutely continuous}. 

If Y = R and a(t) = t, a-absolutely continuous mappings will simply be called absolutely continuous and the 
set of all these mappings will be denoted, as usual, by AC(I; X). 

A mapping f : E C R -4 X is called a-Lipschitzian if the following quantity, which is called the 
a-Lipschitz constant of f ,  is finite: 

L i p , ( f )  = sup { d(f(t)' f(s)) l t, s E E, t # s}. 
d(a(t),a(s)) 

The  set of all a-Lipschitzian mappings from E into X is denoted by 

C~ -- { f :  E - 4 X  I Lip~(f)  < co}. 

In particular, if Y = R and a(t) = t, we call mappings from C ~ (E; X) Lipschitzian (or Lipschitz continuous), 
and we drop the subscript a in the notat ion of L ip ( f  ) - - t he  Lipschitz constant of f - - a n d  of C~ X) .  

In the sequel we are going to make use of Jensen's inequalities for convex continuous functions �9 EAd ,  
which we now recall (e.g., [13], Chap. 10, See. 5): 

n 2: n n (a) Jensen's inequality for sums: if {oh}i=1 and { i}~__-1 are nonnegative numbers and ~i=l  ai > 0, then 

E ~ t = l  a i  .] - -  E i n = l  OQ 

(b) Jensen's integral inequality: if a : [a, b] -4 IR and x : [a, b] -4 R are nonnegative Lebesgue integrable 

functions and f~ a(t) dt > 0, then (in the case where all the integrals exist) we have 

{.f~ a(t)x(t) dt~ f~ a(t)e(x(t)) dt 
~ \  f~a(t)dt ] <  (2) - f~ a ( t )  dt 

3. R e l a t i o n s  B e t w e e n  F u n c t i o n a l  Spaces  

We begin with the following general proposition on embeddings of the above function spaces, which is 
valid under the assmnptions given above. 

P r o p o s i t i o n  1. (a) C~ C AC~(I;X). 
(b) If a E BV1 (/;  Y), then C~ X) C BV.,~(I; X) C BV~ (/; X) for all �9 E A4 and 

Vl (f, I)  _< Vl(a, I)  - i  ( ~ V~.~(f, I)  

where [ = [a, b] and 4) -1 : [0, ~ [  -4 [0, oc[ is the inverse function of ~. 
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(c) If ~ EAf ,  then B V ~ : ( I ; X )  C AC~(I;X) .  
(d) The inclusion AC~(I; X )  C BV~ (I ;  X)  holds if a : I --+ Y is continuous and satisfies the condition: 

V:(a,[s,t]) =d(a(t) ,a(s))  Vt,  s e I ,  s<_t. (4) 

In particular, the above inclusion holds ira : I --+ ~ is continuous and strictly increasing. (Condition (4) will 
be  discussed below; see R e m a r k  1.) 

P r o o f .  (a) For f E C~ and r > 0, we set (~(e) = e/max{1,Lip~(f)}  > 0. I f a  < al < b: _< a2 < b2 _< 
. . .  <_ a~ < b, < b and E:'_-: d(a(bi), cr(ai)) < 5(r then 

d(f(bO, f(aO) < L i p . ( f )  �9 k d((r(bO, a(a~)) <_ L i p . ( f )  - 5(E) _< :. 
i=l i=l 

It follows that f E AC.(I; X). 

(b) 1. For any part i t ion T = {ti}~=0 of I and any f E C~ we have 

Vv:[I, T] <_ ~(L ip~( f ) )  - k d(a(h), a(ti-1)) <_ ~5(Lip~(f)) �9 V: (~). 
i = l  

The  first inclusion in (b) thus follows. 
2. Let f " I --+ X be of bounded  (~5, a) -var ia t ion and T = {h}~m__0 be a par t i t ion of I .  Applying Jensen 's  

inequality (1) for sums with 

d(f(h), f( t~_:))  i = 1 , . . . ,  m, 
ai = d(~r(ti), a( t i_ : ) ) ,  xi = d(a(ti), a(ti-1))' 

we obtain 

• :" Ei~=: d(f(t~), f(t~_,)) "~ 
~ E~=: d( cr(ti), a( t~_: ) ) ] 

1 < 
Eim=: d(cT(ti), cr(ti_:)) 

1 
- ~.~=: d(c@i),(r(ti_:)) 

�9 @'(I)(d(f(ti) ' f(ti-1)) d a t, ,a ti : 
~--'=~-\d(a(h),cr(t~_:))) ( ( " )  ( - ) )  

�9 V,, , (f ,  I). 

I t  follows, by taking the inverse function (I)-I, t ha t  

V:[f, T] =- k d(f(t,), f(ti-1)) 
i= l  

< "o,.(:,'> ) 
- Ei~=, d(a(ti), a(ti_l)) 

< : ) .  ( 0 
- \d(a(b), a(a)) : '  

and it remains to take the supremum over all part i t ions T of I .  
(c) Let a < a: < b: _< a2 < b2 _< . . .  < an < b~ < b. As in (5), for a mapping  f E BV~,~(I; X) ,  we have 

i=: - - kET=,d(a(b~),a(ad) 

Sett ing v = Vr I )  and taking into account t ha t  limp-+o~ ~(p)/p = oo, we obtain  

lim t ~ - ' ( v / t )  = v l ~  p/~O(p) = O. (7) 
t--~+0 
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Hence, for any E > 0, there exists 5(E) > 0 such t ha t  t ~ - l ( v / t )  <_ 6 for 0 < t _< 5(e). Then  inequality (6) 
implies the following: 

if d(o'(bi),(r(ai)) <_ 6(~), then y '~d( f (b i ) , f (a i ) )  <_ e, 
i = l  i=1  

and, therefore, f 6 AC~([; X) .  
(d) Let  f E A C , ( I ; X ) .  Let e > 0 be fixed, and let 5(e) > 0 be the  number  from the definition of 

(r-absolute continuity of f .  Since cr is uniformly continuous on I ,  there exists a par t i t ion T = {ti}m=o of I 
such tha t  

d(o.(ti), o.(t,_,)) <_ 6(e) Vi  = 1 , . . . ,  rn. 

m i  Now, if T~ = {ti,3}3= 0 is a par t i t ion of the closed interval I~ = [ti_~, t~], then by virtue of (4) and the addi t ivi ty  

of V1 (o., �9 ), we have 
rrl i 

d(o.(ti,j), o.(tid-1)) = d((r(t~), a(ti-1)) <_ 6(~), 
j = l  

so tha t  by the o.-absolute continuity of f ,  it follows tha t  

m i  

Vl[f, Ti] = ~ d(f(t~j),  f(ti , j-1)) < ~. 
j = l  

Since the par t i t ion T/ of Ii is arbitrary,  we have Vt(f ,  Ii) <_ e for all i = 1 , . . .  ,m,  and it remains to use the 
addit ivity p roper ty  of Vl(f,  �9 ): 

m 

V1(f, I )  = ~ V l ( f ,  Ii) <_ me. 
i = l  

Thus, f E BV~( I ;X) .  

R e m a r k  1. Condition (4) does not, in fact, bring any generality as compared to the case where o. is real- 
valued. By this we mean tha t  if o. : I -+ Y is injective and satisfies (4), then setting o�86 = Vl(o�86 [a,t]), 
t E I ,  we find tha t  o-1 : I --+ ]R is strictly increasing and bounded and satisfies for s, t E I ,  s < t, the following 
relations: 

o�86 - o�86 ~- Vl (o, [a, t]) - Vl(o-, [a, s]) = V1(o-, [s, t]) = d(o.(t),o.(s)). 

Hence, in the  sequel, we will assume that  

~r : I - +  R is strictly increasing and bounded. (8) 

However, to make sure tha t  condition (4) natural ly arises in different contexts, we are going to keep it for a 
while (until after Theorem 5). 

The  embeddings in Proposit ion 1 are depicted in the following diagram: 

CO, l ( z ; x  ) o. e B E  , BV~,.(Z;X) o. ~ BV~ . BV~(I;X) 

/ ntmuous 
AC~ ([; X ) increasing 
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4. P r o p e r t i e s  o f  t h e  ((I), ~  

P r o p o s i t i o n  2. Assume that ~ E .A4 and a satisfies (~) or (8). Then, for any mapping f : I -+ X ,  we 
have 

(a) V4,a[f,T] <_ V,,~[f, T U  {t}] if  T is a partition of I and t E I \  T; 
(b) V4,~[f, T1] <_ Vr T2] if 7"1 and T2 are partitions of I and T1 C 7"2; 
(c) V4,a(f, T) = Ve,~[f, T] for any partition T of I (so that V4:(f ,  - ) extends Vq,,~[f, �9 ] onto all subsets 

of I); 
(d) the quantity Vr I) is equal to the supremum of Vr taken over all partitions T of I such 

that every T contains the same finite subset of points from I. 

Pr o o f .  

we have 

t m (a) Let T = ( i I i=o  and tk-:  < t < tk for some k E (1 , . .  ,m}. Setting 

( d ( f ( t d ,  f (h -1) )~d(a( t~  
- -  cr(ti_l)), i = 1 , . . , m ,  Ui = U i ( f )  -~- d ( a ( t , ) , ~ J  " ' " 

k - I  m 

.o o . ,  _- _ ",) § . .  § ( , ",), 

where we set the first or the last sum equal to zero if k = 1 or k = m, respectively. 
inequality (1) with ~ = d(a(t), a(tk-z)),  a2 = d(a(tk), a(t)), and 

d(f(t),  :(tk_l) ) d(f(tk), :(t) ) 
xl  = d( , , ( t ) ,  , , ( t~_,) ) '  x~ - d (o ( t~ ) , , , ( t ) ) '  

and noting that,  by (4), a l  + a2 = d(a(tk), ~ we find that  

Uk < ~ ( d ( f ( t ) ,  f ( t k - , ) )  + d(f(tk),  f ( t ) ) )d (a ( tk )  ' ~ 
- \d(c~(t), o(tk-x)) + d((r(tk), a(t)) 

_< :._,,,. + - 

Thus, (10) implies Ve,,[f, T] < V,,,[f,  T U {t}]. 
(b) follows by induction from (a). Items (c) and (d) are consequences of (b). 

(9) 

(10) 

Applying Jansen's 

(11) 

P r o p o s i t i o n  3. Let �9 E M ,  and let a satisfy (4) or (8). For f : I = [a, b] --+ X ,  we have 
(a) ira < s < t < b, then Vr < Vr 
(b) if  a < t < b, then V,,a(f,  [a, b]) = Vr [a, t]) + Vr  [t, b]); 
(c) i f  f ,  : I --~ X ,  n E N, and limn--,o~d(f~(t),f(t)) = O for altt  E I, then 

P ro o f .  By virtue of Proposition 2(b), assertion (a) is obvious. 
(b) For a parti t ion T: of [a, t] and a partit ion T2 of [t, b] we have: 

V,,,[f,T:] + Y,, ,[f ,  T2] = Vr uT2] < V , : ( f ,  I) .  

Since 7"1 and T2 are arbitrary, it follows tha t  

v,,~(f,  [a, t]) + v . ,~ ( f ,  It, hi) < V.,~(f, I). 
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R e m a r k  3. In Lemma 4(b), the condition Lip(g) < 1 is particularly important.  

It turns out tha t  under condition (4) (or equivalently, under condition (8)), mappings f of bounded 
variation are decomposable as f = g o qo in the same way as in Lemma 4. More precisely, we have the 
following: 

T h e o r e m  5 ( s t r u c t u r a l  t h e o r e m ) .  Let f E B V I ( I ; X ) .  Set~(t)  = Vl(f, [a,t]) i f t  E I ,  and let J = qo(I). 
Then qo : I --+ [0, oo[ is a bounded nondecreasing function, and there exists a mapping g E C ~ (J; X )  with 
Lip(g) _< 1 such that f ( t )  = g(qo(t)) for all t E I. 

Moreover, if ~ satisfies (~) or (8), then we have 
(a) if f E C~  then qo e C~ and Lip~(qo) = Lip~(f) 
(b) if  ~? E .L4 and f E BV~,~(I;X),  then ~o E BV~,~(I;R) and V~,~(qo) = V~,~(f) 
(c) i ra  is continuous and f E AC~( I ;X) ,  then qo ~ AC~(I;R) and 5~(.) = 5~(.). 

Pro o f .  The first part  of this theorem is proved in [2], Theorem 3.1 and Lemma 3.3. Taking into account 
the embeddings in Proposition 1, we are going to verify that  (a), (b), and (c) hold. 

(a) If t, s E I, s _< t, then for any partit ion T = {t~}~0 of [s, t] we have 

V~[f,T] = ~ d ( f (h ) , f (h_~) )  < Lip~(f) d(a(h) ,a(h_~))  
i = l  i = 1  

_< Lip~(f) -  V~(a, Is, t]), 

so that  V~ (f, [s, t]) _< Lip~( f ) .  V~ (a, Is, t]). In view of (4), we obtain 

I~.o(t) - ~ o ( s ) i  = V~(f, [a, t ] )  - V~(f, [a, s ] )  = V~(f, [ s , t ] )  

_< Lip~(f ) ,  V~(a, Is, t]) = Lip~(f ) .  d(a(t), a(s)).  

It follows that  Lip~,(~) _ Lip~(f).  The last inequality is, actually, an equality, as can be seen from Lemma 4(a). 
(b) Let T = {t~}~'~_ 0 be a partition of I and I~ = [t~-l, hi, i = 1 , . . . ,  m. Applying (3), we have 

i~o(td _ ~o(t~_~)l __ v~(Z, i d  < v~(a, i d  . q,_~ ( v,.~(f, Id ), 
- -  \d(cr(ti), a(ti_~) ) 

and hence, 

d(a(ti), a ( t i - 1  )) 
~=1 - 7~T tS ,  ~ e 

Condition (4) and Proposition a(b) then imply 

m 

V.,•[qo, T] < )-~V~,,.(f,/~) = V~, ~(f, I) .  
i=l  

It follows that  V~.~(~o, I)  < V~,~(f, I).  Now Lemma 4(b) and the relation f --- g o ~o with Lip(g) <_ 1 yield 
v~,~(~) = v,,~(f). 

(c) By Proposition l(d),  the function I ~ t ~+ ~o(t) = Vl(f, [a, t]) is well defined. Let e > 0, a < al < 
bl _< a2 < ha _< . . .  _< a= < bn < b, and let s d(a(bi),a(a~)) < 5i(e ), where 5f(e) > 0 is the number from 
the definition of the a-absolute continuity of f .  For any i E { 1 , . . . ,  n} and any a~ < V~ (f,  [a~, b~]), there exists 

m l  a partition T~ = {hj}g=o of [a~, b~] such tha t  V~[f, T~] >_ c~. Since 

n mi rt 

~ d(a(t~j), ~(t,,j_~)) = ~ d(cr(b,), ~(ad) ___ 6I(~), 
i = 1  j = l  i = 1  

2706 



by virtue of (4) the at-absolute continuity of f implies 

n n n m i  

ai < ~ V1 [f , Ti] = ~ ~ d(f(t,,j), f(t id-1) ) < e. 
i=i i=I i=1 j=l 

Passing to the limit a~ --~ V1 (f,  [a~, b~]), we obtain 

I~o(bd - ~o(adl = ~-~ v , ( f ,  [a,, b,]) < e, 
i=l i=1 

so that  we can set 5~(c) = 5S(r 
From now on, we assume that  a satisfies (8). In this case, the main estimate (3) takes the form 

~i)_ 1 (V,,<~(f, [a, b])~ BV,,<,(I; X) .  V~(f, [a, b]) < (er(b) - at(a)), t at(b) - at(a) ) '  f E (13) 

6. A Selection Principle 

T h e o r e m  6 (selection principle). Assume that K is a compact subset of a metric space X ,  40 E A d ,  at 

satisfies (8), and 3 z is an infinite family of continuous mappings from I into K such that 

v := supV~,~(f , I )  < oo. (14) 
f ay  

Then there exists a sequence of mappings {fn}n~__l C .T that converges pointwise on I as n --+ oo to a mapping 
f E BVe,~(I; X )  such that Ve,~(f, I)  < v. 

I f  X is a Banach space, then mappings from jr need not be continuous. 
If  ~ E A f  and at is continuous, we can assume that X is a complete metric space, a family jr of mappings 

from I into X is such that the sets {f ( t )  I f E j r}  are precompact in X for all t E I ,  and (14) holds. Then 
the convergence of continuous mappings fn to f is uniform. 

P r o o f .  We are going to apply a variant of Helly's selection principle from [2], Theorem 7.1. To this end, we 
have to verify tha t  the family {Vl(f, I)  I f E Dr} is bounded. This is a consequence of (13): 

Vl(I, I)  <_ (at(b) - at(a))~ -1 (at(b) : ~(a) )  V f  E jr .  

By the Helly selection principle (referred to above), a sequence of mappings {f~}o%1 C 9 t- converges pointwise 
on I as n -+ oo to a mapping f E BVI ( I ;X ) .  Actually, f E BVr since, by Proposition 3(c), we have 

V.,~(Z,I) < l i m ~ f  V.,~(f~, I)  < v. (15) 

Assume now tha t  �9 E AF and cr is continuous. If t, s E I, s < t, by the definition of Vr I)  and 
from (13), we have for any f E j r  

d( f ( t ) , f ( s ) )  < ( a ( t ) - a t ( s ) ) O - l (  V. ,~(f , I)  
- t a t ( t )  - ~(s)) 

?2 
(at(t) - -  a t ( S ) ) ( I  ) - 1  (at(t) - -  O'(S) ")" (16) 

Since ~5 E AT, (7) implies tha t  for any c > 0, there exists 5(e) = 5(c,v) > 0 such that  p~- l ( v lp )  <_ c 
for all 0 < p_< 5 (@ Since a is continuous, there exists 5~(~) > 0 such that  i f 0  < t - s  _< 5~(~), then 
a(t) -a t ( s )  < 5(r This and (16) yield that  supsej:d( f ( t ) , f (s) )  <_ ~ for all 0 < t - s _< 5~(~). Hence, we 
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have shown tha t  the  family 9 v is equicontinuous. By Arzelh-Ascoli 's theorem, .T" is p recompact  in the space of 
continuous mappings  from I into K equipped with the uniform metric. It  follows t h a t  there exists a uniformly 
convergent sequence of mappings  {f~}~~176 1 C .T" whose uniform limit we denote by f .  From (15), we conclude 

tha t  f E BV,,~(I; X ) .  
If X is a Banach  space, then  we can apply  a refined Helly 's  selection principle from [3], Theorem 5.1, to 

obtain what was desired. 

R e m a r k  4. If  a is continuous, a theorem similar to Theorem 6 with the uniform convergence assertion 
holds for a family $" C o 1 C~' (I ;  K )  if s u p f e y  L i p , ( f )  < c~, and for a family ~ C AC~,(I; K),  if we assume tha t  

in f feyhf (e )  > 0 for all e > 0, where (IS(e) is the number  from the definition of a -absolute  continuity of f .  

7. D i f f e r e n t i a b i l i t y  P r o p e r t i e s  

If X is a normed vector space (over R or C), we denote by CI(I; X )  the vector  space of all continuously 
differentiable mappings  f whose strong derivative (with respect to the norm in X)  evaluated at t E I is denoted 
by f ' ( t)  E X .  The  following abbreviat ions are commonly  used: a.e. = almost everywhere (with respect to the 

Lebesgue measure on I ) ,  a.a. = almost  all, etc. 
From now on (except for a e m m a  8), we will assume tha t  (cf. (8)) 

a E C I ( I ; R )  and a'(t) >0  for all t E  I. (17) 

T h e o r e m  7. Let X be a reflexive Banach space with norm [t" 11, I = [a,b], r E J~4, a satisfy (17), and let 
f E BV~,~(I; X ) .  Then f is a.e. weakly differentiable on I (this is to be made precise in the proof), its weak 
derivative t ~+ f ' ( t )  is strongly measurable, and 

a,(t,</llf'(t)[l~ fl ) i , T ~  ) dt <_ Vr I). 

If, moreover, ~ E .hf , then f E AC(I;  X )  is a.e. strongly differentiable on I,  its strong derivative t ~-+ f '( t)  
is strongly measurable, f can be written in the form 

~a t 
f ( t )  = f (a)  + f'('r) dT for all t E I (18) 

(with the Bochner integral on the right hand side), and the following equality holds: 

v~,~(f, I) = ~ a'(t)~( IIf'(t)ll ~ dt. 
a'(t) ] 

(19) 

On the other hand, if f E AC(I;  X )  and its strongly measurable strong derivative t ~-+ f ' ( t ) ,  defined a.e. on I ,  

is such that f~ a'(t)(~(i]f'(t)ii/a'(t))dt < 0% then f E BV~,~(I; Z ) .  

In order to prove Theorem 7, we need a lemma. 

L e m m a  8. I f  X is a normed vector space with the norm H" I], I = [a, b], �9 E .Ad, a satisfies (8), and 

f E BV~,~([; X ) ,  then for any 0 < h < b - a, we have 

7 ha(t + ~ - a(t) r  + h) - f(t)ll'~ 
- \ a ( t + h )  a(t) jdt<V*'~(f'[a'b])" (20) 
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P r o o f .  The function t ~ V~,#(f, [a, t]) is nondecreasing and bounded on I,  so tha t  it is Riemann integrable 
on I.  Fix 0 < h < b - a. Since f E BV~(I;X), it is continuous outside, possibly, a countable subset of I 
(cf. [2], Theorem 4.1), and hence, the function [a, b - hi 3 t ~+ [[f(t + h) - f(t)[[ has the same continuity 

properties. Using Proposit ion 3(b), we have 

a(t + h) - a ( t )  r < V~,~(f, It, t + h]) 
h ~ ( t + h )  ~ ( t )  - 

1 
= ~(V~,~(f, [a, t + hi) - V~,~(f, [a, t])). 

Now it suffices to integrate this inequality with respect to t E [a, b - hi: 

b a + h  

ha(t+h)h-(X(t)~2(IIf(~-t(t+h)- (r(t) )d t  <=_ l ( f  " f )vo,a(f,[a,t])dt 
a b - h  a 

b 

-<hl / V~,~(f, [a, t]) dt _< V~,~(f, [a, b]). 
b - h  

P r o o f  o f  T h e o r e m  7. 1. Proposit ion l(b) yields f E BVI(I; X). By Theorem 3.3 from [1], Chap. 1, Sec. 3, 
the mapping f is a.e. weakly differentiable on I in the sense that  there exists a mapping t ~-4 f '( t)  (the weak 
derivative of f), defined a.e. on I, such that  for a.a. t E I we have 

( .  f ( t  + h) - f ( t )  _ S ' ( t ) )  -+ 0 as R ~ h -~ 0 v x "  E X*, (21) 
x ,  h 

where X* is the strong dual of X and ( -, - ) is the pairing between X* and X; the weak derivative f"  is strongly 
measurable and belongs to the Banach space L I (I; X)  of Bochner integrable mappings from I into X. Since 
(f(t + h) - f(t))/h weakly converges to f '(t)  as h --+ 0 for a.a. t E [ by (21), it follows that  

N f . ( t ) H < l i m i n f  f ( t + h ) - f ( t )  for a.a. t E I .  
- -  h ~ 0  h 

Using Fatou's lemma and applying Lemma 8, we obtain 

; , . . - , l l f ' ( ) l l ,  "t + - - - a ( t ) f P ' ~ ' d  < l iminf  j r / d t  
- h-,o o h t ~ ( t + h )  ~ ( t )  

_< V~,~(f, [a, hi). (22) 

2. Assume tha t  �9 E A/. Then f E AC~(I; X) by Proposit ion l(c),  so that,  since (17) holds, f E AC(I; X). 
According to Theorem 3.4 from [1], Chap. 1, Sec. 3, the mapping f is a.e. strongly differentiable on I (with the 
strong derivative f '  equal a.e. to the weak derivative f ' ) ,  it can be written in the form (18), and (22) takes 
place. Now, using (18) and Jensen's integral inequality (2), we obtain the converse inequality for (22): if 

T = {ti}~=o is a part i t ion of I, then 

V~,~,[f,T] = i ~ 1 ~ (  I I f ( t~ ) :  f(ti-t)l] '~ 
_ o ( t ; )  - o ( ~ , _ , )  / ( ~ ( t , )  - ~ ( t ~ _ , ) )  

< )-~(f**,'_, r f t~ a'(t) dt 
_ ~=, ftt, a,(t)dt / t,_: 

b 

(2) ,~ t, a,(tlg~(llff(t)ll, dt (,~) I ~--~ )dt" 
- ' ~ ~ ' ( t )  J 

= t i -  

3. If the last condition of the theorem is fulfilled, then calculations done at the end of step 2 prove that  
f is of bounded (~, a)-variation. 
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R e m a r k  5. Wi thou t  the reflexivity assumption on X one can find Lipschitz continuous m a p p i n g s f  E 
C~ X)  t ha t  have no point  of (weak or strong) differentiability on the interval In, b[, the interior of I (cf. 
[10] or [4], See. 5). 

The  following corollary is a generalization of the criteria due to Riesz [14] (X = R, ~(p)  = pq, q > 1, 
a(t) = t), Medvedev [11] (X = ~, �9 E A/, a(t) = t), and the  author  [5] (X a reflexive Banach space, ~ E ~r,  

= t ) :  

Corollary 9. I f  X is a reflexive Banach space, ~ E j~r, and a satisfies (17), then 

f E B V , ~ ( I ; X )  *==~ f E A C ( I ; X )  and [ . . . . .  rllf'(t)lIx , ] o  at  < oz. 

Corollary 
t E I. Then 

C o r o l l a r y  

In view of Theorem 5(b), Corollary 9 can be generalized for a rb i t ra ry  metric spaces X as follows: 

10. Let X be a metric space, �9 EAf ,  cr satisfy (17), f E BV~(I;X) ,  and ~(t) = Vi(f,[a,t]), 

f E BV,~(I;X), r ~ E AC(I ;R)  and fld(t)q(l~'(t)l~dt, ' \ ~r'(t) ] < oz" 

11. I f  X is a metric space and a satisfies (17), then 

AC~(I ;X)  = U Bv,~,c,(I;X). 
,~EN" 

P r o o f .  The  inclusion D was obtained in Proposit ion 1(c). Let us show tha t  for any f E AC~(I; X) ,  there 
exists a function ~ E A f  depending on f such tha t  f E BV~,~(I;X).  If ~(t) = Vl(f,[a,t]), t E I ,  then 

E ACo(I;~)  by Theorem 5(c), and since a E C l ( I ; ~ ) ,  we have ~ e AC(I;•) .  Therefore, the derivative 

~' E L~(I; ~). By Corollary 10, it suffices to prove tha t  ]~ d(t)~(lp'( t) l /c~'( t))dt  < oz. To this end, consider 
the sets J~ = {t E I [ ( n - 1 ) r  < ]~'(t)I < nd( t ) } ,  n E N. The  sets J .  are pairwise disjoint, Y~=l J~ = [a, b], 
and 

n d( t )  dt <_ [~'(t)I dt + (c~(b) - a(a)) < oz. 

Let {pn}n~=l be an increasing sequence of real numbers such tha t  Pl _> 1, limn--,~ pn = oz, and 

~ p n n  f, d ( t )  dt < oz. (23) 
n = l  # J n  

Setting 

~ ( T ) = { ~ -  if 0 _ < T < I ,  
Pn if n < T < n + l ,  n E N ,  0 < T < O Z ,  

and ~(p)  = f0 p ~(7)  dw, p > 0, we find tha t  �9 E A/" (and moreover,  lim ~(p) /p  = 0). Since ~ (n )  = f0 ~ ~(T) dv < 
- -  p - + 0  - -  

Pn �9 n, we have by (23) tha t  

b . . . . .  / l ~  (t)t~ , I~ (  )1 

n = l  n = l  

which was to be  proved. 
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8. (69,r o f  a S m o o t h  M a p p i n g  

T h e o r e m  12. Assume that X is a (not necessarily complete) normed vector space with the norm I I - I I ,  
69 �9 .A4, and a satisfies (17). Then, for any f �9 CI ( I ;X) ,  formula (19) holds. 

Proof .  1. To begin with, assume that r EAf. By Theorem 5(b), we know that Vr = V~,,(W), where 

~(t) = Vl(f, [a, t]), t E I. From [2], Theorem 8.7(b), it follows that  T(t) = f2 ]]f'(T)l ] dv for all t �9 I. Since R 
is a reflexive Banach space, formula (19) yields 

= f cr't 69 I If ' ( t) l l  [a'(t)69(l~'(t)l~dt= () ( )dt. v , , ~ ( f )  = v , ,~(~)  s~ ~ ~,'(t) J 

However, the general case, 69 E A4, ought to be considered separately. 
2. If X is a Banach space, then the calculations in step 2 of the proof of Theorem 7 imply that 

_ a ' t  r IIf'(t)ll 
V,,~(f,I)  < fl ( )  (~---~--)dt .  (24) 

Here the completeness of X was used for the existence of the X-valued integral f t, if(t) dt. If X is not 
t i - 1  

complete, we embed X into its completion and note that the norms of elements of X evaluated in X and in 
the completion of X are the same. This proves that (24) is also valid without the completeness of X. 

The converse inequality will immediately follow from (20) if we show that 

7 ~ a ( t + h ) - a ( t ) ~ ( ] [ f ( t + h ) - f ( t ) ] ] ~  }a,(t~69(]]f'(t)]]~dt" 
lim ' '  ', o"(t) J h-,+o h a(t + h) ~(t) ] dt = 

a a 

We set Ahf( t  ) = (f( t  + h) - f ( t ) ) /h  and Aha(t) = ((y(t + h) - cr(t))/h. We have 

Ahc~(t) Ahf(t)  69(Hf'(t)]]~ I 
Jl 

]Aha(t)] Ahf( t )  ~(]lf'(t)]]~ ~:]]f'(t)]]~ 

Hence, 
b - h  b 

Ahf(t)  [ ]lf'(t)]] ) dt 
a a 

b-h 
~t ~(  Ahf(t)~ _ ~([If'(t)]t 51 dt 

-< f IAhcr(t)l" ~Ahcr(t)] k z'(t) ]1 
a 

b - h  b 

- a'(t)~(l[f'(t)]l~ dt. + f IAha(t) # ( t ) ] .4?( ] l f ' ( t ) ] ]~dt+  f ' t  
a b - h  

The three integrals on the right-hand side tend to zero as h --+ +0. 

9. Regu la r  Selections of  Set -Valued Mappings  

Now we turn to the existence of regular selections of set-valued mappings. First, a few definitions are in 
order. 
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If A and B are nonempty  subsets of a metric  space (X,  d), the excess o / A  over B is defined by 

e (A ,B)  -- s u p d i s t ( x , B ) ,  where d i s t (x ,B)  = inf d(x,y),  
xEA yEB 

and the Hausdorff distance between A and B is defined by  

D(A, B) = max {e(A, B) ,  e(B, A)}. 

The  mapping  D is a metr ic  (called the Hausdorff metric) on the  set of all nonempty  closed bounded (and, in 

part icular,  compact)  subsets  of X.  

Given I = [a, b], a set-valued mapping from I into X is a mapping  F : I -+ 2 X, where 2 z is the class of 

all subsets of X,  such t ha t  F ( t )  C X for all t E I .  The  set G r ( F )  = {( t ,z )  E I x X I x  E F( t )}  is called the 

graph of F and the set R ( F )  -- Utel F(t) is called the range of F. 

If a set-valued mapp ing  F : I --+ 2x = 2 x \ {g} has closed bounded or compact  images F(t) for all t E I ,  

then, using the Hausdorff  metr ic  D, we can introduce the notions of set-valued mappings  of bounded (~, a)- 
variation, a-absolutely continuous set-valued mappings,  and a-Lipschitz set-valued mappings (@ E .M and 
a satisfies (17)) in a similar manner  as was previously done for metric-space valued mappings.  The  respective 

classes of set-valued mappings  will be denoted by BV~,~(I; 2x), AC~(I; 2x), and C~ 2x) = CO, i ( i ;  i x ) .  

The  tota l  (@, a) -var ia t ion  of F : I -+ 2x will still be denoted by  V~,~(F, I )  and the Lipschitz constant of F by 
Lip(F) .  In view of Corollary 11, a -absolute ly  continuous mappings  are of no interest any more, and hence, 
we do not consider t hem in the sequel. 

By a regular selection of a set-valued mapping  F : I --+ 2x we mean a (single-valued) mapping  f : I -+ X 
such tha t  f ( t )  E F ( t )  for all t E I .  Moreover, the mapping  f should have the same "regularity" propert ies  
(relative to the variation) as the initial set-valued mapping  F - - t h i s  is made precise in the following theorem: 

T h e o r e m  13 ( e x i s t e n c e  o f  r e g u l a r  s e l e c t i o n s ) .  Assume that X is a Banach space with the norm II �9 H, 

E All, and a satisfies (17.). If the graph G r ( F )  of the set-valued mapping F E BV~,~(I; 2x) is compact 
(and hence, the images F(t) are compact subsets of X for all t E I), then, for any to E I and xo E F(to), 
there exists a mapping f E BV~,~(I;X), a regular selection of F such that f ( t )  E F(t) at all points t E I 
where F is continuous (the set of these points is at most countable), f(to) = Xo, V~,~(f, I) ~_ V~,~(F, I) and 
Vl(f,  I )  _< V,(F, I ) .  

Moreover, if F is continuous or ~ E .hf, then the selection f is continuous as well and f ( t )  E F(t) for 
all t E I. 

P r o o f .  1. For each n E N, let Tn = {t~}~= 0 be a par t i t ion of the  closed interval I = [a, b] (i.e., a --- t~ < t~ < 

. . .  < t~_ 1 < t~ = b) with the  propert ies 

(i) to E Tn, i.e., to = t~(~) for some k(n) E {0, 1 , . . .  ,n};  

(ii) if A(Tn) -- maxl<i<~(t~ - t~_l), then  lim.-~oo A(T.) -- 0. 

First  we define elements x~ E F(t~) ,  n E N, i = 0, 1 , . . . ,  n, inductively as follows. To begin with, assume tha t  

n E N and a < to < b. 

(a) Put  x~(.) = Xo. 

(b) I f /  E { 1, . . . ,  k(n)}  and if x~ E F( t~)  is already chosen, pick an element x~_ 1 E F(t~_l) such tha t  

I[x~ - z~_ 1 ][ -- dist(x~, F(t~_l) ). 

(c) If i E ( k ( n )  -!- 1, . . . ,  n } and if x~_ 1 E F(t~_l) is a l ready chosen, pick an element x~ E F(t'~) such tha t  

ttZ~_l - x~l I -- dist(z~_l, F( t~)) .  
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M A P P I N G S  OF B O U N D E D  V A R I A T I O N  W I T H  VALUES IN 
A M E T R I C  SPACE: G E N E R A L I Z A T I O N S  

V. V. C h i s t y a k o v  UDC 517.988.52; 517.983.6 

1. I n t r o d u c t i o n  

The present paper addresses the theory of mappings f : I ~ X of bounded (~, a)-variation (see the 
definition in Sec. 2) which are defined on a compact interval [ of the real line R and take values in a metric 

or normed space X. We prove the structural theorem for these mappings (Lemma 4 and Theorem 5) and 

establish a compactness theorem in the space of mappings of bounded (~, a)-variation (Theorem 6), which 
in the classical case (X = IR, ~(p) = p, and a(t)  = t) reduces to the well-known Helly selection principle 
([13], Chap. 8, Sec. 4). We study properties of differentiability in the weak and strong senses for these 
mappings (Theorem 7) and generalize criteria due to Riesz [14], Medvedev [11] and the author [6] for the 
case of reflexive Banach space- and metric space-valued mappings (Corollaries 9 and 10). We show that  any 
absolutely continuous mapping f : I --+ X from I into a metric space X is a mapping of bounded (~, a)- 
variation with an appropriately chosen function (I) such that  ~ ( p ) / p  --+ oo as p --+ oo for any continuously 
differentiable function a : I -+ II~ such that  a' > 0 (Corollary 11). We prove an explicit formula for the 
(~, a)-variation of a smooth mapping (Theorem 12). Finally, we show (Theorem 13) that  any set-valued 
mapping with compact graph from a compact interval of the real line into subsets of a Banach space X that 
is of bounded (~5 cr)-variation with respect to the Hausdorff metric admits a regular selection of bounded 
(~, a)-variation with respect to the original norm in X (this result generalizes the previous results of the 
author on the existence of regular selections of set-valued mappings of bounded variation [2]-[6]). 

The short version of the main results of the present paper was presented at the International Conference 
Dedicated to the 90th Anniversary of the Birth of L. S. Pontryagin, August, 31-September, 6, Moscow, 1998 
([7]). 

2. Def in i t ions  

In what follows, we assume that  X and Y are metric spaces with respective distance functions dx( . ,  .) 

and dy(.,-) that  will, for the sake of brevity, be denoted by the same symbol d(-,-). Let • be the set of 
all continuous convex functions �9 : [0, c~[ --+ [0, oo[ such that  ~(p) = 0 if and only if p = 0. The set of all 
functions ~ E J~4 with l imp_~ ~ ( p ) / p  = oc will be denoted by A#. Suppose that  a : I --+ Y is a fixed injective 

mapping from the compact interval I = [a, b] C IR (a < b) into Y (later on, the assumptions on a will be 
made more str ict--see (4), (8) and (17)). 

Given a mapping f : I --+ X,  a partition T = {ti}~o of the interval I (i.e., a = to < tl < . . .  < tin-1 < 
t,, = b), and a function �9 E J~4, we set 

vo,~ T1 P. = ~ . d(a(t ,) ,  a(ti_:)).  
i=i d(a(ti) ,  a ( t i - 1 ) ) )  

The supremum of V~,r T] with respect to all partitions T of the interval I will be denoted by V~,r I) ,  

or simply by V~,~(f) if I is clear, and will be called the (total) B-variation of f with respect to or, or the 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya, Tematicheskie Obzory, 
Vol. 61, Pontryagin Conference-2, Nonsmooth Analysis and Optimization, 1999. 
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and dy(.,-) that  will, for the sake of brevity, be denoted by the same symbol d(-,-). Let • be the set of 
all continuous convex functions �9 : [0, c~[ --+ [0, oo[ such that  ~(p) = 0 if and only if p = 0. The set of all 
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t,, = b), and a function �9 E J~4, we set 

vo,~ T1 P. = ~ . d(a(t ,) ,  a(ti_:)).  
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The supremum of V~,r T] with respect to all partitions T of the interval I will be denoted by V~,r I) ,  

or simply by V~,~(f) if I is clear, and will be called the (total) B-variation of f with respect to or, or the 
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